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Abstract—We propose a fast method for identifying the jitter
tolerance curves of high-speed phase locked loops. The method is
based on an adaptive recursion and uses known tail fitting meth-
ods to realize a fast optimization combined with a small number
of jitter samples. It allows for efficient behavioral simulations,
and can also be applied to hardware measurements. A typical
modeling example demonstrates applicability to both software
and hardware scenarios and achieves simulated measurement
times in the range of few hundred milliseconds.

I. INTRODUCTION

Clock and data recovery (CDR) circuits in serial high-
speed interfaces such as S-ATA [1] or Fiber Channel [2] use
phase locked loops (PLLs) for synchronization. The influence
of timing jitter is crucial, since noise and distortions along
the transmission channel can highly affect signal integrity.
Thus, especially high-speed PLLs have to provide a certain
robustness against timing variations, commonly referred to as
jitter tolerance (JTOL). Interface standards thus often specify
tolerance masks [2] which must be guaranteed by the CDR.

A typical JTOL measurement scheme as depicted in fig. 1
uses a modulated clock source with corresponding pattern
generator, and is characterized by the injected sinusoidal jitter
of frequency fSJ and amplitude ASJ . The CDR under test
suffers from the jittery signal and produces output data with
increased error probability. A bit error rate tester (BERT) can
compare the recovered data with the expected original one,
and determine the resulting BER. Equivalently, a time interval
analyzer (TIA) can measure the time difference between the
zero crossing of the analog input and the recovered clock edge.
The obtained values are referred to as IO jitter and with a
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Fig. 1. JTOL measurement scheme using TIA or BERT.

collected histogram, the BER can also be determined.
The relation between TIA and BERT measurements is

shown in fig. 2. A TIA measures jitter values at every bit
transition of the received data stream and constructs the
probability function or CDF out of a collected distribution.
A typical representation form is the bathtub plot as shown
at the bottom, with the tails given as a function of sampling
time. The BERT measurement is easy to implement since bit
errors are simply counted at the receiver side. The result is
a single probability value of the jitter distribution, so that a
CDR requires an additional delay element or phase shifter in
order to identify the overall bathtub curve.
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Fig. 2. Bathtub function of a measured jitter distribution.

A key problem is that specification standards require very
low target error rates of typically 10−12 which can not be
measured. In a 3Gbit SATA interface the transmission of
1012 bits consumes 5.5 min, while production tests have to be
carried out in less than a second. Jitter tolerance measurements
are even more challenging, because they have to identify the
sinus amplitude where the CDR exactly produces the target
BER. This means, we must search for the ASJ value where
both bathtub tails in fig. 2 cross each other at the 10−12 level.

So far, the JTOL test problem has been addressed either
from a measurement or a simulation perspective. Methods
for hardware measurements have been proposed in [3]–[5],
where especially the principle in [4] is very efficient as
it is based on a linearizing transform with subsequent tail
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extrapolation. This BERT based approach is simple to realize,
but it requires a considerable amount of detected bit errors and
is thus too time consuming if the whole jitter tolerance curve
has to be identified over varying frequency fSJ . Simulation
methods work equivalent to TIA based measurements. They
additionally use statistical models [6] or special waveforms [7]
to minimize the required amount of jitter samples as much as
possible, so that JTOL simulations can be carried out in a
feasible amount of time. However, they can generally not be
used for hardware measurements.

In this paper we propose an analysis method where the jitter
tolerance of a PLL can be determined very quickly using
an adaptive algorithm. The method is sufficiently fast to be
used for behavioral simulations, but also for TIA based jitter
measurements. A minimum measurement time is achieved by
automatically adapting the sample size of collected jitter dis-
tributions according to the dynamics of the PLL. Built-in jitter
measurement (BIJM) systems with a real time TIA feature are
area consuming, but have already been realized successfully
using high resolution time-to-digital converters [8], [9]. If such
circuits are combined with our proposed approach, very fast
JTOL measurements can be carried out on hardware structures.

In the following section we give a detailed description of the
proposed algorithm. As an example, we apply our method to
a 3Gbit high-speed PLL model and demonstrate applicability
to both software and hardware scenarios. A brief summary is
given in the conclusions.

II. JTOL ALGORITHM PRINCIPLE

A JTOL method is a search algorithm which identifies the
jitter amplitude ASJ where the tested PLL produces the target
BER. This is an inverse problem, which must be solved for
every desired jitter frequency fSJ . According to fig. 2 the goal
is to cross the two bathtub tails at BER=10−12. As a major
limitation we are not able to measure or simulate the 10−12

level in a feasible amount of time, and thus use tail fitting
algorithms from [10] to extrapolate the distributions down
to the target BER. For performance comparison we apply
two different algorithms, as briefly described in the following
subsection. Both methods suffer from statistical tail variations
and thus, lead to an uncertainty of the estimated eye opening.
Obviously, this uncertainty highly depends on the sample size
N of a collected jitter distribution, and an ideal choice poses a
fundamental problem: estimation accuracy and thus statistical
confidence ask for a large N , while fast measurements require
N to be as small as possible.

As a solution to this problem we propose a twofold search
method. The primary, basic search of ASJ is carried out with
a recursive algorithm which minimizes the extrapolation error
of fitted tails. It is described by the recursion

ASJ(n+ 1) = ASJ(n) + µ · e(n) (1)

This equation is widely used in adaptive filter theory [11]
where least-mean-square algorithms or Kalman filters are
implemented, and offers a high robustness against statistical
variations of the error term e(n). With a block size of N jitter

values, the tail fitting algorithms in sec. II-A provide a cost
function and specify the error e(n). The jitter amplitude for
the next iteration ASJ(n+ 1) is then determined according to
eq.(1), using the old value ASJ(n) and the error e(n), which
is scaled by the learning rate parameter µ.

The second algorithm part adaptively adjusts the sample
size N for each collected jitter distribution. The method starts
with a minimum size Nmin and decides after each iteration,
whether N must be increased or not. As soon as a maximum
Nmax is successfully reached, the search algorithm converges.
This second algorithm part allows for a significant speed-up
of the ASJ search, because only few jitter samples are needed
for initial iterations. Further, the increase of N starts at a point
where ASJ is already close to the final result. It is described
in sec. II-B.

A. Tail Fitting Method and Cost Function

Tail fitting methods [10], [12] commonly assume Gaussian
tail behavior at both distribution endings and try to identify the
Gaussian model parameters for correct extrapolation. In this
context, the Gaussian quantile normalization has become very
popular, as it allows for simple and accurate extrapolations.
We thus use two methods based on this principle, which have
also been described and compared in [10].

Measured bathtub functions are basically transformed into
quantile domain, where a Gaussian tail appears as a straight
line and can thus be extrapolated easily via linear regression.
This transform is given by the Q-function:

Q(p) =
√

2 · erfc−1
(
2 · p) , p = CDF(x) (2)

An example for such transformed tails is given in fig. 3. It
shows fitted tails of a probability distribution with N=106

jitter samples, when extrapolated down to the target prob-
ability 10−12 in the unit bit interval (UI). In our example,
extrapolations range over six orders of magnitude. Note, that
the amplitudes of identified tails (dashed lines) differ slightly
because of statistical tail variations.

−0.5 −0.25 0 0.25 0.5 

7

6

5

4

3

2

1

0

Time x [UI]

Q
( 

C
D

F
(x

) 
)

Q(1/N)=Q(10
−7

)

Q(10
−12

)

TJ
pp

CDF(x) 1−CDF(x)

Fig. 3. Tail fitting principle according to [10].

The first fitting method, scaled Q-normalization (sQN) fully
identifies the three Gaussian model parameters amplitude A,
standard deviation σ and mean µ, and thus requires more



computational demand. The second method, conventional Q-
normalization (QN) is a simplified version of the first one.
It assumes A=1, and is thus significantly faster but also less
accurate. The two fitting methods are applied to both left and
right distribution tails, which finally allows for estimating the
timing budget or total jitter value TJpp at 10−12 :

TJpp = tL + tR (3)

tL(R) = µL(R) + σL(R) ·Q(10−12/AL(R)) (4)

For the adaptive JTOL algorithm in eq.(1) a suited error
term e(n) should behave proportional to the injected jitter
amplitude ASJ . In [4] it is demonstrated that, besides the
injected sinusoidal, all jitter sources in a JTOL measurement
can be considered as uncorrelated and approximately constant.
In Gaussian quantile domain (eq.(2)) this allows for the
construction of a linear relationship, which is valid over a
certain amplitude range.

Q = a ·ASJ + b (5)

Theoretically we would thus only need two measurement
points to determine the unknown parameters, but unfortunately
the tail extrapolations suffer from statistical variations. This
impedes a direct calculation of ASJ , but we can benefit
from the proportional influence on Q-values and derive a cost
function.

The Q-value where the timing budget covers the whole unit
interval (TJpp=1) can be determined by rewriting eq.(3):

(1− µR − µL)

σL + σR
=

{
σL·Q(p/AL)+σR·Q(p/AR)

σL+σR
(sQN)

Q(p), with AL=AR=1 (QN)
(6)

For the QN method Q(p)=Qest is directly calculated from the
left hand side, while for sQN it can be determined recursively
with a simple Newton iteration. Qest must approach the
desired target BER=10−12, which gives the normalized error
term e(n):

e(n) =
Qest −Q(10−12)

Q(10−12)
=
Qest
7.03

− 1 (7)

which is used together with the adaptive algorithm eq.(1).

B. Sample Size Adaptation

The automatic adaptation of sample size N is based on
the decision, whether the variance of ASJ falls below the
expected error variance of the tail fitting method. It forms the
important heart piece of the JTOL analysis, and also decides
whether the search is completed or not. The algorithm uses
three adjustable parameters: minimum and maximum sample
size (Nmin and Nmax) as well as the target deviation εconf for
amplitude values. This last parameter specifies the statistical
confidence interval for the final ASJ result.

A flow graph of the algorithm is given in fig. 4, where ASJ
is identified for a single frequency fSJ . The algorithm starts
with the minimum sample size Nmin and waits until the first
block of jitter samples has been collected. After applying the
tail fitting method, the error e(n) from eq.(7) is determined

and used for updating the recursion in eq.(1). The resulting
new ASJ(n+ 1) value is stored in an array vSJ [0 . . . L−1] of
variable length, where the statistical variation of amplitudes
can be observed over multiple iterations.
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Fig. 4. Flow graph of JTOL analysis algorithm.

With blocks of only Nmin jitter samples at the beginning,
the recursion quickly settles ASJ(n) to a level where it con-
stantly oscillates around its true value and exhibits statistical
random walks. We can derive a measure for the statistical
variation of ASJ(n) if we only consider L last recursions.
Assuming a normal distribution, we can specify the confidence
interval of ASJ using a t-statistic:

εv = t(α,L−1) · sv,L√
L · vL

(8)

with

vL =
1

L

∑
ASJ,i (9)

sv,L =

√∑
A2
SJ,i − vL ·

∑
ASJ,i

L− 1
(10)

where εv is the estimated confidence bound of a t-distribution
with confidence level α=0.95 and L−1 degrees of freedom.
It is proportional to the empirical standard deviation sv,L and
normalized by the empirical mean vL. If εv falls below the
target deviation εconf , the JTOL algorithm converges.



The length L of the array vSJ is variable. It is continuously
incremented at every recursion and truncated if a subset of
its newest elements exhibits less statistical variation. This
condition is verified by searching the minimum epsilon value
over all lengths:

εv,min = min{εv, vSJ [L− k . . . L− 1] | k=2 . . . L} (11)

The minimum epsilon search yields an optimistic estimate
of the actual statistical confidence of ASJ values. It allows
us to quickly change to a higher sample size N as soon as
the observed optimistic tolerance εv,min falls below a known
comparison threshold. Hence, we optimize the algorithm with
respect to a minimum number of recursions.

The ideal comparison threshold corresponds to the expected
error of the tail fitting method. We can only approximate
this error behavior, because the extrapolation results depend
not only on the sample size N , but also on the underly-
ing distribution shape. The CDR under test is stimulated
with sinusoidal jitter, and thus, we expect collected jitter
distributions to consist of a bounded sinusoidal component
combined with Gaussian random jitter. For this case in [10]
worst case distribution shapes with combined sinusoidal and
Gaussian jitter components were derived. The worst case
error of both fitting methods can thus be represented as a
simplified function of sample size N . In fig. 5 the median error
Emed (left) and corresponding standard deviation σe (right)
curves are plotted. The true TJpp value was approximated
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Fig. 5. Worst case error behavior of tail fitting methods over varying N .
K=250 evaluations, 4th order regression polynomials.

numerically and K=250 tail fits were carried out for each of
the different sample sizes. 4th order polynomials were fitted
to achieve a functional relationship fp(N) between sample
size N and error behavior. Note, that the error bias Emed
can not be compensated by the JTOL algorithm since the
underlying distribution shape is basically unknown, but the
standard deviation σe can be used as a pessimistic indicator
for choosing the right sample size N . The logarithmic scaling
in fig. 5(b) leads to a polynomial

fp(N) = p0 + p1 · log(N) + . . .+ p4 · log(N)4 (12)

with the coefficients from table I. In our case the covered range
is N=[104 . . . 108]. In order to compare the actual confidence
interval εv,min with the expected error of the fitting method,

TABLE I
POLYNOMIAL REGRESSION COEFFICIENTS FOR σe .

Alg. p0 p1 p2 p3 p4

QN 0.2036 −0.03269 0.001823 −3.466·10−5 0.0
sQN 0.3493 −0.08615 0.008218 −3.530·10−4 5.71·10−5

we can thus use the error polynomials and formulate the
condition:

εv,min < εconf ·
fp(N)

fp(Nmax)
(13)

The error at fp(N) is normalized by fp(Nmax) so that the
target bound εconf forms the reference. In the flow graph
(fig. 4) this condition decides whether the obtained ASJ
estimates are sufficiently accurate, so that jitter distributions
of higher sample size N have to be collected. If this is the
case, a new value for N is determined from the inverse of
the actual εv,min, otherwise the JTOL algorithm continues to
iterate. The inverse f−1

p (N) is simply realized by a Newton
approach.

The overall algorithm structure guarantees for a strictly
monotonic increase of N until Nmax is reached. At
εv,min<εconf and N=Nmax the convergence criterion is met.
Note, that in order to identify a complete jitter tolerance
curve, the JTOL algorithm from fig. 4 must be repeated for
every desired frequency value fSJ . Some additional speed up
can thus be achieved, when the amplitude result of the last
frequency is used as initial value for the next one.

III. APPLICATION EXAMPLE

In this section we apply the developed JTOL algorithm to
a behavioral model for charge-pump PLLs, which has been
developed in [13]. First we introduce the key parameters of
the model and provide an example for the JTOL algorithm at a
single jitter frequency fSJ . Then we proceed to complete jitter
tolerance curves and performance comparisons for different
model parameter configurations.

The modeled charge-pump PLL has been optimized with
respect to fast and accurate time domain simulations on a
system level, in order to allow for the statistical jitter analysis.
It consists of an Alexander type phase detector (BB-PD), a
charge-pump, a loop filter (LF) with subsequent gain regulator
and the voltage controlled oscillator (VCO) (fig 6). The key pa-
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Fig. 6. Block scheme of the charge-pump PLL model.

rameters are listed in table II. They include analog component
values, VCO properties with a noise model (Leeson process),



a gain regulator pole, phase detector delay and metastability
range, as well as the applied data pattern for compliance
testing. The presented PLL has also been realized as test
structure for a 3Gbps high-speed interface.

TABLE II
DEFAULT MODEL PARAMETERS FOR FIG 6.

Component Default parameter values
Loop filter R0=700Ω, C0=70pF, C1=2pF
Charge-pump Icp=5µA

VCO
Kv=2.7GHz/V, ffl=10MHz
A1=−120dBC @ f1=10MHz

APhN=−138dBC
Gain Regulator gr=1.0, fc=250MHz
Phase detector tdel=150psec, Vmeta=±1mV
Data pattern Pat=LBP [2] at 3Gbps

TABLE III
JTOL ALGORITHM SETTINGS.

Nmin=2·104 Nmax=106 εconf=0.005 µ=0.11

In fig. 7 the JTOL algorithm behavior is demonstrated
with the described PLL model at fSJ=10MHz, using the
settings from table III. For the QN method (solid curves)
the first twelve iterations are carried out with Nmin data
samples. Then, a subset of L≥2 last ASJ values has reached
a confidence level εv,min which demands a larger sample size
N , as determined by eq.(13). Over successive iterations, the N
parameter increases monotonically toward Nmax until finally
εv,min<εconf is reached. The sQN method (dashed curves) in
fig. 7 needs fewer iterations and less jitter samples, and thus
converges significantly faster. This is due to the more accurate
tail fitting principle, which also means less undesired error bias
(fig. 5(a)).
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Fig. 7. Example for the JTOL search algorithm, fig. 4.

The learning rate parameter µ must be selected in a way
to support quick convergence. If it is too large, ASJ values

will exhibit large statistical variations and the JTOL algorithm
will require many iterations before the obtained confidence
interval is sufficiently low. Otherwise if µ is too small, the
JTOL search will converge before ASJ reaches the true value,
simply because amplitude variations also become very small.
The ideal µ depends on the dynamics of the investigated
system and thus changes with varying jitter frequency fSJ
and parameter settings. In fig. 8 we estimated the convergence
performance of the JTOL algorithm over varying µ. Therefor,
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we used four different model parameter settings, each at
twenty frequency points (the same as in fig. 9) and counted
successful JTOL runs. The two criteria for successful JTOL
analysis include an iteration number of I<25 and overall
sample size N<5M. For the present high-speed PLL we
identified a best suited learning rate of µ=0.11.

A minimum sample size of Nmin=2 · 104 proved sufficient
for initial tail estimates. Nmax=106 forms a trade-off between
fitting accuracy and simulation time, since the given PLL
model simulates 106 bits within one minute on a 2.4GHz
AMD Opteron workstation. Here, we accept a worst case
error bias of 1.3% for the sQN method (see fig. 5(a)). The
confidence interval εconf is chosen small enough so that the
final statistical variance of ASJ can be neglected.

For the given PLL model we assume two different analysis
scenarios. First, a software based scenario uses a simula-
tor time resolution of 1fsec, which yields a resolution of
Rsim=3.3·105 for the 3Gbit interface. That is, the unit interval
and corresponding distributions are divided into a discrete
amount of Rsim bins. Second, a hardware simulation scenario
reduces this value to R=128, which allows us to consider the
limited precision of TIA based measurements.

In tables IV and V we compare the performance of the JTOL
algorithm over different model parameter settings. We investi-
gate three fitting principles: QN, sQN, and non-adaptive sQN
with a constant sample size N=Nmax (c-sQN). The overall
sample size N is measured over twenty JTOL analysis runs of
varying jitter frequency, in a range of fSJ=[106 . . . 108] MHz.
This value directly reflects the measurement or simulation
time needed to identify a complete JTOL curve. The sQN
method yields best results with minimum N values, be-
sides the R0=400Ω case where the algorithm suffers from
a convergence problem, caused by a few frequencies with



TABLE IV
JTOL ANALYSIS RESULTS FOR R=Rsim=3.3 · 105 .

Param. Alg. Default Icp=10µA R0=400Ω Kv=4GHz/V

N (M)
QN 67.6 98.7 72.2 85.4
sQN 44.0 74.8 79.0 68.3

c-sQN 174 293 225 236

tc (s)
QN 22.6 34.0 25.4 30.4
sQN 476 862 630 688

c-sQN 898 1404 1284 1328

If

QN 12.8 20.0 15.7 17.3
sQN 12.6 19.7 13.4 16.4

c-sQN 8.7 14.7 11.3 11.8

TABLE V
JTOL ANALYSIS RESULTS FOR R=128.

Param. Alg. Default Icp=10µA R0=400Ω Kv=4GHz/V

N (M)
QN 122 95.6 68.5 116
sQN 76.7 107 84.3 70.5

c-sQN 204 296 219 258

tc (s)
QN < 0.08 < 0.04 < 0.04 < 0.08
sQN 1.10 1.67 1.30 1.31

c-sQN 0.91 1.16 1.06 1.09

If

QN 16.1 19.1 14.0 17.6
sQN 15.5 19.5 16.7 15.9

c-sQN 10.2 14.8 11.0 12.9

highly unstable distributions. tc is the overall computation
time consumed by tail fitting, and is thus a measure for the
complexity of the fitting algorithm. In our model, QN is more
than one order of magnitude faster than sQN. If describes the
average number of iterations per jitter frequency. In tab. IV the
If values for sQN are only slightly better than for QN (unlike
the clear difference in fig. 7) because the initial amplitude
is taken from the result of the previous frequency and thus,
already close to the final result. The constant sample size
method c-sQN yields the best If due to the constant error
bias (see fig. 5(a)) of the fitting algorithm.
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Fig. 9. JTOL curves at different parameter settings.

In fig 9 the obtained jitter tolerance curves for the sQN
method with both Rsim and R=128 are plotted together with
manually measured JTOL curves of the same PLL hardware
structure. Note that the measurements have an amplitude
limit of ASJ,max = 3.3UI (reached at fSJ=1MHz), and that
their differences with simulated curves are given by model
inaccuracies which do not reflect algorithm performance. The
hardware oriented model simulation with only R=128 bins
matches excellent with the Rsim high resolution scenario and
can handle the different loop dynamics over varying jitter
frequency also very well.

A complete JTOL measurement over twenty frequency
points with the QN method typically requires N≈100M sam-
ples (≈1.5h of simulation time), which results in tN ≈33ms of
hardware measurement time for the 3Gbit interface. Together
with tc≈80ms for calculations and 1ms additional time buffer
per iteration we yield tI≈If · 20 · 1ms=320ms which gives
an overall time consumption of tN +tc+tI = 433ms for the
complete JTOL curve.

IV. CONCLUSION

We presented a fast and accurate method for the identi-
fication of jitter tolerance curves in high-speed PLLs. An
adaptive algorithm determines jitter amplitudes recursively,
while optimized with respect to a small number of iterations
and sample size. We demonstrated, that the proposed method
can be applied to both software simulations and hardware
measurements.
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