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Abstract—The emerging nanophotonic technology can avoid the 
limitation of I/O pin count, and provide abundant memory 
bandwidth. However, current DRAM organization has mainly 
been optimized for a higher storage capacity and package pin 
utilization. The resulted data fetching mechanism is quite 
inefficient in performance and energy saving, and cannot 
effectively utilize the abundant optical bandwidth in off-chip 
communication. This paper inspects the opportunity brought by 
optical communication, and revisits the DRAM memory 
architecture considering the technology trend towards multi-
processors. In our FlexMemory design, super-line prefetching is 
proposed to boost system performance and promote energy 
efficiency, which leverages the abundant photonic bandwidth to 
enlarge the effective data fetch size per memory cycle. To further 
preserve locality and maintain service parallelism for different 
workloads, page folding technique is employed to achieve 
adaptive data mapping in photonics-connected DRAM chips via 
optical wavelengths allocation. By combining both techniques, 
surplus off-chip bandwidth can be utilized and effectively 
managed adapting to the workloads intensity. Experimental 
results show that our FlexMemory achieves considerable 
improvements in performance and energy efficiency.  
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I.  INTRODUCTION 

When Chip Multi-processors (CMPs) integrate more and 
more on-chip processing cores, they are becoming powerful 
enough to execute various workloads. At the same time, pin 
count and off-chip bandwidth are expected to grow much 
slower [1]. As a result, the impending “Memory Wall” is 
perceived as a major bottleneck to the overall system. 

However, recently introduced photonic communication 
avoids the limitation of package pin count, making a high 
through-put memory interface design available [2-5]. It is 
announced that 10 terabyte per second bandwidth can be 
achieved in memory connection [5]. When the off-chip optical 
communication is adopted in DRAM memory, performance 
bottleneck is likely to shift from bandwidth limitation. Other 
problems like long request delay and power consumption in 
memory will emerge as the prime obstacles for system 
performance and low power design. It is estimated that nearly 
30% of the total board-level power consumption in datacenter 
has been spent on in DRAM memory alone [6]. 

We will conclude later in this paper that there are mainly 
two factors contributing to the inefficiency of DRAM memory. 

 Rigid organization limited by I/O pins: Traditionally, DRAM 
memory architecture is mainly optimized for high cell density 
and minimum I/O pin counts. In DRAM memory, because 

only a limited number of package pins can be used to carry 
both control commands and data signals, the 2D-arrays of 
storage cells are controlled in such a coarse granularity that 
every access command to the memory will entail reading a 
large data trunk from the DRAM arrays, among which only a 
constrained size of data bits can be placed onto memory 
channel. The typical design leads to sacrificing access delay 
and energy efficiency in memory access,  

 Locality-sensitive feature: Current DRAMs keep continuous 
pages of data in the activated row-buffers, favoring the access 
streams with good locality. However, in the approaching 
multi-core era, unlike single-core applications, memory 
access streams in multi-core workloads exhibit much smaller 
degree of locality. A poor locality in data streams induces 
extra penalties in memory access. It will aggravate energy 
inefficiency and access delay issues in DRAM memory. 

However, when optical connection effectively addresses the 
I/O pin count and bandwidth problem, it is a great opportunity 
to revisit the memory hierarchy and make it more efficient. We 
propose a novel memory design — FlexMemory. Our solution 
aims at improving performance and energy-efficiency in 
memory access by leveraging the massive optical bandwidth. 
Particularly, the contributions of this paper are as follows: 

1) We employ super-line prefetching to fetch large data 
blocks from the activated row-buffers in a memory cycle via 
dense wavelength division multiplexing (DWDM) in optical 
communication, therefore exploiting a lot spatial locality in 
memory access. 

2) We propose page folding working in coordination 
with super-line prefetching, which enables system to flexibly 
map application work sets into appropriate locations in DRAM 
through wavelengths allocation. With page folding activated, 
super-line prefetching will be adaptive to the workload 
characteristics by preserving locality and reducing conflicts of 
different access streams, which also reduces average access 
delay and dynamic power in row-buffers activation. 

By combining the two proposed methods together, our 
proposed FlexMemory achieves significant performance and 
energy-efficiency gains under a wide range of workloads.  

The remainder of the paper is organized as follows. Section 
II describes some insights inspired by optical communication 
and DRAM memory design. Section III presents the 
implementation of FlexMemory. In section IV, experiment 
method and the results are shown. Finally, section V discusses 
the related work, followed by the conclusion in section VI.  

II. BACKGROUND AND MOTIVATION 

A. Evolution of memory bandwidth : photonics technology  

Photonic communication is a promising mechanism to 
realize data moving in low power dissipation and high 

The work was supported in part by National Basic Research Program of
China (973) under grant No. 2011CB302503, in part by National Natural
Science Foundation of China (NSFC) under grant No.( 60806014, 61076037,
60906018, 60776031, 60921002, 60831160526, 60633060). 

 
978-3-9810801-7-9/DATE11/©2011 EDAA 



throughput. There are techniques that exploit silicon photonics 
for on-chip and off-chip communication [2-10]. Both 3D and 
monolithic integration of photonic devices have been proposed 
in the past few years to implement processor-to-memory 
photonic connections [5] [9]. 

Nanophotonic communication techniques use light sources 
to generate optical carrier and waveguides to carry signals. 
After modulators encode data into light, the light will traverse 
the connected injectors and goes out through the waveguide. 
The silicon oxide waveguide is able to carry light of different 
wavelengths without interference between signals. On the 
receiving side, photonic detectors can absorb the light and 
convert the light into electrical signals. With DWDM, multiple 
wavelengths can share a waveguide, breaking the limitation of 
I/O pins and highly boosting the off-chip bandwidth. 

According to recent researches on silicon photonic 
communication, the improvement to off-chip bandwidth 
brought by photonics is impressive. It is expected that we shall 
enter the era of tera-scale communication by substituting 
photonics interconnects for electrical links [11]. As illustrated 
in Table I, photonic communication techniques will provide 
more bandwidth than most computing systems can consume. 

TABLE I.  THE PEAKBANDWIDTH BREAKTHROUGHS IN PROCESSOR-
MEMORY COMMUNICATION 

 
Vantrease 

[5] 
Batten 

[3] 
Young

[11] 
Gunn 

[9] 
Kirman 

[4] 
Stojanovic 

[12] 
Modeled 

Peak 
bandwidth 

10  
TB/s 

5 
TB/s 

>1 
TB/s 

10 
TB/s 

0.5 
TB/s 

1~1.5 
TB/s 

To prove the abundance of optical bandwidth, in our 
experiments, a bunch of workloads are selected for bandwidth 
demand estimation. It is demonstrated in Fig. 1 that the 
bandwidth provided by optical memory-processor connection 
enormously exceeds the demand of all the chosen workloads. 
Therefore, the observation motivates us to exploit the surplus 
bandwidth for system performance and energy efficiency. 

  
Figure 1. Bandwidth demands of sample workloads on 16-core CMP 

B. Motivational analysis of inefficiency in DRAM memory 

Modern DRAM memory has a strict hierarchical 
architecture. As shown in Fig. 2, a memory controller is 
connected to one or two off-chip channels. The channel is 
typically a wide bus that transmits memory command, data and 
address. Through the channel, DRAM modules can be accessed. 
Each memory module has multiple ranks to promote service 
parallelism. Because a rank is a group of DRAM devices that 
operates in lockstep in response to a certain command, devices 
0 to N are the smallest number of chips activated by an access 
command. Within a rank, memory banks are the basic 

independent units that can be accessed in parallel. A bank 
spans multiple devices, being partitioned into a bunch of sub-
banks. All the sub-banks in a device must share some common 
resources such as I/O gating that allows access to the data pins.  
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 Figure 2. A generic DDRX DRAM structure with 1 channel, 1 module, 1 rank  

Previously, we mentioned that the pin count limitation and 
locality-sensitive feature in current DRAM memory contribute 
to low performance and energy inefficiency. Here we take a 
further step to analyze the detailed sources of avoidable energy 
consumption and access delay in DRAM design.  

1) Low Row-buffer utilization 
To fetch a word-line from DRAM memory begins with first 

delivering the command to target channel and then activating a 
bank in a rank. As illustrated in Fig. 2, a single memory access 
entails activating all the DRAM devices in a rank and reading 
out a whole page of bits from the cell arrays. Among 4-64KB 
data latched in row-buffers, only a 64-bytes cache line will be 
needed to service the access request, thus the row-buffer 
utilization is quite low. Moreover, because read operation in 
DRAM cells is destructive, a write back is indispensable to 
recharge the activated row in the bank. The whole process is 
power-consuming and time-wasting.  

To shorten delay and harvest energy in row activation, 
open-page policy is adopted to leverage spatial and temporal 
locality. In single-core processor, workloads typically exhibit 
high locality. Consequently, for conventional DRAMs, the 
large data trunk latched in the open row-buffers can be reused 
by successive requests with little interference. However, the 
irreversible trend of reduced locality in multi-core era makes 
open-page policy increasingly unacceptable. In future CMPs, it 
is commonplace that memory requests from different access 
streams compete for the limited number of channels and banks, 
therefore destroying the available locality. Comparatively, 
close-page policy is immune to penalties imposed by row-
buffer miss, but completely gives up leveraging locality to 
amortize operation latency and energy in memory access.  

2) Requests conflict 
In typical DRAM design, since all the sub-banks in a device 

must share some common resources such as I/O gating that 
allows access to the data pins. Intensive access commands will 
compete for the memory banks, leading to conflict-induced 
latency and data flushing in the row-buffers. When conflict-
induced stall occurs, the pending requests waiting at the 
memory controller are likely to increase, and it is a major factor 
causing the queuing delay. The conflicts can be mitigated 
without hurting locality if the balance between locality and 
service parallelism is achieved in memory.  
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From locality perspective, there are two solutions to raise 
row-buffer utilization and mitigate request conflicts at the same 
time. The first one is to exploit spatial locality in row-buffers as 
much as possible before being destroyed by interfering streams. 
The second one is preserve locality by avoiding interferences 
from access streams to the greatest extent. In our FlexMemory, 
we attack the problem from both angles separately and propose 
two techniques that leverage the abundant bandwidth.  

III. FLEXMEMORY 

Our baseline DRAM structure integrated with silicon 
photonics is shown in Fig. 3. Except the interfaces to photonics 
device, storage cells and arrays are organized in chips as the 
traditional DRAM. By attaching each independent DRAM 
device with photonic components, photonic signals of the 
modulated wavelengths will be received at the corresponding 
memory chips with rings in resonance. Through DWDM, 
memory requests carried by different wavelengths are 
transmitted into target memory arrays via the same waveguide 
and can be served in parallel, so that the communication 
bandwidth is greatly improved. 

Figure 3. Optical connected FlexMemory organization 

A. Bandwidth exploitation and Super-line prefetching 

Through DWDM provided by integrated silicon photonics, 
communication bandwidth will not be scarce resources 
anymore. With such high concentration of photonic 
interconnects, massive data transfers are made easy and less 
costly without worrying about the transmission line effects, 
wiring power and heavy wiring load. We can take advantage of 
the abundant bandwidth to reduce cache miss latency and raise 
row-buffer utilization by enlarging the effective data fetch size. 

Prefetching is a widely-adopted technique in memory 
design. There are lots of complex prefetching methods 
proposed to enhance performance [13-14]. However, their 
effectiveness is constrained by the insufficient bus width in 
electrical interconnects. When memory channel width is not a 
problem, fetching large-sized data blocks to the secondary 
cache will benefit a lot of applications by mitigating average 
cache miss latency [13]. Based on that observation, our super-
line prefetching is employed to exploit spatial locality in row-
buffers by utilizing optical bandwidth.  

In our FlexMemory, 128 signals with different wavelengths 
can concurrently transmit on the waveguide, and each 
wavelength is modulated at 10 Gb/s [2]. Assuming all the 
memory devices in a channel share a common waveguide 
supporting 128 wavelengths and each device occupies several 
dedicated wavelengths, the peak bandwidth can reach more 

than 1000 Gb/s. That means in every memory cycle, there are 
enough wavelengths carrying memory data to the channel. 
Therefore it is feasible to fetch a larger portion of data trunks 
latched in the row-buffers rather than a fixed 64bytes line when 
a read command activates the whole row in target arrays. 
Compared with a 64-bytes cache line fetching, super-line 
prefetching can feed the bus with data trunks as large as a page 
size per read operation, which requires activating all the 
devices of different wavelengths at the same time.  

For example, in Fig. 3, when each device is equipped with 
special ring modulators of several resonance wavelengths, the 
access interface of each chip will be much wider compared 
with DDRX DRAM in Fig. 2. If the number of wavelengths 
dedicated to each device is properly set, most or even all the 
data bits latched in the row-buffers can be placed on common 
waveguide per cycle. The data trunks are transmitted to 
secondary cache and finally consumed by processor. 

Because applications have different levels of spatial locality, 
in our FlexMemory, super-line prefetching is adaptive to 
workload characteristics. The appropriate size of a “super-line” 
depends on the bandwidth partitioning and page-level locality 
of the program, which ranges from a 4KB of page size to 
64byte cache line size by encoding the read command into 
multiple wavelengths. For example, in Fig. 3, the read2 request 
targeting device-N is encoded into 2 wavelengths according to 
the wavelengths quota of the process, so the “super-line” of 
128 bytes from the activated row-buffers will be read out in 
response. Comparing our super-line prefetching with traditional 
cache line fetching, a larger portion of data read out into the 
row-buffers will be put on the data bus per read operation. 
Owning to its “reading on demand” feature, unnecessary 
recharging and activation activities will be greatly reduced. 

B. Page folding and bandwidth management 

Super line prefetching is useful in exploiting spatial locality 
within a program. However, in multiprogrammed workloads, if 
super-line fetching is enabled in multiple data streams and the 
prefetch size is unreasonably large, prefetching will demand 
excessive dedicated wavelengths for large data transfer in a 
memory cycle, and the resulted data bus occupancy will lead to 
access conflicts and queuing delay. Besides, the performance 
improvement gained by super line prefetching heavily depends 
on application characteristics, thus it is unwise to use the same 
prefetch size for different applications concurrently running on 
CMP. Conclusively, the bandwidth should be allocated and 
managed in order to optimize system performance, trading-off 
between prefetch size and service parallelism. Therefore, page 
folding is proposed to achieve locality and parallelism 
simultaneously. In brief, super-line prefetching successfully 
exploits the bandwidth abundance, while page folding can be 
employed to manage the bandwidth, benefiting from the auto-
separation and auto-detection characteristics of optical signals. 

 To preserve locality and avoid conflicts in a wide range of 
applications, work sets of different tasks are adaptively mapped 
to different devices through page folding. For example, when 
there is only one task running on the processor, the data stream 
has a comparatively fine locality without interruptions from 
other tasks. In this case, more priority should be placed on 
request latency than throughput, and our FlexMemory system 



will accommodate the data in DRAM devices as the electrical-
connected DRAM does shown in Fig. 2. The physical pages of 
the program span the memory rows in multiple devices, so that 
a large super line within a physical page can be prefetched in a 
single memory cycle fully utilizing the 128 wavelengths 
dedicated to different devices. When there are multiple tasks 
executed in parallel on multiprocessors, the locality of each 
access stream is likely to be destroyed by others. As shown in 
Fig. 4, our FlexMemory will confine the data of different 
programs to separate DRAM devices so that the locality of 
access streams will not be disturbed by one another. In this case, 
the physical pages of a certain task will be “folded” into one or 
several dedicated chips depending on its wavelengths quota. 

 
Figure 4. FlexMemory design: combining page folding and super-line 

prefetching. Page A and page B belong to different processes 

The page folding technique is implemented via page frame 
allocation and wavelengths assignment. Page is the basic unit 
that is allocated to an application by OS. Generally the page 
frames corresponds to the DRAM rows which span all the 
devices in a rank, so the physical page addresses are directly 
used to index the according rows in main memory, However, 
as illustrated in Fig. 5, in our FlexMemory, OS-allocated page 
frames will be adaptively remapped to different position in 
memory according to the wavelengths quota of processes. 

 
Figure 5. Page folding implementation through data layout mapping between 

different levels 

The implementation of page folding is based on the page 
allocation mechanism of OS, which mostly employs buddy 
system to manage dynamic memory. In our FlexMemory, 
before being reclaimed by kernel, all the free page frames are 
reserved as system resource. Not until the page frames has been 
allocated and touched by a certain process, the data set 
placement in DRAM memory will not be determined. The final 
DRAM address command transmitted into memory modules 

are determined by two factors: physical page address in page 
table entry, the wavelengths quota assigned to the requesting 
process. In FlexMemory, wavelengths will be explicitly 
allocated to independent processes considering their page-level 
locality and bandwidth demands. The processes have only 
access to the DRAM devices equipped with ring modulators 
and detectors of corresponding resonance wavelengths. 

Modifications should be made to process descriptor and 
task state segment in OS. In our system, the process descriptor, 
which contains all the necessary information of a single process, 
has a bitmap type field revealing the wavelength quota 
assigned by OS. Once a physical page is allocated to the thread, 
physical address will be filled in the page table entry. However 
the physical page address cannot be directly used to index the 
DRAM memory. It should be firstly decoded together with the 
according wavelength bits provided by hardware remapping 
table in memory controller, and the decoded address signals 
will be carried by special wavelengths to target memory banks. 
The raised hardware cost is negligible because only a limited 
number of entries will be contained in remapping table. 
Considering that the TLB is on the critical path of memory 
access, the wavelengths bits should be stored in it with the 
physical address entries. Because the wavelength bits are only 
needed for outstanding memory requests, page folding will 
cause no additional penalty to cache access.  

To further exploit the bandwidth allocation, processes, 
which have a good page-level locality, will be allocated more 
wavelengths, making their physical pages span more DRAM 
devices, so that a large super-line in the page can be fetched per 
memory cycle. In extreme cases, all the data read into the row-
buffers will be sent to the memory controller, completely 
avoiding low utilization of row-buffers and effectively hiding 
access latency via large prefetch size. Since bandwidth and 
locality profiling are not the focus of this paper, it is assumed 
that the programs characteristics are well studied before 
execution. There are also lots of available techniques to profile 
the bandwidth demand of workloads [15][16][17]. 

The extra benefits brought by page folding is that the 
bandwidth can be easily and accurately partitioned between 
different tasks, making it easy to target optimization goals like 
QoS, fairness or even security [17][18][19].  

IV. EVALUATION AND ANALYSIS 

A. Methodology 

To evaluate the impacts of our FlexMemory on 
performance and energy efficiency, we use the full system 
simulator GEMS/SIMICS toolset and CACTI-6.5 DRAM 
modeling tool. The “memory controller” module in GEMS 
simulator was heavily modified to capture our FlexMemory 
working mechanism. Both open-page and close-page 
management policies with first-ready-first-come-first-serve 
(FR-FCFS) and batching scheduling are evaluated. The 
simulated system is organized as shown in Table II. 

Our benchmarks are selected from SPEC CPU2000 and 
SPLASH-2 benchmarks. For all the programs from benchmark 
suites, initialization phases are skipped to ensure that only the 
main functionality is included. To comprehensively evaluate 
the performance of our FlexMemory, single-threaded, multi-



threaded and multiprogrammed workloads are simulated. For 
multiprogrammed workloads, various combinations of the 
benchmarks are used. 

TABLE II.  BASELINE CMP CONFIGURATION 

Processor 16 core, 3.0 GHz 
Base memory Hierarchy Parameters 

L1 I cache 4-way, 64KB, 64 B-line, 1-cycle 
L1D cache 4 way, 64B-line, 32KB, LRU, 2-cycle 
L2 Cache  Shared, NUCA, 8MB, 8-way, 8 banks, LRU, 6 cycles hit

Memory 
Electrical 4G, DDR2, 4 channels, 8 Ranks, 64 Banks 

Optical  4G, 2 Ranks, 32 devices,128 wavelengths 

B. Experimental Results 

1) Performance Improvement  
a) Single-threaded and multithreaded applications. For 

single-threaded and multithreaded applications, the 
FlexMemory is to allocate all the available wavelengths to the 
single program on-chip, which has no competitor for system 
resources. The physical pages belonging to the program will be 
spread across the DRAM devices, ensuring that all the 
wavelengths can be used for super-line prefetching. Fig. 6(a) 
shows the cache miss rate reduction of single-threaded and 
multithreaded applications for FlexMemory. Compared with 
the electrical baseline, there is an average 56.5% cache miss 
reduction for selected workloads. However, several programs 
gain limited performance improvement. After interpretation of 
application behavior, we conclude that their memory access 
patterns often exhibit burst characteristics, leading to the 
successive cache misses in a short interval. In this case, super-
line prefetching cannot dramatically reduce the penalty caused 
by long memory access latency.  

b) Multiprogrammed workloads We have been 
emphasizing on the adaptiveness of FlexMemory, which can 
flexibly balance between bandwidth demand and parallelism 
requirement. This feature is manifested in the scalable 
performance for various workloads. For multiprogrammed 

workloads, we use different combinations of SPEC CPU2000 
and SPLASH-2 benchmarks. Fig. 6(b) shows the speedup of 
FlexMemory model for various workload mixes. The chosen 
mixes encompass 15 applications from SPLASH-2 and SPEC 
CPU2000 suites. From mix-1 to mix-14, the workloads become 
more and more memory-intensive because the number of 
programs concurrently running on CMP keeps increasing. As 
with Fig. 6(b), the lightest workload mix-1 is composed of only 
two programs while mix-14 contains 15 programs, each of 
which is bound onto one processing core. In experiments, the 
wavelengths allocation is based on the simulation result 
profiled in pre-execution phase.  

As shown in Fig. 6(b), most workloads have more than 1.3x 
speedup. However, for mix-13 and mix-14, they have gained 
slight performance improvements because the cache capacity 
becomes a bottleneck. When the CMP is loaded with heavy 
workloads that prefetch in a coarse granularity, conflict misses 
in cache increase quickly. 

2) Rowbuffer utilization 
Because bitline charging activities in row-buffers contribute 

to most of the dynamic DRAM power [20], we choose row-
buffer utilization (RBU) as the major metric to evaluate the 
energy efficiency in memory operation. RBU indicates the 
percentage of the row-buffer data finally consumed by the 
processors during the whole execution time, which depends on 
three factors: the row activation times, the activated row size 
and total memory data size touched by processing cores (over-
fetched data not included). All the results are normalized to the 
baseline DDR2 DRAM with close-page policy. 

a) Single-threaded and multithreaded applications. Fig. 
7(a) plots the row-buffer utilization for single programs. For 
our FlexMemory, through page folding (PF) and super-line 
prefetching (SP), data bits in row-buffers spanning 32 devices 
are prefetched and consumed, ensuring a much higher 
utilization than the baseline DRAM model.                               . 

 
Figure 6. (a) Cache miss reduction of single-threaded and multithreaded programs. (b) Performance improvement of multiprogrammed applications 

 
Figure 7. (a) RBU of single-threaded and multithreaded programs. (b)  RBU of multiprogrammed programs. PF+SP means FlexMemory working in paging 
folding and super-line prefetching mode, employing close-page.PF means FlexMemory without super-line prefetching, in this mode, employing open-page.
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b) Multiprogrammed workloads. For multiprogrammed 
workloads, the evaluated RBU is reported in Fig. 7(b). Compared 
to the open-page baseline, the close-page baseline is clearly 
worse in terms of row-buffer utilization because every access 
should reactivate the entire row. However, when the number of 
concurrent programs increase, the normalized RBU of open-page 
baseline is continuously shrinking because of a dramatic drop in 
the row-buffer hit rate. For our FlexMemory combining page 
folding and super-line prefetching, RBU is greatly promoted. The 
explanation is obvious. Adaptive page folding can effectively 
improves the spatial locality of successive access through data set 
isolation, and super-line prefetching put larger fractions of row-
buffer data onto the optical channels sharing a single waveguide.  

V. RELATED WORK 

a) Memory Design. There are techniques such as mini-rank 
[21] and multicore DIMM [22] aimed at lowering DRAM 
operation power by reducing effective row size in DRAM 
modules. A. Udipi et al. propose SBA and SSA to decrease the 
dynamic power in memory access [23]. “Micro-page” is 
proposed to attack energy inefficiency problem from OS 
perspective [20]. These approaches save energy by reducing the 
ratio of activated bits in DRAM chips, and often result in 
performance degradation. In addition, they could not avoid the 
limitation of electrical connection, which prevents major changes 
to the DRAM organization. Other research work on DRAM like 
3-D architectures is also described [24]. 

b) Photonic communication. There are techniques that 
exploit photonics for on-chip and off-chip communication [2-10]. 
Batten et al. describe a low power processor-memory connection 
for future manycore systems [3]. Krishnamoorthy et al. examine 
future opportunities for adopting photonic communication into a 
high-performance computing system at different levels [7]. 
Vantrease et al. propose Corona to use nanophotonic interconnect 
for both inter-core and off-stack communication [5]. Beamer et al. 
use DWMM to reduce intra-chip link power in DRAM memory 
communication [2]. 

Unlike other traffic-avoiding techniques or single-objective 
solutions, our FlexMemory attacks problems in DRAM from a 
different angle by utilizing the surplus photonic bandwidth. 

VI. CONCLUSION 

Emerging nanophotonic technology greatly promotes 
bandwidth in memory communication. Based on the observation, 
we review the inefficient architecture of conventional DRAM 
memory and propose a novel DRAM memory design, which 
effectively utilizes the optical bandwidth resources. The proposed 
FlexMemory avoids the conflict-inducing and energy-inefficient 
access mechanism in traditional DRAM memory. Combining 
page folding and super-line prefetching technique together, our 
FlexMemory can preserve and exploit locality in different 
applications. In evaluation of various workloads, we found that 
our design improves performance and row-buffer utilization 
significantly.  
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