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Abstract— Process variability is becoming a major challenge in 

CMOS design of general and embedded SRAMs in particular 

due to continuous device scaling. The main problems are the 

increased static power and reduced operating margins, 

robustness and reliability. A common way to reduce the static 

power consumption of an SRAM memory array is to decrease its 

supply voltage when in memory retention mode. However, this 

leads to a further reduction in memory robustness. The most 

common tool for statistical analysis of circuits under process 

variability is standard Monte Carlo simulation which has been 

proven to be too expensive when applied on an ultra dense 

SRAM [1]-[6]. In this paper a statistical robustness analysis 

method is proposed based on decoupling statistical integration 

from robustness region determination in the parameter domain. 

The robustness is estimated with a ~ 556X speed up relation to 

Monte Carlo and an error of ~ 1%. 

Keywords-6T SRAM;Robustness Analysis;Data Retention; PVT 

Variability. 

I.  INTRODUCTION  

Increased process variability in nano-scaled technologies is 
becoming a major challenge for CMOS designers. Process 
variability, which can be classified as inter-die and intra-die, is 
due to the fabrication process and non-uniform conditions 
during dopant deposition or diffusion resulting in highly 
variable transistor parameters.  

Because of its speed and compatibility with standard logic 
process, SRAM is the embedded memory of choice for many 
VLSI systems [7]. According to ITRS 2009, the density of 
SRAM could reach over 5 million transistors / cm
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, by 2015 

[8]. In order to achieve the high density requirement, SRAM 
bit-cells are designed with minimum sized transistors, 
rendering them more sensitive to process variations. The major 
concerns regarding embedded SRAM memories and 
technology scaling are increased static power, lower cell 
stability and reduced operating margins, robustness and 
reliability [7].  

Static power consumption is predominant in SRAMs. At 
the circuit level, leakage reduction can be achieved by 
controlling the voltage at different cores of the IC. By lowering 
the supply voltage (VDD) of idle SRAM memory blocks to its 
standby limit, leakage power can be effectively reduced. In 
order to ensure cell stability, the lower limit of the supply 
voltage, must be higher than the Data Retention Voltage (DRV) 
determined for the nominal parameter cell because of process 
variability. Another factor that can affect SRAM robustness is 
the temperature. Depending on the proximity of the idle 

memory block to the active logic units, significant spatial 
temperature variation can be observed [9].  

This paper analyzes statistically the effect of process, 
voltage and temperature (PVT) variability on the robustness of 
a 6T SRAM cell in data retention mode using an improved 
non-Monte Carlo method.    

The next section presents an overview of commonly used 
statistical failure analysis techniques of SRAM memory under 
process variability. The third section describes in detail the 
proposed method of statistical analysis, and in the fourth the 
method is applied for robustness analysis of an idle 6T SRAM 
cell under process, voltage and temperature variation. The 
method is proven to be an efficient tool for circuit analysis 
when compared to other similar tools in the fifth section. 
Finally, the conclusion section summarizes the advantages of 
the proposed method and its applications for robustness 
analysis of 6T SRAM memory. 

II. STATE OF THE ART 

The most common tool for statistical analysis of circuits 
under process variability is standard Monte-Carlo (MC) 
simulation. Monte Carlo methods are a class of computational 
algorithms that rely on repeated random sampling to compute 
their results. Accuracy depends on the sample size, so for an 
extremely small probability events the number of random 
experiments to accurately estimate it is extremely large 
(sample size must be quadrupled to achieve twice the 
accuracy) [10].  

Extensive research has been done to find methods to reduce 
sample size for speed improvement while maintaining the 
accuracy of standard Monte Carlo simulations. One such 
method is the Stratified Sampling technique which consists in 
stratifying the sample space by choosing a partition of the 
input parameter space. The integrals in each stratum are than 
estimated and combined to obtain the overall integral. Another 
common method in SRAM analysis is Importance Sampling. 
The idea behind this technique is that certain values of the 
input random variables have more impact on results than 
others. Hence, the basic methodology in Importance Sampling 
is to select a distribution which focuses on the important 
values. The use of biased distributions results in a biased 
estimator. The simulation outputs are weighted to correct the 
biased distribution to ensure that the new importance sampling 
estimator is unbiased. The issue in implementing importance 
sampling simulation is the choice of the biased distribution 
which emphasizes the important regions of the input variables. 

This work was supported in part by the European Commission ICT 
Research in FP7, Terascale Reliable Adaptive Memory Systems (TRAMS – 

Reference: 248789) and by the Spanish Ministry of Science and Innovation 

(Reference TEC 2010-18384). 



A good sample distribution can provide run-time savings and 
accuracy improvement [1, 3, 11, 10].  

A widely used industry technique of parameter domain 
failure analysis is the Most Probable Point (MPP) [4, 12]. The 
failure probability estimation problem can be stated as finding 
the most likely variation point that causes the failure; that is, 
the point of maximum probability satisfying a certain failure 
criterion, i.e. MPP. The boundary between the acceptance and 
rejection regions is approximated by interpolation. It can be 
done by a first order approximation, finding the tangent line to 
the boundary that passes through the MPP, second order 
approximation, spline interpolation or rectangular 
approximation. 

Another approach to parameter domain failure analysis is 
based on Yield Estimation Nonlinear Surface Sampling 
(YENSS) which was first proposed by S. Srivastava and J. 
Roychowdhury in [2] and then improved and presented by C. 
Gu and J. Roychowdhury in [5]. The method locates the 
failure region boundary in the parameter domain and 
determines the failure probability as the ratio between the area 
(or volume) outside the bounded region and that of the 
parameter domain.  

S. Director, G. D. Hachtel in [16] introduces the simplicial 
approximation which estimates the boundary of the acceptable 
region in an N dimensional space as a polyhedron. In their 
approach the design centering problem is solved by 
determining the location of the center of the maximal 
hyperellipsoid inscribed within this polyhedron. 

In [6], F. Gong et al. present a method to improve yield 
estimation efficiency, i.e. the QuickYield method, which 
proposes a yield surface boundary determination by surface-
point finding and global search. Performance constraints are 
included into the differential algebra equation that describes 
the circuit, resulting into an augmented system equation.  

This paper proposes a different approach to statistical 
robustness analysis in the parameter domain. The method is 
used to determine the failure probability of a 6T SRAM cell in 
data retention mode under Process Voltage and Temperature 
(PVT) variation. The method is described in detail in the next 
section.     

III. PROPOSED METHOD 

The essence of the proposed method consists in the 
decoupling between performance and statistics in the 
parameter domain. That is why it is hereafter referred to as 
SB-SI (Satisfiability Boundary – Statistical Integration). 
There is a range of values in the parameter domain for which 
the device satisfies the required performance. These values 
form the Acceptance Region while the remaining make up the 
Rejection Region. Robustness estimation is completed in two 
steps: first, the Satisfiability Boundary separating the 
Acceptance Region from the Rejection Region is found and 
second, a Statistical Integration over the two regions is 
performed to estimate probabilities.  

A. Satisfiability Boundary (SB) 

The Satisfiability Boundary is defined as the hyper-surface 
in the N dimensional space that separates the Acceptance 
Region (AR) from the Rejection Region (RR). The analysis is 

conduct in the parameter domain and the acceptance/rejection 
criterion is given by the circuit performance metric.  

Assuming a circuit with N parameters ( ]ppp[ N21 L=p ) 

affected by variability and whose performance metric must 
have larger values than a certain limit specified by

minP)(Perf >p . The two regions and the boundary between 

them are defined as follows: 

{ } { }minmin P)(PerfRRandP)(PerfAR <=>= pppp      (1) 

{ }minP)(PerfSB == pp    (2) 

where p is the N dimensional vector of the process parameters: 
]ppp[ N21 L=p . In the parameter domain, the AR and RR 

are N dimensional hyper-volumes and the SB is composed of 
N-1 dimensional hyper-surfaces.  
The Satisfiability Boundary search can be very expensive 

and time consuming if done by means of simulation. This is 
why this paper proposes a method to estimate the SB by 
finding a set of boundary points (Significant Points – SP) and 
then interpolating to approximate the boundary surface with 
controllable error. 

To simplify the explanation of the method, we first consider 
a circuit with two (N = 2) parameters (p1 and p2) subject to 
variability (Fig. 1). The figures in this subsection are obtained 
by analyzing a 6T SRAM cell in data retention mode and 
assuming that only two transistors parameters are affected by 
process variability. 

In the parameter domain, the Satisfiability Boundary is 
approximated by a polygon whose vertices (hereafter referred 
to as Significant Points (SP)) are obtained by simulation. 
Evidently, the boundary is approximated more precisely with 
increasing the number of vertices. The first polygon obtained to 
approximate the Satisfiability Boundary in the 2D parameter 
domain is a quadrilateral. In this case, the SPs in this situation 
are determined by intersection between the SB and the 
parameter domain axes. If the obtained quadrilateral is not a 
good estimate for the boundary, an extra set of SPs will be 
added to the previous one. They are obtained at the intersection 
between the SB and the bisection lines (Fig. 1) – First Angular 
Bisection (FAB). For a more accurate approximation of the SB, 
more significant points can be found by further bisecting the 
resulting angles (Fig. 3). For the two dimensional case the 
Significant Points (SPs) are determined by intersecting the 
satisfiability boundary with the segments given by the table in 
Fig.1. Assuming the parameter domain space defined by the 
parameter variation, the nominal parameter point                        
( ]pp[p nom2nom1nom = ) defines the origin of the system axis, 

i.e. the [0 0] point. The maximum and minimum values on the 
two axes are given by (+∆1, -∆1) and (+∆2, -∆2) respectively. 

Once the directions are established, the intersection points 
are found using a searching algorithm. For this particular case, 
the bisection method was chosen for its robustness and 
simplicity. This method is applied separately to find each 
Significant Point of the Satisfiability Boundary. The number of 
directions, and consequently the number of simulations grows 
with increasing the number of parameters, i.e. the dimension of 
the parameter domain.  

In the 2D case, the Satisfiability Boundary can be 
approximated by the polygon obtained when applying an 



interpolation algorithm on the set of significant points (Fig.2). 
The first step to obtain the polygon is to find the adjacent 
points, which is intuitive for the two dimensional case but gets 
challenging for higher dimensions. The algorithm used in this 
work, which is extensible to the general N dimensional case, is 
described below for two dimensions.  

In the Quadrilateral Approximation (QA), the interpolation 
is straight forward, as the SPs are given by the intersection with 
the axes. For the first- and higher-order angular bisection 
approximations, the problem becomes more complex and an 
algorithm must be implemented. First, the extreme points in the 
parameter domain are mapped (+∆ values are mapped to 1 and 
-∆ values are mapped to -1), as shown in the table in Fig. 2. 
Starting the search from the [1, 1] point, half of the adjacent 
points are found by decrementing 1 for each variable and the 
other half is found starting from the [-1,-1] point and 
incrementing 1 in each direction as shown in the diagram of 
Fig.2.  

Two points form a straight line. Thus, by connecting the 
adjacent points two by two the polygonal estimate of the 
Satisfiability Boundary is obtained (Fig. 2). 

The general equation of a straight line is given by:  

1ybxa =⋅+⋅     (3) 

The a and b coefficients for each of the straight lines forming 
the polygon are determined by solving the system: 
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where (x1,y1) and (x2,y2) are the coordinates of two of the 
adjacent points.  

After obtaining the entire set of straight lines the boundary 
polygon (defined by the set of all a and b coefficients) is 
obtained (Fig. 3). 

The quadrilateral approximation (4 SPs), and the first (8 
SPs), second (16 SPs) and third (32 SPs) angular bisections are 
illustrated in Fig. 3.  

 

Figure 1 – Choice of the Significant Points on the Satisfiability Boundary: 
First Angular Bisection (FAB) 

 

Figure 2 – Finding the adjacent Significant Points on the Satisfiability 
Boundary: First Angular Bisection (FAB)  

 

An increase in the number of Significant Points results in 
improved accuracy of the boundary approximation but also in a 
larger number of simulations, that is, a longer estimation time.  

Once the polygonal approximation of the SB is obtained, 
the acceptance and rejection regions are found. The condition 
that a random point in the parameter domain is in the 
acceptance or rejection region is given by 

01ybxa)b,a(allforifRR)y,x(

01ybxa)b,a(allforifAR)y,x(

>−⋅+⋅∈

<−⋅+⋅∈
  (6) 

The method is extended to the general case of N parameters 
subject to variability. The significant points on the SB are 
determined analogously, using the bisection method. Once the 
significant points are found, the SB can be approximated by a 
hyper-surface. N by N adjacent points must be connected 
similarly to obtain the hyper-surface estimating the SB.  
Based on the above parameter domain partition, the 

robustness is determined by Statistical Integration (SI) as 
described below.   

B. Statistical Integration (SI) 

Assuming a multivariate distribution of N random 
variables, the joint (cumulative) distribution function is given 
by: 

)xX,,xX,xX(P)x,x,x(F NN2211N21 ≤≤≤= LL  (7) 

where X1,…,XN are the random variables under analysis and the 
probability density function is f(X1…XN). The probability that 
the variables are between certain limits is given by 
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(8) 
The parameter domain is an N-dimensional hyper-rectangle. 
Given the complex shapes of the two regions (AR and RR), a 
computation strategy is required to determine the value of P in 
(8). 
 

 

Figure 3 – The polygonal estimation of the Satisfiability Boundary for different 
levels of angular bisection 

[(0,0) (-∆1,0)]         →SP1      

[(0,0) (-∆1, -∆2)]     →SP5

[(0,0) (0,+∆2)]        →SP2

[(0,0) (+∆1, +∆2)]   →SP6

[(0,0) (+∆1,0)]        →SP3

[(0,0) (+∆1, -∆2)]    →SP7

[(0,0) (0,-∆2)]         →SP4

[(0,0) (-∆1, -∆2)]     →SP8

SP1

SP4

SP3

SP2

SP8 SP7

SP6
SP5

∆p2

∆ p1

-1,1 0,0 1,-1

1,1

0,1 1,0

-1,-1

-1,0 0,-1

-1
+1

SP1    →[-∆1,0] →[-1,0]

SP5    →[-∆1, -∆2]    →[-1,-1]

SP2    →[0,+∆2]       →[0, 1]

SP6    →[+∆1, +∆2]  →[1, 1]

SP3    →[+∆1,0]       →[1,0]

SP7    →[+∆1, -∆2]   →[1, -1]

SP4    →[0,-∆2]        →[0, -1]

SP8    →[-∆1, -∆2]    →[-1, -1]

-0.5 0 0.5
-0.5

0

0.5

-0.5 0 0.5
-0.5

0

0.5

-0.5 0 0.5
-0.5

0

0.5

-0.5 0 0.5
-0.5

0

0.5

Quadrilateral Approximation

(QA)

First Angular Bisection

(FAB)

Second Angular Bisection

(SAB)

Third Angular Bisection

(TAB)



As integration over a regular, well defined space is straight-
forward and it is relatively easy to consider correlation [13], the 
parameter domain must be divided into hyper-rectangles. Three 
regions are obtained, i.e. Hyper-rectangle Acceptance Region 
(HAR), Hyper-rectangle Rejection Region (HRR) and Hyper-
rectangle Satisfiability Boundary (HSB) as shown in Fig. 4 for 
the two dimensional case. The partition is performed using a 
bisection-like method. The left side of Fig. 4 illustrates the first 
step of space division: each edge of the initial rectangle is 
divided in half and by connecting the resulting points, four 
rectangles are obtained. In order to determine to which of the 
three regions these rectangles belong, the positions of the 
vertices are checked using (6). The rectangles in HAR and HRR 
are left untouched, whereas those in HSB are further divided 
(Fig. 6) until the desired accuracy is reached. 

• If all vertices are in the acceptance region, the 
rectangle (R) is in HAR. 

• If all vertices are in the rejection region, the rectangle 
(R) is in HRR. 

• If there are vertices both in the acceptance and 
rejection regions, the rectangle (R) is in HSB.  

After completing the space division the statistical 
integration is performed by overlapping the parameter 
distribution of the parameter domain. By integrating the 
probability density function in each of the obtained rectangles 
using (8), the acceptance, rejection and boundary probabilities 
are obtained. 

The following section describes the application of the SB-
SI method for SRAM robustness analysis in data retention 
mode.  

IV. APPLICATION TO 6T SRAM 

The robustness of the SRAM bit-cell in data retention mode 
is analyzed by using the SB-SI method, considering the effects 
of process, voltage and temperature (PVT) variability on its 
robustness. 

A. Problem Statement 

In order to reduce the static power consumption of an 
SRAM array in memory retention mode, its supply voltage is 
reduced to Data Retention Voltage (DRV). The DRV is the 
minimum supply voltage required for the SRAM to retain 
stored data. Its value is influenced by process and temperature 
variability.  

The conventional way to analyze the robustness of a SRAM 
bit-cell is to quantify its immunity to noise. If the noise is 
represented by two opposite sign DC voltage sources at the 
internal nodes of the SRAM cell, the Static Noise Margin 
(SNM) is implied (Fig 5a). 

 

Figure 4 – Parameter domain division in rectangles 

Graphically, the SNM is determined by drawing and 
mirroring the Voltage Transfer Characteristics (VTCs) of the 
two cross coupled inverters in the 6T SRAM cell, thus 
obtaining the so-called Butterfly Curve. The maximum square 
which can be inscribed in the loops of the butterfly gives the 
value of the SNM (Fig. 5b) [14]. Under random process 
variability, which causes asymmetry in transistor strengths, the 
butterfly curve becomes asymmetrical and the SNM is given 
by the smaller of the two maximum squares (Fig. 5c). The 
supply voltage also has a strong influence on the SNM as the 
butterfly curve shrinks down with decreasing the supply 
voltage, rendering the cell more sensitive to noise (Fig. 5d). 
The effect of the operating temperature is also illustrated in 
Fig. 5e, where a narrowing of the butterfly curve can be 
observed when the temperature increases. 

Fig. 5 shows the importance of analyzing the robustness of 
the SRAM bit-cell in data retention mode considering the joint 
effects of process variability, supply voltage scaling and 
temperature variation. 

The simulation environment is HSPICE and the SRAM cell 

is designed using 45nm Predictive Technology Model (PTM) 

transistors [15]. As the SRAM cell design is symmetrical, 

systematic process variability is significantly reduced by 

applying certain design rules, that is why only random process 

variability is taken into consideration in the present analysis. 

The combination of random dopant distribution and line edge 

roughness has an impact on threshold voltage variability. 

Assuming normal distributions of the threshold voltages of the 

four transistors, with a standard deviation estimated at 

σ=60mV [2] (for the 45nm transistor). Considering the large 

number of SRAM cells in a SRAM array, a 6σ upper bound in 

the variability range of the threshold voltage is a realistic 

assumption (max|(∆VTH)|=360mV).  

The SB-SI method is applied to determine the robustness of 
an SRAM cell for different values of the supply voltage when 
all transistors in the SRAM cell are assumed to be affected by 
random process variability. As the analysis is conducted on a 
6T SRAM cell in data retention mode, the access transistors are 
off. Hence, only four of the six transistors are included in the 
analysis. The four parameters defining the parameter domain 
are given by the variation of the threshold voltages: ∆p1÷4 = 
∆VTH1÷4. The performance metric under study is the Static 
Noise Margin (Perf = SNM). Two situations are examined: a) 
robustness when the SB is given by Pmin=SNMmin=0 and b) 
robustness to noise levels lower or equal to ten percent of the 
supply voltage when the SB is given by 
Pmin=SNMmin=10%VDD.  

The Acceptance/Rejection Regions and Satisfiability 
Boundary are determined using (1) and (2). In order to 
approximate the satisfiability boundary, the bisection method is 
applied to find the significant points with a maximum absolute 
error of 1% for different supply voltages and temperatures. 
Starting from these points, the hyper-plane approximations of 
the SBs are determined by linear interpolation. The hyper-
rectangular division is performed with a minimum absolute 
error of 0.1% (given by the maximum size of the hyper-
rectangles on the SB). The robustness probabilities are 
determined and illustrated in Fig. 6 as a function of supply 
voltage and temperature.  
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Figure 5 – (a) SRAM bit-cell in memorization mode, illustrating also the 

noise sources; Butterfly Curves: (b) nominal process parameters, (c) transistor 
strength asymmetry, (d) different supply voltages, (e) different temperatures 

 
When the temperature increases from room temperature to 

125°C the SRAM cell becomes less robust whereas the 
opposite effect is achieved when the temperature decreases to -
40°C. 

The SB-SI method finds the minimum value of the supply 
voltage for which the robustness requirements are met. 
Considering process variability (6σ distribution of threshold 
voltages), the minimum supply voltage for which the 6T 
SRAM cell under study is robust (i.e. retains stored data) is 
360mV. If the robustness constraints are stronger, i.e. the 6T 
SRAM cell under study must be robust to any noise lower or 
equal to 10% of VDD, the supply voltage must be maintained at 
minimum 410mV (Fig. 6). 

V. ACCURACY AND SPEED 

In this section the accuracy and speed of the SB-SI method 

are analyzed and compared to the results obtained by standard 

Monte Carlo simulations. 

Both accuracy and speed are dependent on the number of 

simulations performed to obtain the satisfiability boundary.  

The number of simulations is given by the number of 

significant points multiplied by the number of steps needed to 

obtain one significant point. The number of steps determines 

the accuracy with which the SPs are found.  
 

 
Figure 6 – Statistical robustness analysis for different supply voltages and 

temperatures  

 

 

Evidently there is a tradeoff between accuracy and speed. 
The dependence of the accuracy of the polygonal 
approximation of the SB on the number of significant points is 
shown in Fig. 7. The Relative error is computed as the 
difference between the area occupied by the Acceptance 
Region and the area delimited by the polygon approximating 
the SB divided by the area of the Acceptance Region.  
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Note that moving from Quadrilateral Approximation (QA) 

to First Angular Bisection (FAB), leads to a decrease of 63% 

in relative error at the expense of doubling the number of 

simulations. The increase in accuracy is less significant by 

moving to Second Angular Bisection (SAB) and Third 

Angular Bisection (TAB), and moreover the number of 

simulations keeps doubling. When the two curves are 

combined, the second approximation is found to be the 

optimal choice from both the accuracy and speed point of 

view. 

The SB-SI method determines the statistical robustness of a 

6T SRAM cell in data retention mode at room temperature for 

different values of supply voltage and levels of bisection. The 

results are summarized in Table I. 

For the specific case of the 6T SRAM memory cell, the 

number of simulations needed for SB estimation can be 

reduced in the first- and higher-order angular bisections due to 

the symmetry of the cell. For example, in the first angular 

bisection, the number of significant points to be determined is 

80, while considering the symmetry of the cell implies finding 

52 significant points only, which translates into increased 

speed for the same accuracy. 

 The SB-SI method and Monte Carlo simulation data are 

compared. As expected, when the SB is approximated by a 2N 

vertex hyper-rectangle, the result is obtained more rapidly but 

with less accuracy, while the third angular bisection approach 

leads to the slowest but more accurate result.  

Table II compares the SB-SI method with first angular 

bisection to standard Monte Carlo simulation for different 

values of the supply voltage. 

 

 

Figure 7 – Relative error and number of simulation according to the 
number of points found on the SB 
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TABLE I: STATISTICAL ROBUSTNESS ANALYSIS  

SNMmin = 0V, T = 27C 

VDD [V] 0.4 0.3 0.2 0.1 

SB-SI Method Probability of Perf < Pmin 

2N vertices hyper-polygon 0 0.0214 0.1302 0.7384 

 1st angular bisection 0 1.3e-4 0.0578 0.7161 

2nd angular bisection 0 1.29e-4 0.0578 0.7162 

SNMmin = 10%VDD, T = 27C 

VDD [V] 0.4 0.3 0.2 0.1 

SB-SI Method Probability of Perf < Pmin 

2N vertices hyper-polygon 1.1e-3 0.0361 0.2463 0.8903 

 1st angular bisection 0.61e-4 0.0059 0.1583 0.8794 

2nd angular bisection 0.61e-4 0.006 0.1583 0.8791 

 

TABLE II – ACCURACY AND SPEED (SNMmin=10%VDD) 

VDD = 0.4V, T = 27C 

Method P Error Speed up 

Monte Carlo (500k) 0.62e-4 - - 

SB-SI 1st angular bisection 0.61e-4 1.63% 556X 

VDD = 0.3V, T = 27C 

Monte Carlo (500k) 6.01e-3 - - 

SB-SI 1st angular bisection 5.9e-3 1.83% 555X 

VDD = 0.2V, T = 27C 

Monte Carlo (500k) 0.1599 - - 

SB-SI 1st angular bisection 0.1583 1% 556X 

VI. CONCLUSIONS 

The paper presents the SB-SI method of statistical 

robustness analysis based on finding the boundary separating 

the acceptable performance region (SB) and the rejection 

region in the parameter domain and then statistically 

integrating (SI) the probability density function over the 

rejection region. The method is applied for robustness 

estimation of a 6T SRAM cell in data retention mode, under 

process, voltage and temperature variation. The SB-SI method 

is demonstrated to be accurate and fast when compared to the 

standard Monte Carlo simulations. If required its accuracy can 

be easily improved by increasing the number of significant 

points to be determined on the satisfiability boundary and the 

accuracy with which these points are found (though this 

method offers only slight increase in accuracy), and by further 

dividing the HSB region.  

  As an application of the SB-SI method, the robustness of a 

45nm PTM 6T SRAM cell in data retention mode is estimated 

for different supply voltages and temperatures. The minimum 

supply voltage that can ensure data retention and certain 

robustness can be accurately determined by plotting the two 

metrics. For the particular case of the 45nm PTM 6T SRAM 

cell used in this analysis the minimum supply voltage for 

which data is retained is 0.36V under process and temperature 

variability.  

The robustness probability results are in good agreement 

with those obtained by standard Monte Carlo simulations. In 

addition a considerable speed up is achieved. The proposed 

method is general and applicable for robustness estimation of 

SRAM in other modes and circuits with well characterized 

performance metrics in the parameter domain.   
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