
Energy-Efficient Scheduling of Real-Time Tasks on Cluster-Based Multicores
Fanxin Kong† Wang Yi†,‡ Qingxu Deng†

†Northeastern University, China ‡Uppsala University, Sweden
kongfx@ise.neu.edu.cn, yi@it.uu.se, dengqx@mail.neu.edu.cn

Abstract—While much work has addressed the energy-efficient
scheduling problem for uniprocessor or multiprocessor systems,
little has been done for multicore systems. We study the multicore
architecture with a fixed number of cores partitioned into clusters
(or islands), on each of which all cores operate at a common
frequency. We develop algorithms to determine a schedule for
real-time tasks to minimize the energy consumption under
the timing and operating frequency constraints. As technical
contributions, we first show that the optimal frequencies resulting
in the minimum energy consumption for each island is not
dependent on the workload mapped but the number of cores
and leakage power on the island, when not considering the
timing constraint. Then for systems with timing constraints,
we present a polynomial algorithm which derives the minimum
energy consumption for a given task partition. Finally, we develop
an efficient algorithm to determine the number of active islands,
task partition and frequency assignment. Our simulation result
shows that our approach significantly outperforms the related
approaches in terms of energy saving.

I. INTRODUCTION

Minimizing energy consumption is one of the most chal-
lenging topics for the design of embedded and real-time
systems using multicores (chip-multiprocessors). Although the
energy-efficient scheduling problem has been extensively ex-
plored for uni-processor and multiprocessor real-time systems
[1], little work has addressed multicore systems. Most previous
research reduces the energy-efficient scheduling problem for
multicores to that for multiprocessor systems. They all assume
the per-core DVFS, i.e., each processor operates at individual
frequency/voltage, and has no operating frequency constraint,
e.g., [2]–[14]. On the other hand, few works limit the discus-
sion only to the full-chip DVFS (Dynamic Voltage/Frequency
Scaling) designs restricting that all the cores in one chip
operate at the same clock frequency/voltage [15], [16].

Per-core DVFS provides the most flexible power manage-
ment. However, as the number of cores on a chip grows [17],
it’s very complex and expensive to support this strategy. On the
other hand, full-chip DVFS leads to simple hardware design
and implementation but limited power efficiency. To balance
the trade-off between the hardware complexity and power effi-
ciency, VFI (Voltage/Frequency Island) technique is proposed.
VFI supports different voltage supplies and frequencies for
different clusters on a multicore, and the cores on one chip can
be partitioned into clusters, on each of which all cores operate
at a common frequency [18]–[22]. Moreover, different cluster
partitions represent DVFS policies of different granularity.

However, there is no research effort addressing the exact
energy-efficient scheduling problem on real-time cluster-based
or voltage/frequency island enabled multicore systems. Blindly
adopting the existing approaches without considering the re-
striction and flexibility of cluster-based multicores will result

in a waste of energy, thus we have to find a more general
approach which can deal with not only per-core or full-chip
DVFS but also DVFS policies with any granularity.

We assume a multicore architecture with a fixed number
of cores partitioned into clusters on each of which all cores
operate at a common frequency, and a real-time application
consisting of a set of independent tasks. We shall study the op-
timization problem to map the real-time tasks onto the clusters,
which minimizes the energy consumption under given timing
constraints on the tasks and operating frequency constraints on
the clusters. This is an optimization problem which has three
degrees of freedom including the number of active clusters,
task partition and frequency assignment. Our contributions
include: (i) To the best of our knowledge, it is the first
research effort that discusses the energy-efficient scheduling
problem for real-time tasks on cluster-based multicore systems
with non-negligible leakage power consumption from three
degrees of freedom including the number of active islands,
task partition and frequency assignment, which can adopt to
DVFS policies with any granularity. (ii) When there are no
timing constraints, we show that the operating frequencies
to minimize the energy consumption of each island is only
dependent on the number of cores and leakage power on
the island, i.e., the cluster partition, through the concept
of critical speed sequence. Moreover, each island shares a
common critical speed sequence under a symmetric parti-
tioned cluster-based multicore system. (iii) For systems with
timing constraints, several efficient algorithms are proposed.
An optimal polynomial-time complexity algorithm is first
proposed to minimize energy consumption for a real-time
cluster-based multicore system given a task partition. Then,
the overall algorithm is presented to determine the number
of active islands, task partition and frequency assignment.
Our simulation result shows that our approaches significantly
outperform the existing approaches in terms of energy saving.

II. PROBLEM SETTING

We study a multicore with the symmetric cluster partition,
i.e, the number of cores in each island is the same, but the
proposed algorithms can be easily adapted to the asymmetric
partitions with different numbers of cores in islands.

A. VFI and Power Model

The multicore system contains Nb × Nc identical cores.
Nb denotes the number of islands in the multicore while Nc

denotes the number of cores in each island. Figure 1 shows one
symmetric cluster partitions of 4× 4 of a 16 cores multicore.

All cores in one island share a common voltage/frequency
while those cores between islands may operate at differ-
ent frequencies. Each island regulates the frequency/voltage978-3-9810801-7-9/DATE11/ c⃝2011 EDAA



separately. On one extreme, each core forms an island,
i.e, each core is independent of another and can adjust
frequency/voltage individually, which provides the per-core
DVFS policy. On the other extreme, the whole chip is an
island, which provides the full-chip DVFS policy. In-between
the two extremes, DVFS policies with other granularity are
provided, such as 2-VFI and 4-VFI cluster partition for a multi-
core with 16 cores, capable of regulating the frequency/voltage
separately every eight cores and four cores respectively.

f /t
C1

f1/t1

f2/t2f

f3/t3
C2

C
f4/t4

C3

C4
D0 seg1 seg2 seg3 seg4

Fig. 1. 4-VFI symmetric partitions for multicores with 16 cores.

Each island has two operational modes [18]: on and off. We
assume the operating frequency can be regulated continuously
between fmin and fmax in an island set on. Moreover, we
assume that the frequency values are normalized with respect
to the processor’s maximum frequency and fmax = 1. The
jth core in ith island Bi is denoted as Cij . The workload
of each core is denoted as the worst case execution cycles
(WCEC) WCij , and sorted in a non-decreasing order, i.e.,
WCij ≤ WCi(j+1). Each workload WCij =

∑
τk ∈ Tij

wck

and the corresponding execution time is WCij

f at frequency
f , where Tij denotes the task subset executing on core Cij

and wck denotes the WCEC of task τk. We call an island
active(inactive) if the island has (no) workload mapped on.

Since the individual cores of a multicore are still based
on the same design as previous single-core processor archi-
tectures, the basic principles for leveraging more efficient
operation are likely to remain unchanged. We focus on the
manageable power consumption of each island, which consists
of two parts: dynamic and leakage power. One cores’s dynamic
power consumption can be expressed in terms of the operating
frequency f : αfβ , 2 ≤ β ≤ 3. We assume β = 3 in this paper,
but the proposed algorithms can be adopted to any convex
power function. The dynamic power consumption P d of an
island is the sum of that of each on core in the island. We
assume that the leakage power consumption P l of an island
is constant, which can be eliminated only when all cores on
the island are idle and the island is set off [18]. The total
power consumption of the multicore is equal to sum of power
consumptions of each island:

∑Nb

i=1 (P
d
i + P l

i ).

B. Problem Statement

The energy-efficient scheduling problem for cluster-based
multicores can be seen as the generalization of that for per-
core or full-chip DVFS systems. Specially, each processor can
shut down individually with per-core DVFS, while each island
can be set off only when all cores on the island become idle for
one cluster-based multicore. Even if only one core is non-idle,
the whole island has to be on and consumes leakage power.
Hence, to reduce leakage power, not all islands need to be

active, i.e., some island may have no workload mapped on, for
a cluster-based multicore system, which is also different from
the full-chip DVFS where the whole chip should be always
active since there is only one island.

We consider a real-time application consisting of a set
of independent tasks T = {τ1, ..., τN} with a deadline of
D. We focus on energy-efficient scheduling for the real-time
application on a cluster-based multicore system with non-
negligible leakage power consumption, where each task can be
mapped on only one core. Different with previous works, the
problem discussed in this paper aims at deriving a schedule for
real-time tasks to minimize the energy consumption with both
timing and operating frequency constraints, which has three
degrees of freedom including the number of active islands,
task partition and frequency assignment. Since this problem is
NP-hard, the objective of this paper is to derive polynomial-
time complexity heuristic solutions.

III. CRITICAL SPEED SEQUENCE

In this section, we consider a multicore system with no
timing constraint. Due to the non-negligible leakage power
consumption in one multicore, aggressively lowering the fre-
quency will not always reduce energy consumption. There
must be some critical frequencies, below which the system
energy will increase again.

Let’s consider one island. We cut the island’s execution line
into segments through sorting the cores in the non-decreasing
order of the workload, where C1 has the least workload. Due
to the operating frequency constraint, each segment operates
at only one frequency. Suppose that the execution time and
frequency of each segment is tj and fj respectively, where
1 ≤ j ≤ Nc (we omit the first index i when considering only
one island). An example of one island with four cores (C1 ∼
C4) and four segments (seg1 ∼ seg4) is shown in Figure 1.
We can see that each segment segj begins from the completion
of workload on Cj−1 and ends when Cj’s workload finishes,
and executes WCj −WCj−1 cycles. Moreover, each segment
contains Nc − j+1 non-idle cores. The dynamic and leakage
energy consumption of each segment segj are

Ed
j = α(Nc − j + 1)(WCj −WCj−1)f

2
j

El
j =

(WCj−WCj−1)P
l

fj

(1)

Thus, the total energy consumption of the island is

Et =
∑Nc

j=1 (E
d
j + El

j) (2)

When there are no other constraints, the necessary condition
for minimizing the total energy consumption Et is that the
gradient of Et is equal to zero, i.e.,

∇{f1,...,fNc}E
t = 0,

or ∀j ∈ [1, Nc],
∂Et

∂fj
= 0

(3)

By solving all equations in (3), we have

f∗
j = 3

√
P l

2α(Nc−j+1)
(4)

We call these frequencies {f∗
1 , ..., f

∗
Nc

}1 critical speed se-

1If f∗
j > fmax (f∗

j < fmin), we let f∗
j = fmax (f∗

j = fmin).



quence, and the corresponding finish time/makespan of the
workload on the island, i.e., the finish time of the core
CNc with the largest workload, equals to

∑Nc

j=1
WCj−WCj−1

f∗
j

.
Therefore, we have the following observations for a system
with no timing constraint: (i) The optimal frequency of each
segment in one island is different for one cluster-based multi-
core, while there is only one critical speed for per-core DVFS
due to each core forming an island. So the critical speed
sequence can be seen as a generalization. (ii) The critical speed
sequence is not dependent on the workload mapped but the
leakage power consumption and the number of cores2 on an
island, so every island has fixed and common critical speed
sequence under a symmetric cluster-based multicore system.

IV. ENERGY MINIMIZATION FOR A GIVEN TASK
PARTITION

Since the islands are independent with each other in power
management, minimizing the energy consumption of each
island will also result in global optimal solution. In this
section, we consider one island energy minimization problem
under a given task partition. The task partition and overall
approach are then given in the next section.

When taking account of the deadline constraint, the critical
speed sequence may be no longer optimal. We can formulate
a constrained convex programming problem3 to minimize the
energy consumption of each island:

min Et =
∑Nc

j=1 Ej(tj)

sub.to
∑Nc

j=1 tj ≤ D,

tmin
j ≤ tj ≤ tmax

j .

(5)

Where Ej(tj) is the energy consumption of segj which equals
to α(Nc−j+1)(WCj−WCj−1)

3

t2j
+tjP

l, and tmin
j =

WCj−WCj−1

fmax

and tmax
j =

WCj−WCj−1

fmin .
We will solve the convex program in two steps. First,

narrow the tj’s domain without missing optimality. Second,
an algorithm based on the binary search is adopted to derive
the optimal solution.

Not the whole domain of tj is necessary to determine the op-
timal solution in (5). Since Ej(tj) is a convex function, there is
only one valley point t∗j which is obtained by setting the first
derivative E′

j(tj) to zero and equals to t∗j =
WCj−WCj−1

f∗
j

.
According to the relation between t∗j and [tmin

j , tmax
j ], we

narrow the tj’s domain by
tj ∈ [tmin

j , t∗j ] if tmin
j < t∗j < tmax

j (6a)

tj ∈ [tmin
j , tmax

j ] if tmax
j ≤ t∗j (6b)

tj = tmin
j if t∗j ≤ tmin

j (6c)

If t∗j is in the range of [tmin
j , tmax

j ], we narrow tj’s domain
to [tmin

j , t∗j ] in 6(a). If t∗j is greater than or equal to tmax
j , the

domain remains unchanged in 6(b). If t∗j is less than or equal

2This number, i.e., Nc in (4), becomes the number of cores with workload
mapped in one island, if some core has no workload mapped.

3It’s easy to prove that Et in (5) is a convex function by the proof of the
convexity of each E(tj). Moreover, all constraints are linear inequations.

to tmin
j , assign tj as tmin

j in 6(c). Denote tj ∈ [tlowj , tupj ],
where tlowj and tupj are the new lower and upper bound of
tj respectively after narrowing the domain using (6). Then,
the second constraint in convex program (5) is reduced to
tlowj ≤ tj ≤ tupj .

Theorem 1. Convex program (5) will miss no optimal solution
in the narrowed domain [tlowj , tupj ].

Proof: The proof is in our technique report version.
In the narrowed domain tj ∈ [tlowj , tupj ], Ej(tj) becomes

a monotonously decreasing function. Hence, when we solve
(5) in the case of

∑Nc

j=1 t
low
j ≤ D <

∑Nc

j=1 t
up
j , it must be∑Nc

j=1 tj = D when Et is minimized. That’s the reason we
narrow tj’s domain.

A. An Optimal Algorithm

We propose a polynomial-time complexity algorithm based
on the binary search to solve the convex program (5) in
the narrowed domain, and then prove its optimality. See
Algorithm 1.

Initially Algorithm 1 checks two trivial cases, where the
sum of tj’s upper bound is less than D and the sum of tj’s
lower bound is greater than D in lines (2) through (7). Lines
(8-29) deal with the case when

∑Nc

j=1 t
low
j ≤ D <

∑Nc

j=1 t
up
j ,

where
∑Nc

j=1 tj = D when Et is minimized. Line (8) sorts
the upper and lower bounds of all E′

j(tj) values in decreasing
order. The while loop from line (10) to (26) is a binary search
which reduces the search space by half in each iteration. In
each iteration, all tj values are derived accordingly in lines
(12) through (20). Then, lines from (21) to (25) determine to
drop which half of the current interval of [left, right]. If the
sum of current tj is greater than D, i.e., some tj can not be
assigned as tupj but smaller values to meet deadline, then drop
the left half by left ⇐ mid. If the sum is less than or equal to
D, i.e., some tj should not be assigned as tlowj but larger values
to further reduce energy, then drop the right half right ⇐ mid.
The binary search finally finds an interval [left, right], where
tj = tlowj if E′

j(t
low
j ) ≥ Ê′

left, tj = tupj if E′
j(t

up
j ) ≤ Ê′

right

and the rest tj is greater than tlowj and less than tupj . Then, the
for loop in lines (27-29) determines the remaining unknown
tj by the Lagrange Multiplier Method. Line (30) returns each
segment’s execution time and the island’s energy consumption.

The number of iterations of while loop in line(10) is
O(logNc) due to the binary search. The iterations of for loop
in line (12) and (27) are both at most O(Nc). The complexity
of Algorithm 1 is O(NclogNc). Therefore, the complexity is
O(NbNclogNc) when minimizing energy of all Nb islands.

Theorem 2. Algorithm 1 finds the optimal operating frequency
sequence leading to the minimized energy consumption for one
island with a given task partition.

Proof: The proof is in our technique report version.

V. ENERGY MINIMIZATION FOR DVFS WITH ANY
GRANULARITY

In this section, we consider three degrees of freedom includ-
ing the number of active islands, task partition and frequency



C11 f*1
 
2

C f*2
 
1 f*1C12 f2f1

C21 f*1
 
4

C
active

f*1
 
2 f*2

D0

C22
f f2

(a) 2 active islands, D=12

 
4

 
1 f*1C11

f*1
 
2

 
3C f1C12

C21

inactive
C

D0

C22

(b) 1 active island, D=12

 
4

 
1

C
11

 
2

C
11

 
2

 
3

C
 
1

CC
12

C
12

deadline miss

C
21

 
4C

21

deadline!miss

C

 
3

C

D0

C
22

0

C
22

D

(c) D=3
Fig. 2. Different task schedules of four tasks in a 2 × 2 cluster-based multicore system. The system parameters are shown in Table I. The widths of the
rectangles denote the execution time while their heights represent the frequency.

Algorithm 1 Binary Search (BS)
Input: (D,Nc,WCj);
Output: (tj , E

t
i );

1: narrow the domain of tj ;
2: if

∑Nc

j=1 t
up
j ≤ D then

3: return tj ⇐ tupj ;
4: end if
5: if

∑Nc

j=1 t
low
j > D then

6: return no solution;
7: end if
8: sort all E′

j(t
low
j ) and E′

j(t
up
j ) values in the decreasing

order, and denoted as Ê′ ⇐ {Ê′
1, ..., Ê

′
2Nc

};
9: left ⇐ 1, right ⇐ 2Nc;

10: while left < right− 1 do
11: mid ⇐

⌊
left+right

2

⌋
;

12: for j = 1 to Nc do
13: if Ê′

mid ≤ E′
j(t

low
j ) then

14: tj ⇐ tlowj ;
15: else if Ê′

mid ≥ E′
j(t

up
j ) then

16: tj ⇐ tupj ;
17: else
18: tj ⇐ t, where E′

j(t) = Ê′
mid;

19: end if
20: end for
21: if

∑Nc

j=1 tj > D then
22: left ⇐ mid;
23: else {

∑Nc

j=1 tj ≤ D}
24: right ⇐ mid;
25: end if
26: end while
27: for j such that E′

j(t
low
j ) ≤ Ê′

right and E′
j(t

up
j ) ≥ Ê′

left

do
28: determine these tj by Lagrange Multiplier Method;
29: end for
30: return (tj , E

t
i );

assignment all together. We first give an example to illustrate
the effect of the number of active numbers on the system
energy consumption, and then present the overall algorithm
which can adopt to DVFS policies with any granularity.

Due to the operating frequency constraint and non-
negligible leakage power in each island, mapping a taskset on
all islands, i.e., all islands being active, will not always result

in a reduced energy consumption. We can see an example
shown in Figure 2. When D = 12, the taskset is partitioned
onto two active islands and the schedule is presented as the
gray rectangles in Figure 2(a), where each island operates at
two different frequencies and the energy consumption is 1.25.
If only one island is active, the schedule is shown Figure 2(b),
where the island operates at only one frequency and the energy
consumption is reduced to 1.09. So, only one island being
active results in the minimum energy consumption in this case.
When D = 3, both two islands should be active in order to
meet the deadline, which is shown Figure 2(c). The numbers
of active islands are different in the two cases.

TABLE I
THE SYSTEM PARAMETERS.

α P l

1 0.2
wc1 wc2 wc3 wc4

3 2 2 1

Algorithm 2 Task Partition (LTF)
Input: (T , D, nb, Nc);
Output: (Tij ,WCij);

1: sort T in a non-increasing order of wcn, where τ1 has the
largest WCEC;

2: for n = 1 to N do
3: find core Cij with the smallest workload among all nb

islands; (break ties by choosing the smallest index i,
then smallest j)

4: Tij ⇐ Tij ∪ τn; WCij ⇐ WCij + wcn;
5: if WCij > D then
6: return no solution;
7: end if
8: end for
9: return (Tij ,WCij);

Therefore, in order to minimize the energy consumption, we
have to find not only the task partition and frequency assign-
ment but also the proper number of active islands. We present
the overall algorithm as follows: (i) We first determine the
lower bound of the number of islands required to complete the

taskset before deadline D, which equals to nlow
b =


N∑

i=1

wci

NcD

,

and the upper bound equals to nup
b = min(

⌈
N
Nc

⌉
, Nb). (ii)

A linear search is performed in the interval [nlow
b , nup

b ] to
determine the proper number of active islands. In each iteration
or for each nb ∈ [nlow

b , nup
b ], we first adopt the largest task

first (LTF) heuristic shown in Algorithm 2 to partition one



10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

task no.

AE+BS

 LS+BS

 AE+UF

(a) 2-VFI

10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

task no.

 AE+BS

 LS+BS

 AE+UF

(b) 4-VFI

10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

task no.

 AE+BS

 LS+BS

 AE+UF

(c) 8-VFI

10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

task no.

AE+BS

LS+BS

AE+UF

(d) 16-VFI
Fig. 3. Comparison of three solutions: AE+BS, LS+BS and AE+UF. x-VFI: the multicore contains x islands.

taskset onto the nb islands employed. Then, Algorithm 1
is used to determine the local minimal energy consumption
for the partition of this iteration. (iii) The overall algorithm
finally returns the task schedule including the number of active
islands, task partition and frequency assignment, which results
in the minimum energy value among all of the (nup

b − nlow
b )

iterations.
Note that we use LTF heuristic for task partition, so this

overall algorithm may not derive the global optimal solution.
Recall that the time complexity is O(NbNclogNc) when
adopting Algorithm 1 to all Nb islands. It’s lower than the
complexity of LTF O(NlogN) when the taskset size is larger
than the number of cores in one multicore. Since there are at
most Nb iterations in the linear search, the time complexity
of the overall algorithm is O(NbNlogN).

VI. SIMULATION RESULTS

In this section, we evaluate the energy efficiency of our
algorithm proposed in this paper under different cluster parti-
tions. Since no comparison work has addressed the problem
defined in this paper from all the three degrees of freedom:
the number of active islands, task partition and frequency
assignment, for comparison, we have to combine the different
approaches for each degree of freedom. We consider two
approaches in determining the number of islands employed
when task partition: (i) LS. The linear search performed in
the overall algorithm in Section V. (ii) AE. The Nb islands are
all employed as the most previous work did, such as [4], [16].
Note that AE is not to have all islands active but consider all
islands when task partition, and the number of active islands is
determined according to the size of one taskset. If the taskset
is so small that each core can not have at least one task, some
island may be still inactive. And, two approaches for frequency
assignment: (i) BS. The binary search of Algorithm 1 in
Section IV. (ii) UF. Aggressively lower the frequency of one
island according to the largest workload WCNc , and have
core CNc stretch to the deadline. Every island always operates
at an unique frequency which equals to max(fmin,

WCNc

D ).
We always use Algorithm 2 for task partition to the different
combinations of approaches above.

In our simulation, we consider multicore systems with
8, 16 and 32 cores respectively. For the parameters in the
power model, it is assumed that α = 1 and the leakage
power consumption P l = 0.1 ∗ Nc. Moreover, we assume
that fmin = 0.01, fmax = 1. The deadline D of the real-
time application is set as 100 time units, and the worst case

execution cycle of each task is generated uniformly in the
range of [0.01∗D, 0.5∗D]. The simulations are performed on
a Windows PC with an Intel Core2 2.83GHZ 32-bit processor
and 2GB main memory. We plot the results averaged over 500
simulation runs.

A. Comparison: Energy Minimization

In this experiment, we evaluate the energy efficiency of sev-
eral solutions which are combinations of the four approaches
above. Figure 3 shows the comparison on energy consumption
of LS+BS, AE+BS, AE+UF for the four different cluster
partitions of one 32 cores multicore. (Similar results can be
obtained in the case of 8 or 16 cores multicore.) The energy
consumptions in each figure are normalized to that of the
AE+UF. The taskset size ranges from 1 to 64.

LS+BS, i.e., our approach proposed in this paper, sig-
nificantly outperforms AE+UF across all cluster partitions.
AE+UF is a step curve and has Nb − 1 steps. It ”jumps” at
every point when the number of tasks equals to the integral
multiple of Nc, until the taskset has more than (Nb − 1) ∗Nc

tasks when all islands become active or have workload mapped
on. These integers also reflect the amount of active islands in
each step, i.e., the curve also reflects the variance of the active
islands with taskset size.

In order to evaluate the effect of the number of active islands
on the energy consumption, we compare the results of LS+BS
and AE+BS. Except two extreme cases: 1-VFI and 32-VFI
cluster partitions which are also known as full-chip and per-
core DVFS, LS+BS performs better than AE+BS. LS+BS
saves more energy compared to AE+BS up to 16.4% and
11.6% under 2-VFI in Figure 3(a) and 4-VFI cluster partition
in Figure 3(b) respectively, and the energy saving decreases as
the number of islands Nb increases. The reason is: since Nc

and P l become smaller as Nb grows, the proportion of one
island’s energy consumption to the total energy consumption
decreases; even if the amount of active islands in AE and
LS are a little different under a cluster partition with fine
granularity, their energy consumption will be relatively close.

LS+BS moves towards to AE+BS as the size of taskset
grows in Figure 3(a)(b)(c)(d), since the number of active
islands increases in LS+BS and will equal to Nb when taskset
size is greater than 40. Besides this reason, the static slack
time which equals to D−WCij in each Cij decreases and the
space for regulating frequency shrinks as taskset size grows,
so LS+BS also moves towards to AE+UF. In sum, the three
curves move towards to one another. In general, many systems



2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

task no.

 1-VFI

 2-VFI

 4-VFI

 8-VFI

(a) 8 cores

5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

task no.

 1-VFI

 2-VFI

 4-VFI

 8-VFI

 16-VFI

(b) 16 cores

10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

task no.

 1-VFI

 2-VFI

 4-VFI

 8-VFI

 16-VFI

 32-VFI

(c) 32 cores

20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

task no.

 1-VFI

 2-VFI

 4-VFI

 8-VFI

 16-VFI

 32-VFI

 64-VFI

(d) 64 cores
Fig. 4. Comparison of energy efficiency for different cluster partitions in 8, 16, 32 and 64 cores multicore.

operate under mid-range loads, hence the energy saving when
the task number is between 20 to 40, is very encouraging.

B. Comparison: Cluster Partitions

This experiment evaluates the energy efficiency for different
cluster partitions in 8, 16, 32 and 128 cores multicore through
using LS+BS. The energy consumption in each figure is
normalized to that of its own 1-VFI cluster partition. The
taskset sizes of Figure 4(a)(b)(c) range from 1 to 16, 1 to
32, 1 to 64 and 1 to 128, respectively.

As shown in Figure 4, we can see that energy efficiency
increases as Nb increases, and 1-VFI (or full-chip DVFS) has
the worst energy efficiency. Moreover, the energy efficiency
of various cluster partitions with fewer number of cores on
each island is very approximate. For example, the energy
consumptions of 8-VFI, 16-VFI and 32-VFI is nearly the same,
as shown in Figure 4(c).

We can see that the results of all cluster partitions move
towards to one another as taskset size grows in all insets
of Figure 4. The reason is that the difference of workload
among cores decreases and the workload in the first segment
increases, so each island operates at one frequency most of the
time and the effect of operating frequency constraint weakens.

VII. CONCLUSIONS

In this paper, we addressed the energy-efficient scheduling
problem for real-time tasks on cluster-based multicore systems
with non-negligible leakage power consumption, where the
proposed algorithm can be adopted into DVFS policies with
any granularity. We first proposed a conception of critical
speed sequence, and shown that the operating frequencies
deriving minimum energy consumption for each island is only
dependent on the number of cores and leakage power but not
the workload mapped on the island when not considering tim-
ing constraint. Second, we presented an optimal polynomial-
time complexity algorithm based on binary search to minimize
the energy minimization for a real-time multicore system with
a fixed task partition. Third, we provided an efficient overall
algorithm to determine the proper number of active islands,
task partition and frequency assignment, which can avoid to
set needless islands on. The simulation results indicated that
the proposed algorithm significantly outperforms the related
approaches. For future work, we will develop the dynamic
slack reclamation algorithms which allow task remapping
within one island or across different islands.
Acknowledgement: We would like to thank the anonymous
reviewers for their constructive comments. This work is

partially supported by the NSF of China under Grant No.
60973017 and the Fundamental Research Funds for the Central
Universities under Grant No. N100604010 and N100204001.

REFERENCES

[1] J. Chen and C. Kuo, “Energy-efficient scheduling for real-time systems
on dynamic voltage scaling (DVS) platforms,” in RTCSA’07, pp. 28–38.

[2] F. Gruian, “System-Level Design Methods for Low-Energy Architec-
tures Containing Variable Voltage Processors,” in PACS’00, p. 1.

[3] F. Gruian and K. Kuchcinski, “LEneS: task scheduling for low-energy
systems using variable supply voltage processors,” in ASP-DAC’01, p.
455.

[4] J. Chen, H. Hsu, K. Chuang, C. Yang, A. Pang, and T. Kuo, “Multipro-
cessor energy-efficient scheduling with task migration considerations,”
in ECRTS’04, pp. 101–108.

[5] J. Chen and T. Kuo, “Multiprocessor energy-efficient scheduling for
real-time tasks with different power characteristics,” in ICPP’05, pp.
13–20.

[6] J. Chen, H. Hsu, and T. Kuo, “Leakage-aware energy-efficient schedul-
ing of real-time tasks in multiprocessor systems,” in RTAS’06, pp. 408–
417.

[7] J. Chen, T. Kuo, C. Yang, and K. King, “Energy-efficient real-time task
scheduling with task rejection,” in DATE’07, pp. 1–6.

[8] J. Chen, C. Yang, H. Lu, T. Kuo, S. Zurich, and T. Taipei, “Approx-
imation algorithms for multiprocessor energy-efficient scheduling of
periodic real-time tasks with uncertain task execution time,” in RTAS’08,
pp. 13–23.

[9] Y. Zhang, X. Hu, and D. Chen, “Task scheduling and voltage selection
for energy minimization,” in DAC’02, pp. 183–188.

[10] R. Mishra, N. Rastogi, D. Zhu, D. Mosse, and R. Melhem, “Energy
aware scheduling for distributed real-time systems,” in IPDPS’03, p. 9.

[11] H. Aydin and Q. Yang, “Energy-aware partitioning for multiprocessor
real-time systems,” in IPDPS’03, pp. 113–121.

[12] T. AlEnawy and H. Aydin, “Energy-aware task allocation for rate
monotonic scheduling,” in RTAS’05, pp. 213–223.

[13] R. Xu, D. Zhu, C. Rusu, R. Melhem, and D. Mossé, “Energy-efficient
policies for embedded clusters,” in LCTES’05, pp. 1–10.

[14] C. Xian, Y. Lu, and Z. Li, “Energy-aware scheduling for real-time
multiprocessor systems with uncertain task execution time,” in DAC’07,
p. 669.

[15] E. Seo, J. Jeong, S. Park, and J. Lee, “Energy Efficient Scheduling of
Real-Time Tasks on Multicore Processors,” TPDS, vol. 19, no. 11, pp.
1540–1552, 2008.

[16] C. Yang, J. Chen, and T. Kuo, “An approximation algorithm for energy-
efficient scheduling on a chip multiprocessor,” in DATE’05, pp. 468–473.

[17] S. Borkar, “Thousand core chips: a technology perspective,” in DAC’07,
pp. 746–749.

[18] D. Dal, A. Nunez, and N. Mansouri, “Power islands: a high-level
technique for counteracting leakage in deep sub-micron,” in ISQED’06,
pp. 165–170.

[19] A. Das, S. Ozdemir, G. Memik, and A. Choudhary, “Evaluating voltage
islands in CMPs under process variations,” in ICCD’07, pp. 129–136.

[20] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors,” in ISLPED’07, pp. 38–43.

[21] J. Hu, Y. Shin, N. Dhanwada, and R. Marculescu, “Architecting voltage
islands in core-based system-on-a-chip designs,” in ISLPED’04, pp.
180–185.

[22] D. Lackey, P. Zuchowski, T. Bednar, D. Stout, S. Gould, and J. Cohn,
“Managing power and performance for System-on-Chip designs using
Voltage Islands,” in ICCAD’02, pp. 195–202.


