
Theoretical Modeling of the Itoh-Tsujii Inversion
Algorithm for Enhanced Performance on k-LUT

based FPGAs
Sujoy Sinha Roy, Chester Rebeiro and Debdeep Mukhopadhyay

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

email:{sujoyetc, chester, debdeep}@cse.iitkgp.ernet.in

Abstract—Maximizing the performance of the Itoh-Tsujii finite
field inversion algorithm (ITA) on FPGAs requires tuning of
several design parameters. This is often time consuming and
difficult. This paper presents a theoretical model for the ITA
for any Galois field and k-input LUT based FPGA (k > 3).
Such a model would aid a hardware designer to select the ideal
design parameters quickly. The model is experimentally validated
with the NIST specified fields and with 4 and 6 LUT based
FPGAs. Finally, it is demonstrated that the resultant designs
of the Itoh-Tsujii Inversion algorithm is most optimized among
contemporary works on LUT based FPGAs.

I. INTRODUCTION

Hardware accelerators for public key cryptography have a
huge area footprint due to the arithmetic on large numbers
generally used in cypto-algorithms. It is therefore essential
to design accelerators that not only compute at high-speeds,
but also efficiently utilize the available FPGA resources. Of
all arithmetic operations used in crypto-algorithms, finite field
inversion is the most complex. The Itoh-Tsujii algorithm (ITA)
[1] is generally used for computing the inversion due to its
efficieny [3]. The ITA computes the inverse by a series of
multiplications and exponentiations along an addition chain.
The operations are in the finite field and the exponentiations
are done by power circuits, which raises the input to the power
2n. The performance of an ITA architecture on an FPGA
depends on several configurable design parameters such as
the choice of addition chain, power circuits, and the number
of replicated circuits. These parameters have to be selected
appropriately to achieve best performance. While the selection
of the addition chain is straight forward[8], selection of the
other parameters is not. In the current FPGA design scenario,
the only way to obtain the best configuration of the parameters
is to physically evaluate every possible design strategy and
then select the best performing strategy. This results in long
design cycles.

This paper presents a theoretical approach to estimate the
best strategy for any k ≥ 4 input LUT based FPGA, thus
reducing the design cycle time. The proposed approach uses
a theoretical model of the ITA design to analyze how various
design strategies affect the area, delay, and clock cycle require-
ments in the FPGAs. For a given field size (m), size of an
LUT in the FPGA (k), and addition chain, our model predicts

978-3-9810801-7-9/DATE11/ c©2011 EDAA

the best power circuit and the ideal number of replicated
circuits which would give peak performance. The theoretical
results are experimentally validated on 4 and 6 input LUT
based FPGAs for fields specifed in NIST’s Digital Signature
Standard[9].

The paper is structured as follows: Section II has a brief
introduction to the ITA and related works. The ITA is then
generalized to use any exponentiation circuit in Section III.
An ITA architecture is described in Section IV. Section V
gives an estimate of the number of clocks required for this
design. A theoretical analysis of area and delay for this ITA
architecture is presented in Section VI. Section VII describes
how design parameters can be tuned to get maximum perfor-
mance. Theoretical estimates are validated on NIST fields[9]
in VIII. This section also contains performance comparisons
with existing works. The final section has the conclusion.

II. PRELIMINARIES

For an element a 6= 0 in the field GF (2m), the inverse of a
is the element a−1 ∈ GF (2m) such that a ·a−1 = a−1 ·a = 1.
The Itoh-Tsujii inversion algorithm was proposed in [1] for
normal bases representations and in [2] for polynomial basis
representations. The ITA works as follows: For a ∈ GF (2m),
let βk(a) = a2

k−1 and k ∈ N . Then, by Fermat’s little
theorem, a−1 = βm−1(a)

2. For simplicity, we denote βk(a)
by βk. In [5], a recursive sequence (Equation 1) is used with
an addition chain for m− 1 to compute βm−1.

βk+j(a) = (βj)
2kβk = (βk)

2jβj (1)

In [6], further speed up was obtained by a parallel implemen-
tation of the algorithm. In [7] and [8] a quad circuit was used
for ITA implementations in 4 input LUT based FPGAs. The
quad circuit is just 1.5 times the size of the squarer (instead
of twice), and uses an addition chain for (m−1)/2 instead of
m− 1. So, in quad ITA, clock cycles are saved with minimal
impact in the area.

In this paper we denote the operation b2
n

as powering b by
n, where b ∈ GF (2m). In [3], [5], and [6] powering is done
using squarer circuits (n = 1). In [7] and [8], a powering by
2 circuit was used.

III. GENERALIZATION OF THE ITA FOR ANY
EXPONENTIATION CIRCUIT

Theorems 1 and 2 show that the ITA algorithm can be
extended to use any 2n circuit and not just squarers or quads
[2]. For any a ∈ GF (2m) and natural number k, define
αk(a) = a2

nk−1.
Theorem 1 If a ∈ GF (2m), αk1(a) = a2

nk1−1 and αk2(a) =
a2
nk2−1 then

αk1+k2(a) = (αk1(a))
2nk2αk2(a)

where k1, k2 and n ∈ N.
Theorem 2 The inverse of an element a ∈ GF (2m) is

a−1 =

{
{αm−1

n
(a)}2 if n | (m− 1);

{(αq(a))2
r

βr(a)}2 if n 6 | (m− 1).

where nq + r = m− 1 and n, q, and r ∈ N.

αq(a) is calculated using an addition chain for q. A 2n

circuit based ITA is presented in Algorithm 1.

Algorithm 1 genita (2n based ITA)
Require: An element a ∈ GF (2m) and addition chain U =
{ui} for q

U = {1, 2, . . . , q}

Ensure: a−1 ∈ GF (2m) such that a−1 · a = 1
1: begin
2: l = length of U
3: αu1

= a2
n−1

4: βr = a2
r−1

5: for i = 2 to l do
6: p = ui−1
7: q = ui − ui−1
8: αui = αq ∗ α2nq

p

9: end for
10: αul = α2r

ul
· βr

11: a−1 = αul ∗ αul
12: return a−1

13: end

An overhead of using a 2n circuit is the requirement to
compute α1 = a2

n−1 = a ·a2 ·a22 · · · a2n−1

. This can be done
using an addition chain for 2n − 1. Such a technique requires
l
′ − 1 clock cycles, where l

′
is the length of addition chain

for 2n − 1.
Another overhead occurs when n 6 | (m − 1). In this case

βr(a) = a2
r−1, where 1 ≤ r ≤ (n − 1), is required to be

computed. Since 1 ≤ r ≤ (n− 1), computation of βr(a) can
be done during α1 computation using an addition chain for
2n − 1 which contains r.

IV. 2n-ITA ARCHITECTURE FOR A COMBINATIONAL
MULTIPLIER

The quad based ITA architecture in [8] was shown to have
best performance compared to other architectures, therefore
we design our 2n circuit based ITA as a generalization of this
architecture.

Fig. 1. FPGA Architecture for 2n ITA

Fig. 2. Powerblock Design with cascaded 2n circuits

The only difference between the two architectures is in the
powerblock, which contains 2n circuits instead of quads. We
now give a brief description of the 2n based ITA architecture
(Figure 1). The finite field multiplier used is of combinational
type and follows the hybrid Karatsuba algorithm [10]. The
powerblock is used to raise the power of its input a to
any power of 2 (ie. a2

i

for some positive integer i). The
control signal for the powerblock is qsel. Buffers MOUT
and QOUT are used to latch the output of the multiplier
and the powerblock respectively. Control signal en is used in
each clock cycle to latch the output of either the multiplier or
the powerblock (but not both). Any intermediate result that is
required in a later step is stored in a register bank. A control
block is used to generate all the control signals that drive a
Finite State Machine (FSM).

The performance of the architecture as a function of the
area, delay, and number of clock cycles required, mainly
depends on the multiplier and the powerblock. The design
parameters of these blocks have to be tuned in order to
achieve optimal performance. In the next sections we show
how estimations can be made to achieve this.

V. CLOCK CYCLE REQUIREMENT FOR 2n CIRCUIT BASED
ITA

Computing αui , 2 ≤ i ≤ l in line 8 of Algorithm 1 requires
a powering of αp by 2q , followed by a multiplication by αq .

Computing α2q

up is done using the powerblock in Figure 1.
This computation requires ui−ui−1 (where ui and ui−1 is an
element in the addition chain for q) exponentiations. Using a
single 2n circuit will take ui−ui−1 clock cycles. The number
of clock cycles is reduced by using a cascade of us number of
2n circuits (Figure 2), where the output of one 2n circuit is fed
to the input of the next. If the number of repeated powering is
less than us, a multiplexer is used to tap out interim outputs.
Considering us number of cascaded 2n circuits, dui−ui−1

us
e

number of clock cycles are required for computing α2nq

p . For
the multiplication with αq , a single clock cycle is required
(assuming a combinational multiplier). Additionally, l′ − 1
clock cycles are required to compute α1, where l′ is the length
of the addition chain for 2n − 1. The final squaring requires
a clock cycle, and an extra clock cycle is used to indicate
completion of the field inversion. In all, the total number of
clock cycles required when n | (m− 1) is

#ClockCycles = l
′
+ l +

l∑
i=2

⌈ui − ui−1
us

⌉
(2)

When n 6 | (m−1), r additional clock cycles are required for
(αq(a))

2r calculation and one clock cycle for (αq(a))2
r

βr(a)
calculation (line 10 in Algorithm 1). Thus, the total clock cycle
requirement for n 6 | (m− 1) is

#ClockCycles = l
′
+ l + 1 + r +

l∑
i=2

⌈ui − ui−1
us

⌉
(3)

VI. AREA AND DELAY ESTIMATIONS FOR THE 2n CIRCUIT
BASED ITA ARCHITECTURE

In this section we give a theoretical estimation of the total
area and delay requirement in terms of k input LUTs.

A. LUT requirements for a function of x variables:

A k input LUT (k-LUT) can be considered a black box that
can perform any functionality of a maximum of k variables.
If there is a single variable, then no LUT is required. If there
are more than k variables, then more than one k−LUTs are
required to implement the functionality. The total number of
k input LUTs for a function with x variables can be expressed
as,

lut(x) =


0 if x ≤ 1
1 if 1 < x ≤ k

bx−k
k−1
c+ 2 if x > k and (k − 1) 6 | (x− k)

x−k
k−1

+ 1 if x > k and (k − 1)|(x− k)

(4)

B. Delay in LUTs for a function of x variables:

Delay in FPGAs comprise of LUT delays and routing
delays. By experimentation we found that the total delay in
the ITA design is proportional to the number of LUTs in the
critical path. That is, we found that more number of LUTs
imply longer delays. We therefore make the assumption that
the critical path has the most number of LUTs. We denote
this number of LUTs as maxlutpath and use this parameter to
compare delays between designs.

We now present a theoretical estimation of maxlutpath of
a function with x variables considering k-LUT based FPGAs.

The maxlutpath of an x variable function depends on the
number of inputs to the LUT and is given by,

maxlutpath(x) = dlogk(x)e. (5)

C. LUT and Delay estimates for the Multiplier:

ITA implementations in binary fields require a polyno-
mial multiplier. For hardware implementations, the Karatsuba
multiplier is the fastest[3]. The hybrid Karatsuba multiplier
[10] is shown to have the best performance for FPGA based
implementations. An area estimation for the hybrid Karatsuba
multiplier is presented in [10]. Here we show much tighter
area estimations for the hybrid Karatsuba multiplier.

An m bit hybrid Karatsuba multiplier consists of two dm2 e
bit and one bm2 c bit multipliers. Similarly each such lower
order multiplier is split into three smaller multiplications. If
the number of bits of the multiplicands is less than a threshold
(τ), the School-Book multiplication is invoked.

We have experimentally found that a threshold of 16 is best
suited for both 4 and 6 and input LUTs. For multiplications
with multiplicands having greater than 16 bits, the simple
Karatsuba multiplier is used. For m bit multiplicands, the sim-
ple Karatsuba multiplier consumes (2m−1) LUTs (assuming
k ≥ 4) to combine the output of the smaller multiplications.
The total LUT requirement of the multiplier is given by the
recursive formula:

#LUThkmul(m) = 2× LUThkmul(d
m

2
e) +

LUThkmul(b
m

2
c) + 2m− 1 (6)

The total number of LUTs for a τ bit School-Book multi-
plier is given by,

#LUTsbmul = 2

τ−1∑
i=1

lut(2i) + lut(2τ) (7)

and delay in terms of LUTs is given by,

#Dsbmul = maxlutpath(2τ)

= dlogk(2τ)e (8)

The height of the hybrid Karatsuba multiplier is dlog2(mτ)e.
Delay of the entire hybrid Karatsuba multiplier in terms of
LUTs is given by,

#Dhkmul = height of tree+Dsbmul

= dlog2(
m

τ
)e+ dlogk(τ)e (9)

D. LUT and Delay estimates for the Reduction Circuit:

The output of an m bit multiplier has 2m − 1 bits and is
fed to a modular reduction circuit to convert it into an m bit
output. We denote the total number of LUTs in the modular
reduction circuit by LUTMod and delay in terms of LUTs
by DMod. For fields generated by irreducible trinomials, total
number of k−LUTs for this reduction circuit is almost equal
to the field size m (considering k ≥ 4) and the maxlutpath
is 1. For fields generated by irreducible pentanomials, total
number of k−LUTs of the reduction circuit is almost twice
the field size m for 4 ≤ k < 6 and is almost equal to m for
k ≥ 6, while the maxlutpath is 2.

E. LUT and Delay estimates of a 2n Circuit:

The output of a squarer circuit in GF (2m) is given by d =
A · a, where A is an m × m binary square matrix and a is
the input column matrix [a0 a1 · · · am−1]T . Output d is the
column matrix [d0 d1 · · · dm−1]T . The matrix A depends on
the irreducible polynomial and m. Similarly, the output of a
2n circuit which raises an input a ∈ GF (2m) to a2

n

, can be
expressed as d = An · a [2]. A particular output bit di is the
XOR of some of the elements in the column matrix a. We
use a program to get equations of all the m output bits for
the 2n circuit and then using Equation (4), we obtain the total
LUT requirement per output bit di for 0 ≤ i ≤ m − 1. The
total LUT requirement of the entire 2n circuit is given by,

#LUT2n =

m−1∑
i=0

lut(di).

Similarly, Equation (5) gives the delay per output bit di in
terms of LUTs. Since all output bits are computed in parallel,
the delay of the 2n circuit is the maximum LUT delays of all
the di output bits and is given by,

#D2n = Max(LUT delay of di) for 0 ≤ i ≤ m− 1.

F. LUT and Delay estimates of a Multiplexer:

For a 2s : 1 MUX, there are s selection lines, thus the output
of a 2s input MUX is a function of 2s + s variables. So the
total LUT requirements to implement the output functionality
is lut(2s+s). For GF (2m), each input line to the MUX has m
bits and the output has m bits. Thus the total LUT requirement
for a 2s input MUX, is given by

#LUTMUX = m× lut(2s + s). (10)

Delay of the MUX in terms of LUTs is equal to the maxlutpath
of 2s + s variables and is given by,

#DMUX = maxlutpath(2s + s). (11)

If 2s−1 < number of inputs < 2s, then estimations in (10)
and (11) for 2s inputs give an upper bound. Practically, the
values in this case are slightly lesser than the values for 2s

inputs in (10) and (11), and therefore the difference can be
neglected.

G. LUT and Delay estimates for the Powerblock:

Let the powerblock contain us number of cascaded 2n

circuits and the multiplexer MUXP . The multiplexer is con-
trolled by r number of selection lines where 2r−1 < us ≤ 2r.
Thus number of k-LUTs in MUXP is given by,

#LUTMUXP = m× lut(2r + r)

Total number of LUTs in the powerblock is,

#LUTPowblk = us × LUT2n + LUTMUXP

Using Equations (5) and (11), delay of MUXP in terms of
LUTs is,

#DMUXP = dlogk(us + log2us)e (12)

Since, there are us number of cascaded 2n circuits, the delay of
the entire cascade is us times the delay of a single 2n circuit.
The delay of the multiplexer in the powerblock is added to
this delay to get the total delay of the powerblock.

#DPowblk = us ×D2n +DMUXP (13)
= us ×D2n + dlogk(us + log2us)e.

H. Total LUT estimate of the entire ITA architecture:

From Figure (1), it can be seen that the total number of
LUTs in the ITA architecture is the sum of the LUTs in the
multiplier, reduction block, powerblock, MUXA, MUXB ,
and MUXC . The state machine (control block in Figure 1)
consumes very few LUTs and is not considered in the overall
LUT count. Thus the total number of k−LUTs in the entire
ITA is,

#LUTITA = LUTMultiplier + LUTMod + LUTPowblk +

LUTMUXA + LUTMUXB + LUTMUXC

I. Total Delay estimate of the entire ITA architecture:

In Figure (1), there are two parallel paths. The delay of
the first path (DPATH1) is through MUXA, multiplier, and
reduction block. The delay of second path (DPATH2) is
through MUXC and the Powerblock. The delay of the entire
ITA architecture is equal to the maximum of DPATH1 and
DPATH2. Using Equations (9) and (11), DPATH1 can be
approximated in terms of LUTs as

DPATH1 ≈ d
6

k
e+ dlog2(

m

τ
)e+ dlogk(τ)e+DMod

,where DMod has values of 1 and 2 for trinomials and
pentanomials respectively. Similarly, DPATH2 can be approx-
imated using Equation (11) as

DPATH2 = DMUXC +DPowblk

≈ 1 + us ×D2n + dlogk(us + log2(us))e

A finite state machine drives the control signals. Each control
signal depends only on the value of the state variable and
nothing else. Therefore it can be assumed that the delay in
generating the control signals depends on the number of bits
in the state register. The state variable increments up to
the value of #ClockCycles. Assuming a binary counter, the
number of bits in the state variable is log2(#ClockCycles).
The delay in the control signals is

DCntrl = maxlutpath(log2(#ClockCycles))

This delay is added to the path delay. The total delay in the
ITA in terms of LUTs is

#DITA =Max(DPATH1, DPATH2) +DCntrl (14)

VII. OBTAINING THE OPTIMAL PERFORMING ITA
ARCHITECTURE

We measure the performance of the ITA hardware by the
metric

Performance =
1

(LUTITA ×DITA × ClockCycles)

For a given field GF (2m) and k-LUT based FPGA, the
powerblock can be configured with different power circuits
(2n) and number of cascades (us). An increase in us, decreases
the clock cycles required at the cost of an increase in area
and delay through the powerblock. To get maximum perfor-
mance, us should be chosen in such a way that it minimizes
clock cycles without increasing the delay (DITA) and area
(LUTITA) significantly. DPATH1 is not dependent on n or
us and is constant. From Equation (14), it follows that DITA

is minimum when

DPATH1 ≈ DPATH2. (15)

When Equation (15) is satisfied, we can assume that DITA in
Equation (14) is

#DITA = DPATH1 +DCntrl.

DCntrl has a small value and is less dependent on n and us.
Since DPATH1 is constant, DITA can be considered to be a
constant when Equation(15) is satisfied.

In Equation of LUTITA, the multiplier consumes a signifi-
cant portion of total area. The area of a 2n circuit is small. So,
variation of n and us under Equation (15) causes negligible
variation in total area. Thus, we can assume that LUTITA
remains almost unaffected when Equation (15) is satisfied.

The #ClockCycles changes significantly with n and us.
Clock cycle requirement in Equations (2) and (3) can be
approximated as ,

˜ClockCycles ≈ (2n− 1) + l + r + dm− 1

nus
e (16)

where 2n−1 is the clock cycle requirement for α1 computation
and l is the length of addition chain for bm−1n c. From Equation
(16), it can be seen that with increase in n, α1 computation
increases linearly with n, but the term dm−1nus

e reduces. When
n is small, dm−1nus

e is significant compared to 2n − 1. So,
ˆClockCycles reduces significantly with increase in n. For

large values of n, the term (2n − 1) dominates the term
dm−1nus

e. So, ˜ClockCycles increases monotonically with n.
This implies that we could restrict n to those values for which
we get savings in #ClockCycles. This effect of increase in
n on clock cycles for α1 computation and on #ClockCycles
is shown in Figure (3) for the field GF (2233).

Fig. 3. Number of Clock Cycles with power n

Minimization of #ClockCycles without increasing the
DITA leads to maximum performance. The following algo-
rithm is used to obtain best design parameters.

1) Starting from the squarer (n = 1) circuits, estimate us
so that Equation (15) is achieved. Plug in the values of

N Theoretical estimation Experimental values

Clock LUT LUT Total P Clock LUT Total P
Cycle Delay Delay Cycle Delay

(ns) (ns)
7 35 19523 13 13.3 110 35 21049 13.5 100
8 32 19753 14 13.5 117 32 21291 13.47 109
10 30 20912 16 13.9 114 30 23926 13.72 102
12 29 21372 18 14.3 113 29 24220 14.28 100

TABLE I
THEORETICAL AND EXPERIMENTAL COMPARISON FOR DIFFERENT

NUMBER OF CASCADES OF A 22 BASED ITA IN THE FIELD GF (2233)

n and us in Equation (16) and get ˜ClockCycles. For
n = 1, we call it ˜ClockCycles1.

2) Now, for a higher value of n say ni = i, where i > 1,
the number of cascades usi is determined as in Step
1 and the corresponding value of ˜ClockCycles (say

˜ClockCyclesi is obtained.
3) The second step is repeated for incremental values of ni

until ˜ClockCyclesi increases monotonically (as per the
previous discussion) as ni increases.

The best design strategy for the powerblock is the config-
uration (n̂, ûs) which gives the minimum ˜ClockCycles. This
is given by

(n̂, ûs) = argmin
(ni,usi)

(˜ClockCyclesi) For i ≥ 1.

For example, when m = 233 and k = 4, (2, 8) and (4, 5)
give minimum value of ˜ClockCycles and satisfy Equation
(15) closely. In the next section we support our theoretical
estimates with experimental results.

VIII. VALIDATION OF THEORETICAL ESTIMATIONS

For validation of the theoretical estimates, experiments were
done on Xilinx Virtex IV and Virtex V FPGAs using ISE ver-
sion 10.1. Our estimation model used maxlutpath to estimate
delays. In FPGAs, the delays are difficult to characterize. The
delay of an LUT and routing delay depends on the device
technology and CAD tool. To estimate FPGA delay of any
ITA architecture for a field GF (2m), we do the following. We
first synthesize a squarer based ITA architecture (which we call
‘reference architecture’) and obtain its delay. We denote this
delay as ‘reference delay’. Using our estimation model, we
estimate the maxlutpath of the reference architecture (which
we call reference maxlutpath). It was found experimentally
that the FPGA delay of the ITA architecture varies propor-
tionally with the maxlutpath. Therefore, for ITA designs in
the same field as the reference architecture, we can consider
the variation in FPGA delay to be proportional to maxlutpath
variation. This is given by

reference delay+C×(maxlutpath−reference maxlutpath)

Here C is a constant which depends on the device tech-
nology. In our experiments we used 4vlx80ff1148-11 and
xc5vlx220-2-ff1760 FPGAs, which have 4-LUT and 6-LUT
respectively. For the 4−LUT FPGA, we experimentally found
C = 0.2, while the 6-LUT had C = 0.1.

Table (I) shows comparisons between the theoretical and
experimental results for quad based ITA in GF (2233) with
different number of cascaded quad blocks for 4-LUT based

Fig. 4. Performance variation with power n in 4-LUT based FPGA

Fig. 5. Performance variation with power n in 6-LUT based FPGA

FPGAs. In all Tables, performance is denoted by P. The
table (I) shows that our estimation of ûs = 8 gives best
performance for n̂ = 2. Graphs in Figures (4) and (5) show
performance variations with powering in 4 and 6−LUT based
FPGAs for the trinomial field GF (2233) and pentanomial field
GF (2163) and GF (2283) [9]. In the graphs ‘Ex P’ implies
performance obtained by experiments and ‘Th P’ implies
theoretical estimates. From the graphs, it can be seen that
experimental and theoretical performances follow the same
trend. The small differences occur due to unpredictablity of
FPGA routing.

Table (II) shows the best performing configurations for some
of the NIST recommended binary fields [9] and GF (2193).
The power circuit used (ITA type) and the number of cascades
in the table result in best performance for the respective field.
It can be seen that in most cases powers higher than quad give
best results.

Experimental and theoretical results show that performance
of the ITA architecture increases significantly in 6-LUT based
FPGAs compared to 4-LUT based FPGAs. This happens due
to lesser LUT requirement and better routing in 6-LUT based
FPGAs.

Table (III) shows a comparison of performances with exist-
ing ITA architectures for the field GF (2193). All results are
taken on the same Xilinx Virtex E platform. Our design is a 23

(octate) based ITA with 8 power circuits, since for GF (2193)
on Virtex E, our estimation model found (n̂ = 3, ûs = 8).
It is clear from the table that 23 based ITA gives the best
performance.

IX. CONCLUSION

This paper develops a theoretical model of the Itoh-Tsujii
algorithm in order to obtain the best performance of the
algorithm on FPGA platforms. The model predicts that a
proper selection of power circuits (n) and number of cascades
(us) in the power block leads to maximum performance.

Experimental Results in Virtex IV
Field ITA Number Total Total Clock P

Type of LUT Delay Cycle
Cascades (ns)

163 22 7 12260 13.58 28 214
193 23 6 15043 12.9 26 198
233 24 5 21464 13.57 30 114
283 23 6 31802 14.82 43 49

Experimental Results in Virtex V
Field ITA Number Total Total Clock P

Type of LUT Delay Cycle
Cascades (ns)

163 22 5 8692 8.79 31 422
193 23 8 11254 8.91 22 453
233 24 7 13962 9.16 27 290
283 22 8 27509 10.09 38 95

TABLE II
EXPERIMENTAL PERFORMANCE OF ITA FOR DIFFERENT FIELDS

Implementation Resources Freq Clock Time P
Utilized (MHz) Cycle µsec

(Slices, Brams) (f) (c) (c/f)
Sequential [5] 10065, 12 21.2 28 1.32 75.2

Parallel [6] 11081, 12 21.2 20 0.94 95.7
Quad-ITA [8] 10420, 0 35 21 0.60 160

Octate-ITA (our design) 8401, 0 31.9 22 0.69 172

TABLE III
COMPARISON FOR INVERSION IN GF (2193) ON XCV 3200efg1156

Further an algorithm is presented by which the ideal choice of
(n, us) can be theoretically estimated. The proposed algorithm
is experimentally validated on NIST specified fields and results
show a close match. A comparison with related works show
significant improvements in performance when our approach
is followed. REFERENCES

[1] T. Itoh and S. Tsujii, “A Fast Algorithm For Computing Multiplicative
Inverses in GF(2m) Using Normal Bases,” Inf. Comput., vol. 78, no. 3,
pp. 171-177, 1988.

[2] J. Guajardo and C. Paar, “Itoh-Tsujii Inversion in Standard Basis and Its
Application in Cryptography and Codes” Des. Codes Cryptography, vol.
25, no. 2, pp. 207-216, 2002.

[3] F. Rodrı́iguez-Henrı́iquez, N.A. Saqib, A. Diaz-Perez, Ç.K. Ķoc, “Crypto-
graphic Algorithms on Reconfigurable Hardware”, Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

[4] A. Weinerskirch and C. Paar,“Generalizations of the Karatsuba Algo-
rithms for Efficient Implementations”, Cryptology ePrint Archive, Report
2006/224, 2006.

[5] F. Rodrı́iguez-Henrı́iquez, N. A. Saqib, and N. Cruz-Cortés, “A Fast
Implementation of Multiplicative Inversion Over GF (2m),” in ITCC 05:
Proceedings of the International Conference on Information Technology:
Coding and Computing (ITCC05) - Volume I, IEEE Computer Society,
2005, pp. 574-579.

[6] F. Rodrı́iguez-Henrı́iquez, G. Morales-Luna, N. A. Saqib, and N. Cruz-
Cortés, “Parallel Itoh-Tsujii Multiplicative Inversion Algorithm for a
Special Class of Trinomials,” Des. Codes Cryptography, vol. 45, no. 1,
pp. 19-37, 2007.

[7] C. Rebeiro and D. Mukhopadhyay, “High Speed Compact Elliptic Curve
Cryptoprocessor for FPGA Platforms”, 9th International Conference on
Cryptology in India, INDOCRYPT 2008, 376–388, LNCS.

[8] C. Rebeiro, S.S. Roy, D.S. Reddy and D. Mukhopadhyay, “Revisiting the
Itoh-Tsujii Inversion Algorithm for FPGA Platforms”, IEEE Transactions
on VLSI Systems, vol. PP Issue:99 (pre-print).

[9] U.S. Department of Commerce,National Institute of Standards and Tech-
nology, “Digital signature standard (DSS),” FIPS 186–2.

[10] C. Rebeiro and D. Mukhopadhyay, “Power Attack Resistant Efficient
FPGA Architecture for Karatsuba Multiplier,” in VLSID 08: Proceedings
of the 21st International Conference on VLSI Design, IEEE Computer
Society, 2008, pp. 706–711.

