
Using Contract-based Component Specifications for
Virtual Integration Testing and Architecture Design

Werner Damm∗, Hardi Hungar∗, Bernhard Josko∗, Thomas Peikenkamp∗, Ingo Stierand†

∗OFFIS, Germany
{werner.damm|...|thomas.peikenkamp}@offis.de

†University of Oldenburg, Germany
stierand@informatik.uni-oldenburg.de

Abstract—We elaborate on the theoretical foundation and
practical application of the contract-based specification method
originally developed in the Integrated Project SPEEDS [11],
[9] for two key use cases in embedded systems design. We
demonstrate how formal contract-based component specifications
for functional, safety, and real-time aspects of components can be
expressed using the pattern-based requirement specification lan-
guage RSL developed in the Artemis Project CESAR, and develop
a formal approach for virtual integration testing of composed
systems based on such contract-specifications of subsystems.
We then present a methodology for multi-criteria architecture
evaluation developed in the German Innovation Alliance SPES
on Embedded Systems.

I. INTRODUCTION

The lack of an overall understanding of the interplay of
subsystems and the difficulties encountered in integrating
within one system subsystems from multiple engineering do-
mains (mechanical, hydraulic, electronic) and from multiple
organizations (such as from different suppliers) cause system
integration to become a nightmare in the system industry, as
demonstrated by Table I1.

Tackling this system integration challenge requires multiple
lines of attack, ranging from process issues to methods focus-
ing on giving precise interface specifications and tracing their
interdependencies across the complete design space, covering
all engineering domains and all abstraction layers. While this
paper focuses on capitalizing on the value of precise interface
specifications in multi-criteria architecture design and virtual
integration testing, it is part of an overall systems-engineering
approach currently pushed by the Artemis Flagship Project
CESAR2, building on a common meta-model for multiple-
domain system engineering artifacts and process improve-
ments supporting dependency management of contract-based
specifications of these. It builds on substantial results of the In-
tegrated Project SPEEDS3 and the Strep Project COMBEST4,

This research has been partly funded by the Federal Ministry for Educa-
tion and Research of Lower Saxony under Grant No. O1IS08045 W. The
responsibility for the content lies with the authors.

1VDC Research, 2008 Embedded Software Market Intelligence Pro-
gram, Track 3: Embedded Systems Market Statistics, Volume 1: Automo-
tive/Transportation; Volume 3: Industrial Automation; and Volume 4: Medical
Devices, 2008

2www.cesarproject.eu
3www.speeds.eu.com
4www.combest.eu

all focusing on contract-based embedded systems develop-
ment, see [6], [7], [8], [4], [13], [3], [11], [14], and of cause
previous, related work ([12], [5], to mention but a few). The
proposed approach is compatible with any of the currently
used systems-engineering methods, such as SysML, AADL,
industry standard tools such as Matlab-Simulink/Stateflow or
industry standards covering lower levels of the design, such
as Autosar or IMA, in that it allows to enrich purely static
interface specifications by contracts characterizing allowed
design contexts, and specifying both functional and extra-
functional characteristics guaranteed by design artifacts, and
assumed from their design context. While viewpoint specific
extensions of system engineering methods exist (such as the
MARTE profile focusing on real-time), a key asset of the pro-
posed approach is the capability of providing a unified data-
model of design artifacts integrating all viewpoints required
for systems engineering. This allows to capture both cross-
engineering domain and cross-supplier chain interfaces with
a level of precision expected to drastically reduce the system
integration problems highlighted in Table I.

This paper focuses on boosting the quality of virtual in-
tegration testing through the use of multi-viewpoint formal
contracts, i.e. contracts with a rigorous and unambiguous
semantics. Rather than “physically” integrating a system from
subsystems at a particular level of the right-hand side of the
V, model-based design allows to virtually integrate systems
based on the models of their subsystem and the architecture
specification of the system, which in particular explicates
the information flow between subsystems and the systems
environment. Such virtual integration thus allows detecting
potential integration problems up front, in the early phases of
the V. Virtual system integration is often a source of heteroge-
neous system models, such as when realizing an aircraft func-
tion through the combination of mechanical, hydraulic, and
electronic systems. While virtual integration is already well
anchored in many system companies’ development processes,
the challenge rests in lifting this from the current level of
simulation-based analysis of functional system requirements
to rich virtual integration testing catering as well for non-
functional requirements. In contract-based virtual integration
testing, both subsystems and the complete system are equipped
with multi-viewpoint contracts. Since subsystems now charac-
terize their legal environments, we can flag situations, where a
subsystem is used out of specification, i.e. in a design context,
for which no guarantees on the subsystem’s reaction can be978-3-9810801-7-9/DATE11/ c© 2011 EDAA

Design Task Tasks delayed Tasks delayed Tasks delayed Tasks causing Tasks causing delay Tasks causing
automotive industrial automation medical devices delay automotive industrial automation delay medical devices

System integration 63, 0% 56, 5% 66, 7% 42, 3% 19, 0% 37, 5%
test and verification
System architecture 29, 6% 26, 1% 33, 3% 38, 5% 42, 9% 31, 3%
design and specification
Software application and/or mid- 44, 4% 30, 4% 75, 0% 26, 9% 31, 0% 25, 0%
dleware development and test
Project management 37, 0% 28, 3% 16, 7% 53, 8% 38, 1% 37, 5%
and planning

Note: Percentages sum to greater than 100% due to multiple responses. .

TABLE I: Difficulties Related to System Integration

given. Our experience from a rich set of industrial applications
shows, that such virtual integration tests drastically reduce the
number of late integration errors. Special instances of failed
virtual integration tests include the lack of a component to
provide complete fault isolation (a property presumed by a
neighboring subsystem), the lack of a subsystem to stay within
the failure hypothesis assumed by a neighboring subsystem,
the lack of a subsystem to provide a response within an
expected time-window, the unavailability of a shared resource
such as a bus-system in a specified time-window, non-allowed
memory accesses, glitch rates exceeding specified bounds, and
signal strengths not meeting specified thresholds.

Multi-viewpoint contracts in virtual integration testing thus
drastically extend the potential to uncover integration errors
early. Additionally, using such rich contracts in system speci-
fication comes with two key benefits, which help dealing with
the complexity in the OEM-supplier relationship.

First, the above approach to virtual integration testing is
purely based on the subsystems’ contract specifications. In
other words, if virtual integration testing is successful, any
implementation of a subsystem compliant to its contract
specification will not invalidate the outcome of the test.
Second, assuming that the virtual integration test was passed
successfully, we can verify whether the system itself meets
its contract purely based on the knowledge of the subsystem
contracts and the system architecture (and evidence that the
subsystem implementations are compliant with this contract).

This entails that, at any level of the supplier hierarchy, the
higher-level organization can – prior to contracting suppliers
– analyze, whether the subsystems contracts pass the virtual
integration test and are sufficient to establish the system
requirements. By then basing the contracts to suppliers on the
subsystem contracts, and requiring subsystem suppliers to give
evidence (such as through testing or through formal analysis
methods) that their implementation complies to their contract,
the final integration of subsystems to the complete system will
be free of all classes of integration errors covered by contracts
in the virtual integration test. Note that this method allows
to protect the IP of subsystem suppliers – the only evidence
required, is the confirmation that their implementation meets
the subsystem contract specification.

This paper is organized as follows. We introduce the key
concepts of our design methodology in Section II. Section III
shows how to formalize contracts based on the requirement
specification language RSL. Section IV illustrates multi-aspect

contract based architecture design, focusing on two key as-
pects, safety and real-time.

II. KEY CONCEPTS

Rich Components: The main object of the design process
is a (rich) component, which represents the system or one
of its parts in a certain stage of design. The rich component
may (and usually will) show different aspects of the design
object: functionality, timing, safety, cost, weight, security etc.
Under each aspect, the component has an interface consisting
of ports by which it may be connected to other components or
the environment, and exchange information. The aspect under
which a component is viewed has an obvious influence on the
kind of information. For instance, for safety considerations
it is important to know which faults may have occurred, the
functional aspect will be concerned with the relation between
input and output, while timing considers temporal relations and
not the values themselves. So the designer is free to choose
different (or differently timed) ports for the diverse aspects.

The language HRC of heterogeneous rich components pro-
vides the syntactical means to define the design artifacts. Its
syntactic categories include components, interfaces, connec-
tors and compositions. It imports languages for contract and
behavior specifications as explained later in this paper.

Design Space: We imagine the design artifacts, charac-
terized in their aspects as indicated above, to be placed on a
two-dimensional map. One dimension is the level of detail or
abstraction, the other is spanned by perspectives. These are
viewpoints which, in contrast to the aspects which are oriented
towards properties and behavior, concern more the nature and
constitution of the design entity. We identify an operational, a
functional, a logical, a technical and a geometrical perspective
as ones which may play a prominent role in the design of
embedded systems. The design of a new system would start,
for instance, with a coarse-grained view on the system’s main
operational features, and end with detailed descriptions of
the technical and geometrical realization, proceeding perhaps
along a roughly diagonal path through the design space while
detailing the different aspects along the way.

Key Design Steps: In traversing the design space, the
artifacts become more and more detailed and concrete, while
each new artifact is developed from a previous one and
bears a particular relationship to it. We distinguish three main
kinds. Decomposition details the structure of a component.
It consists of parts – instances of other components – and

connectors, which link a port of a part with another or
an external port. While decomposition need not necessarily
lead to a new (lower) level of abstraction, the more general
realization implements a higher-level component by other
means, e.g. replacing abstract data by concrete representations.
Deployment is the step from one perspective to another, often
entailing a structural change, when, for instance, functions are
allocated onto logical components, or logical components are
split over controllers in the technical perspective.

Logical Specifications – Contracts: To specify an aspect
of a rich component, one may use a predicative description in
the form of contracts, saying what the component guarantees
if assumptions about its environment are met. Such contracts
permit a formalization of informal descriptions of qualities and
properties which make up a large part of design documents.
The formalization helps in making them more precise, less
ambiguous and easier to check.

A contract has the format (A,B,G), where A and B are,
resp., strong and weak assumptions, and G is the guarantee.
Intuitively, the strong assumption shall express conditions that
are necessary for the component to perform any meaningful
operation, its “operational envelope”. In the technical perspec-
tive, this could be the availability of power, a maximal temper-
ature, etc., in the functional perspective one might postulate
e.g. type correctness. The weak assumption shall describe
sorts of environments in which the component provides certain
services. The guarantee part then specifies what the component
itself will ensure, provided that the assumptions are fulfilled.

Logically, this semantics corresponds to A∧B ⇒ G. On the
logical level, there is no difference between weak and strong
assumption, but there is a methodological one in their usage.

Each of the three formulas which make up a contract
denotes, semantically, a set of traces, where a trace assigns
a value to each port of a component for every point in time.
The exact nature of the time domain is not important for the
generic method. A very general domain may have a continuum
of points (i.e., the real numbers) to represent continuous
evolutions, with additional breaks enabling to incorporate
discrete actions in adequate abstract way. With [[.]] denoting the
semantical mapping and (.)cmpl trace-set complementation,
[[(A,B,G)]] = ([[A]]∩ [[B]])cmpl ∪ [[G]]. If a component aspect
is given by a set of contracts, the respective trace sets are
intersected — this corresponds to the (common) view that all
specifications given for an entity should be satisfied.

The language in which the properties A, B and G are ex-
pressed may vary. In the next section, we will present a natural-
language-like dialect of temporal logic apt for industrial usage.

A fundamental relation between contracts is refinement. It
is similar to satisfaction; a contract C ′ refines a contract C if
[[C ′]] ⊆ [[C]], i.e., if, logically, C ′ ⇒ C. Refinement can often
be proved by showing that the refining contract’s assumptions
are weaker and its commitment is stronger. This stronger
relation is called dominance.

Due to the predicative nature of contract specifications
it may be difficult to see whether a given specification is
meaningful, i.e., whether there is a system satisfying the

specification. Though there is no simple general answer to
this problem, there are some useful properties which can be
established. It may be possible, for instance, to check whether
a given set of contracts is logically satisfiable. Another ap-
proach takes the operational intuition into account. A formula
is receptive on a set of ports if it does not restrict the values
of those ports. There are, for many logics, sufficient syntactic
criteria for that. A contract is called directed, if its assumptions
are receptive on the outports of a component and its guarantee
is receptive on the inports. Directed contracts always have a
nontrivial implementation.

Behavioral Specifications – State Machines: An opera-
tional specification can be given in the form of state machines.
State machines enable an early animation of (parts of) the
system which supports explorations and plausibility checks.
UML state machines or closely related formats, e.g. forms
of hybrid automata, may be used for that purpose. In the
following, we will not detail state machines and their usage
in the design process, but will concentrate on contracts.

A state machine M satisfies a contract specification C
(denoted as M |= C), if its trace set is contained in that of
the contracts. This is the most basic notion of implementation
and underlies all relations which give a precise meaning, on
the semantic level, to the correctness of design steps. Note
that satisfaction is not meant to be achieved by making the
state machine not reactive, the machine shall answer to all
input stimuli in some form. Rather, the machine will usually
be more deterministic – while the specification will not restrict
the behavior in many situations (or only barely will do so), an
implementation will be more definite and concrete.

Semantical Representations of Design Steps: Decom-
position is, apart from changes to sets of observables, a
form of parallel composition. On the semantic level, it is
essentially – neglecting the necessary interface operations – the
intersection of the trace sets of the parts of the aggregate. This
corresponds to a synchronous composition. If an asynchronous
composition is to be treated, there are ways to reduce it to the
synchronous operator, for instance by an explicit modeling
of communication media. A decomposition is correct, if the
intersection of the trace sets of the parts form a subset of
permitted trace sets of the aggregate.

Realization needs a mapping of the lower-level observations
to the higher-level ones. This may be a simple function on the
value domains of ports, or a regrouping and combination of
trace elements (for instance, if an abstract operation is realized
by a lower-level protocol). Correctness is mainly trace set
inclusion subject to the mapping. However, a realization will
in general be only partial, that is, it will work only for a subset
of input values or sequences. Thus, additional restrictions will
have to be imposed on the higher-level specifications to be
satisfied by the realization.

A similar mechanism is used for deployment, where again
the change of the semantical domain necessitates a mapping.

Virtual Integration Testing (VIT): The design steps of
decomposition, realization and deployment have their counter-
parts in logical operations on contract specifications, and their

correctness translates to logical conditions. Let a component M
with specification C and parts Mi, i = 1, . . . , n with respective
specifications Ci be given. If the parts satisfy their contracts
(
∧n

i=1(M) |= Ci) and the combined contracts imply the main
specification ((

n∧
i=1

Ciρi

)
ρ

)
⇒ C

(the ρi and ρ mimic the ports connections logically in the
form of substitutions), then M |= C, i.e., the composed system
is correct. This is the main condition of what we call the
virtual integration test. Additionally, one has to establish that
the strong assumptions of the parts are either discharged by
guarantees of other parts or covered by the strong assumption
of the aggregate. This translates to(

n∧
i=1

Ci

)
∧ (Aρ−1)⇒

n∧
i=1

Ai .

The more general design steps of realization and deployment
have similar, yet a bit more complex logical counterparts.
These conditions enable to check the correctness of design
decisions early in the process – before the parts are imple-
mented one can check their cooperation. This is what we call
the virtual integration test.

In the ensuing sections, we will demonstrate how the design
method can be realized and employed, starting with an in-
troduction to the pattern-based language used to formulate
contracts.

III. RSL

Formulating requirements in natural language has the dis-
advantage that the lack of formality may lead to ambiguities,
incompleteness or even inconsistencies. These may remain
undetected and later on cause realizations to not conform to the
intended meaning of their specification or being incompatible
with other parts of the system. Formal languages, on the other
hand, are often hard to learn and, even if correctly employed,
might result in specifications which are difficult to under-
stand and use. The pattern-based Requirements Specification
Language (RSL) fills this gap by providing an easy to learn
formal language with a fixed semantics that is still readable
like natural language.

Patterns consist of static text elements and attributes being
filled in by the requirements engineer. Each pattern has a well
defined semantics in order to ensure a consistent interpre-
tation of the written system specification across all project
participants. Different sets of patterns have been defined to
adequately capture the different aspects of a design. Functional
patterns provide means to express the relationships between
events, the handling of conditions and port assignments, and
when these relationships should hold. Safety patterns speak
about elementary faults, occurrences of failures and dependen-
cies between failures or hazards. Timing patterns can be used
to describe real-time behaviour of systems, including periodic
and aperiodic phenomena and things like jitter and delay. RSL

Fig. 1: High-level View of the Wheel Brake System

covers also further aspects. Instead of a full presentation, we
provide a picture of the language by a giving a set of typical
examples. A more complete presentation can be found in [10],
including its formal semantics.

Fig. 1 gives a very high-level architecture of a safety-critical
wheel-brake system (c.f. [1], [2]), with a controller (BSCU) on
the left-hand side and a hydraulic subsystem on the right. The
BSCU controls the regular braking process via CMD_AS. There
is also a mechanical backup system (activated if Valid goes
down), which is of no concern here.

One of the requirements on the system is that the delay
between a brake command (given via the brake pedal) and
its execution (by applying brake force to the wheel) shall not
exceed 10ms. An according property in the timing aspect is:
Delay between
(change(Pedal_Pos1) || change(Pedal_Pos2))
and change(Brake_Line) within [0 ms,10 ms]

Here, change(p) refers to the event of a change of the port
p, not specifying the exact value. This reflects a convenient
abstraction for studying timing properties. Similar, falls(p)
defines the event that occurs when the (boolean valued) port
p changes its value from 1 to 0.

Examples of functional patterns are:
always Valid
always Pedal_Pos1 == Pedal_Pos2

These two are expressing invariant properties over values of
ports.

Safety contracts specify (a general form of) fault contain-
ment properties. For component BSCU in Fig. 1 for example,
it shall be assumed that neither of the pedal position inputs
fails. This can be stated in RSL as following:
Globally none of failure-sets
{ fail(Pedal_Pos1) }, { fail(Pedal_Pos2) } occur

The expression fail(.) refers to the (boolean) condition flag of
the respective port.

Assumptions and guarantees of contracts are built up from
instances of RSL patterns, where, if necessary, also boolean
combinations of patterns may be used. In this way, we get
highly readable and clear specifications with nonetheless pre-
cise semantics.

IV. MULTI-CRITERIA ARCHITECTURE DESIGN

We demonstrate the contract-based design process by a
few illustrative steps, starting with the timing requirement on
the wheel brake system given in the following contract.

WBS:
A: always Pedal_Pos1 == Pedal_Pos2

G: Delay between (change(Pedal_Pos1) ||
change(Pedal_Pos2)) and change(Brake_Line)
within [0ms,10ms]

The strong assumption presupposes that the two ports signal-
ing the pedal position to the WBS, which are later used in
redundant subcomponents, always carry the same signal.

Time Budgeting: The first design step is time budgeting
which distributes this latency requirement to the electronic
and hydraulic components.
BSCU:
A: always Pedal_Pos1 == Pedal_Pos2

G: Delay between (change(Pedal_Pos1) ||
change(Pedal_Pos2)) and (change(CMD_AS) ||
falls(Valid)) within [0ms,5ms]

Hydraulic:
A: - -
G: Delay between change(CMD_AS) and
change(Brake_Line) within [0ms,5ms]

The two component contracts imply the contract on WBS under
the additional provision that Valid remains up. This is a
(simple) instance of a realization relation, where refinement –
and accordingly, the VIT – must be relativized to take low-
level phenomena into account. Dealing with Valid is up to
the safety analysis.

Safety: A more detailed view on the BSCU, depicted in
Fig. 2, shows that it is redundantly implemented. If BSCU1
fails, the Select_Switch puts the backup signal from
BSCU2 through.

The safety analysis enriches the design model by faults
and introduces new observables. In our case, we have
elementary faults of the four units Monitor1, Command1,
Monitor2 and Command2, which are represented by
ports (fault(Monitor1) etc.), and failures of the signals
CMD_AS1, CMD_AS2 and CMD_AS (fail(CMD_AS etc.).
A fault of Command1 leads to fail(CMD_AS1), which, if
Monitor1 is not at fault, is signaled by falls(Valid1).
Our example analysis assumes that at most one of the
basic faults occurs, abbreviated as No_Double_Fault
which stands for a condition expressing:

always ((fault(Command1)==0 &&
fault(Monitor1)==0 && fault(Monitor2)==0)

or always ((fault(Command1)==0 &&
fault(Monitor1)==0 && fault(Command2)==0)

or
Other components are assumed to be reliable (which would

be ensured by an adequate design assurance level). The safety
analysis abstracts from exact timing and represents important
timing issues, similar to elementary faults, by additional
inputs. Here, we introduce CMD_AS_too_late, which, in
the timing aspect, is defined as
Delay between
(change(Pedal_Pos1) || change(Pedal_Pos2))

and change(CMD_AS) within (5ms,∞] .

A typical element of a component specification with respect
to the safety aspect takes the following form:
BSCU1:
A: Globally none of failure-sets
{ fail(Pedal_Pos1) } occur
B: always (fault(Command1) ==0 &&
fault(Monitor1) ==0)
G: Globally none of failure-sets
{ fail(CMD_AS1) } occur

From similar failure occurrence and propagation
characterizations of the parts of BSCU, one can derive
via VIT steps:
BSCU:
A: Globally none of failure-sets
{ fail(Pedal_Pos1) }, { fail(Pedal_Pos2) } occur
B: No_Double_Fault
G: (always Valid1) or (always Valid2)

and
A: Globally none of failure-sets
{ fail(Pedal_Pos1) }, { fail(Pedal_Pos2) } occur
B: No_Double_Fault and (always not
CMD_AS_too_late)
G: Globally none of failure-sets
{ fail(CMD_AS) } occur

The condition on the timeliness of CMD_AS is subsequently
treated by returning to timing considerations and refining that
aspect.

Refined Timing: Of the available 5 ms to change
CMD_AS after a change to the pedal position, 4 ms may be
taken by the BSCUi:
G: (always Validi) implies Delay between
change(Pedal_Posi) and (change(CMD_ASi))
within [0ms,4ms]

A switch to the backup unit takes at most 1 ms.
Select_Switch:
G: Delay between falls(Valid1) and
CMD_AS=CMD_AS2 within [0ms,1ms]

Otherwise, the signal CMD_AS1 just has to be put through:
Select_Switch:
B: always Valid1

G: Delay between change(CMD_AS1) and
change(CMD_AS) within [0ms,0.25ms]

VIT lets us conclude that, given parts satisfying these
contracts, the component BSCU satisfies the following:
A: always Pedal_Pos1 == Pedal_Pos2

B: (always Valid1) or (always Valid2)
G: Delay between change(Pedal_Pos1) ||
change(Pedal_Pos2) and change(CMD_AS) within
[0 ms,5 ms]

AS2CMD_AS2AS1CMD_AS1

Valid1 Valid2

Pwr1 Pedal_Pos1 Pwr2 Pedal_Pos2

Valve
Meter

Wheel

Green Pump Blue Pump

Selector
Valve

N
o

rm
al

A
ltern

ate

Shut Off
Selector

Valve
Isolation

Valve

Anti Skid
Shut Off Valve

Reserve

Valve
Meter Mech Pedal Position

BSCU

B
S

C
U

1

B
S

C
U

2
Select_Switch

Switch

Valid

AS

CMD_AS

Accumulator

Valid_

Brake_Line

Command 1

Monitor 1

Command 2

Monitor2

Hydraulic

Fault Fault

Fault Fault

Fig. 2: Structure of the Wheel Brake System

The assumption A tells us, that BSCU1 and BSCU2 get
the same input. To derive G, let us assume that “always
Valid1” or “always Valid2” holds. If the first is true,
BSCU1 reacts in at most 4 ms (first contract for i=1) and
Select_Switch in at most 0.25 ms (second contract for
Select_Switch). In the second case, the argument is
similar (employing the remaining contracts), and times add
up to 5 ms.

Combining timing and safety: The refined timing analysis
above yields, assuming additionally that either Valid1 or
Valid2 remains up, that the BSCU meets its timing re-
quirement. The safety analysis has already established that
no single fault leads to both Validi going down. Now, we
can strengthen the result of the safety analysis by stating that
also CMD_AS_too_late will not occur under the condition
NO_Double_Fault. Also, we can replace the condition
that Valid remains up in the first time budgeting step by
NO_Double_Fault.

Thus, the WBS has no single point of failure, if the sub-
components conform to their specifications, and it also never
violates its timing requirements.

V. CONCLUSION AND FUTURE WORK

We have outlined the foundations and the mode of applica-
tion of a design style which uses contracts to specify properties
of different categories (aspects) of design artifacts. Instances
and elaborations of this approach are under development in
various contexts – see the introduction –, which includes tools
to support the application and guidelines for tailoring it to
different application areas. Space limitations keep us from
providing more detail in this paper. A more comprehensive
presentation is in preparation, a preliminary version of which
may be obtained by contacting the authors of this overview.

Acknowledgement: We sincerely thank our colleagues
Eckard Böde and Markus Oertel for their contributions to
earlier versions of this paper.

REFERENCES

[1] ARP4754. Certification Considerations for Highly-Integrated or Com-
plex Aircraft Systems. Aerospace Recommended Practice, USA, 1996.

[2] ARP4761. Guidelines and Methods for Conducting the Safety Assess-
ment Process on Civil Airborne Systems and Equipment. Aerospace
Recommended Practice, Society of Automotive Engineers, USA, 1996.

[3] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and
C. Sofronis. Multiple viewpoint contract-based specification and design.
In Frank S. Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-
Paul Roever, editors, Formal Methods for Components and Objects,
FMCO ’07, LNCS 5382, pages 200–225. Springer, 2008.

[4] A. Benveniste, B. Caillaud, R. Passerone, B. Josko, E. Badouel, and
B. Delahaye. SPEEDS Meta-model Behavioural Semantics. Technical
report, SPEEDS Consortium, Jan 2007.

[5] Manfred Broy. A functional rephrasing of the assumption/commitment
specification style. Formal Methods in System Design, 13(1):87–119,
1998.

[6] W. Damm. Controlling speculative design processes using rich com-
ponent models. In 5th International Conference on Application of
Concurrency to System Design (ACSD 2005), 2005.

[7] W. Damm, A. Votintseva, A. Metzner, B. Josko, T. Peikenkamp, and
E. Böde. Boosting re-use of embedded automotive applications through
rich components. In Foundations of Interface Technologies, FIT’05,
2005.

[8] A. Davare, D. Densmore, T. Meyerowitz, A. Pinto, A. Sangiovanni-
Vincentelli, G. Yang, H. Zeng, and Q. Zhu. A next-generation design
framework for platform-based design. In Proc. of Conference on Using
Hardware Design and Verification Languages (DVCon) ’07, 2007.

[9] A. Engel, M. Winokur, G. Döhmen, and M. Enzmann. Assumptions /
promises - shifting the paradigm in systems-engineering. In Proceedings
of the INCOSE International Symposium 2008, June 2008 Utrecht, 2008.

[10] V. Gafni, A. Benveniste, B. Caillaud, S. Graf, and B. Josko.
SPEEDS Deliverable D.2.5.4: Contract Specification Language
(CSL). D 2 5 4 RE Contract Specification Language.pdf on
http://www.speeds.eu.com/downloads/, 2008.

[11] B. Josko, Q. Ma, and A. Metzner. Designing embedded systems
using heterogeneous rich components. In Proceedings of the INCOSE
International Symposium 2008, June 2008 Utrecht, 2008.

[12] Bertrand Meyer. Applying ”design by contract”. Computer, 25(10):40–
51, 1992.

[13] R. Passerone, J.R. Burch, and A.L. Sangiovanni-Vincentelli. Refinement
preserving approximations for the design and verification of heteroge-
neous systems. Form. Methods Syst. Des., 31:1–33, August 2007.

[14] R. Passerone, I. Ben Hafaiedh, S. Graf, A. Benveniste, D. Cancila,
A. Cuccuru, S. Gerard, F. Terrier, W. Damm, A. Ferrari, L. Mangeruca,
B. Josko, T. Peikenkamp, and A. Sangiovanni-Vincentelli. Metamodels
in Europe: Languages, tools, and applications. IEEE Design and Test
of Computers, 26:38–53, 2009.

