
Flex Memory: Exploiting and Managing Abundant
Off-Chip Optical Bandwidth

Ying Wang, Lei Zhang, Yinhe Han, Huawei Li, Xiaowei Li
Key Laboratory of Computer System and Architecture

 Institute of Computing Technology Chinese Academy of Sciences, Beijing, P.R. China
{wangying2009, zlei, yinhes, lihuawei, lxw}@ict.ac.cn

Abstract—The emerging nanophotonic technology can avoid the
limitation of I/O pin count, and provide abundant memory
bandwidth. However, current DRAM organization has mainly
been optimized for a higher storage capacity and package pin
utilization. The resulted data fetching mechanism is quite
inefficient in performance and energy saving, and cannot
effectively utilize the abundant optical bandwidth in off-chip
communication. This paper inspects the opportunity brought by
optical communication, and revisits the DRAM memory
architecture considering the technology trend towards multi-
processors. In our FlexMemory design, super-line prefetching is
proposed to boost system performance and promote energy
efficiency, which leverages the abundant photonic bandwidth to
enlarge the effective data fetch size per memory cycle. To further
preserve locality and maintain service parallelism for different
workloads, page folding technique is employed to achieve
adaptive data mapping in photonics-connected DRAM chips via
optical wavelengths allocation. By combining both techniques,
surplus off-chip bandwidth can be utilized and effectively
managed adapting to the workloads intensity. Experimental
results show that our FlexMemory achieves considerable
improvements in performance and energy efficiency.

Keywords-DRAM; nanophotonic; memory architecture; locality

I. INTRODUCTION

When Chip Multi-processors (CMPs) integrate more and
more on-chip processing cores, they are becoming powerful
enough to execute various workloads. At the same time, pin
count and off-chip bandwidth are expected to grow much
slower [1]. As a result, the impending “Memory Wall” is
perceived as a major bottleneck to the overall system.

However, recently introduced photonic communication
avoids the limitation of package pin count, making a high
through-put memory interface design available [2-5]. It is
announced that 10 terabyte per second bandwidth can be
achieved in memory connection [5]. When the off-chip optical
communication is adopted in DRAM memory, performance
bottleneck is likely to shift from bandwidth limitation. Other
problems like long request delay and power consumption in
memory will emerge as the prime obstacles for system
performance and low power design. It is estimated that nearly
30% of the total board-level power consumption in datacenter
has been spent on in DRAM memory alone [6].

We will conclude later in this paper that there are mainly
two factors contributing to the inefficiency of DRAM memory.

 Rigid organization limited by I/O pins: Traditionally, DRAM
memory architecture is mainly optimized for high cell density
and minimum I/O pin counts. In DRAM memory, because

only a limited number of package pins can be used to carry
both control commands and data signals, the 2D-arrays of
storage cells are controlled in such a coarse granularity that
every access command to the memory will entail reading a
large data trunk from the DRAM arrays, among which only a
constrained size of data bits can be placed onto memory
channel. The typical design leads to sacrificing access delay
and energy efficiency in memory access,

 Locality-sensitive feature: Current DRAMs keep continuous
pages of data in the activated row-buffers, favoring the access
streams with good locality. However, in the approaching
multi-core era, unlike single-core applications, memory
access streams in multi-core workloads exhibit much smaller
degree of locality. A poor locality in data streams induces
extra penalties in memory access. It will aggravate energy
inefficiency and access delay issues in DRAM memory.

However, when optical connection effectively addresses the
I/O pin count and bandwidth problem, it is a great opportunity
to revisit the memory hierarchy and make it more efficient. We
propose a novel memory design — FlexMemory. Our solution
aims at improving performance and energy-efficiency in
memory access by leveraging the massive optical bandwidth.
Particularly, the contributions of this paper are as follows:

1) We employ super-line prefetching to fetch large data
blocks from the activated row-buffers in a memory cycle via
dense wavelength division multiplexing (DWDM) in optical
communication, therefore exploiting a lot spatial locality in
memory access.

2) We propose page folding working in coordination
with super-line prefetching, which enables system to flexibly
map application work sets into appropriate locations in DRAM
through wavelengths allocation. With page folding activated,
super-line prefetching will be adaptive to the workload
characteristics by preserving locality and reducing conflicts of
different access streams, which also reduces average access
delay and dynamic power in row-buffers activation.

By combining the two proposed methods together, our
proposed FlexMemory achieves significant performance and
energy-efficiency gains under a wide range of workloads.

The remainder of the paper is organized as follows. Section
II describes some insights inspired by optical communication
and DRAM memory design. Section III presents the
implementation of FlexMemory. In section IV, experiment
method and the results are shown. Finally, section V discusses
the related work, followed by the conclusion in section VI.

II. BACKGROUND AND MOTIVATION

A. Evolution of memory bandwidth : photonics technology

Photonic communication is a promising mechanism to
realize data moving in low power dissipation and high

The work was supported in part by National Basic Research Program of
China (973) under grant No. 2011CB302503, in part by National Natural
Science Foundation of China (NSFC) under grant No.(60806014, 61076037,
60906018, 60776031, 60921002, 60831160526, 60633060).

978-3-9810801-7-9/DATE11/©2011 EDAA

throughput. There are techniques that exploit silicon photonics
for on-chip and off-chip communication [2-10]. Both 3D and
monolithic integration of photonic devices have been proposed
in the past few years to implement processor-to-memory
photonic connections [5] [9].

Nanophotonic communication techniques use light sources
to generate optical carrier and waveguides to carry signals.
After modulators encode data into light, the light will traverse
the connected injectors and goes out through the waveguide.
The silicon oxide waveguide is able to carry light of different
wavelengths without interference between signals. On the
receiving side, photonic detectors can absorb the light and
convert the light into electrical signals. With DWDM, multiple
wavelengths can share a waveguide, breaking the limitation of
I/O pins and highly boosting the off-chip bandwidth.

According to recent researches on silicon photonic
communication, the improvement to off-chip bandwidth
brought by photonics is impressive. It is expected that we shall
enter the era of tera-scale communication by substituting
photonics interconnects for electrical links [11]. As illustrated
in Table I, photonic communication techniques will provide
more bandwidth than most computing systems can consume.

TABLE I. THE PEAKBANDWIDTH BREAKTHROUGHS IN PROCESSOR-
MEMORY COMMUNICATION

Vantrease

[5]
Batten

[3]
Young

[11]
Gunn

[9]
Kirman

[4]
Stojanovic

[12]
Modeled

Peak
bandwidth

10
TB/s

5
TB/s

>1
TB/s

10
TB/s

0.5
TB/s

1~1.5
TB/s

To prove the abundance of optical bandwidth, in our
experiments, a bunch of workloads are selected for bandwidth
demand estimation. It is demonstrated in Fig. 1 that the
bandwidth provided by optical memory-processor connection
enormously exceeds the demand of all the chosen workloads.
Therefore, the observation motivates us to exploit the surplus
bandwidth for system performance and energy efficiency.

Figure 1. Bandwidth demands of sample workloads on 16-core CMP

B. Motivational analysis of inefficiency in DRAM memory

Modern DRAM memory has a strict hierarchical
architecture. As shown in Fig. 2, a memory controller is
connected to one or two off-chip channels. The channel is
typically a wide bus that transmits memory command, data and
address. Through the channel, DRAM modules can be accessed.
Each memory module has multiple ranks to promote service
parallelism. Because a rank is a group of DRAM devices that
operates in lockstep in response to a certain command, devices
0 to N are the smallest number of chips activated by an access
command. Within a rank, memory banks are the basic

independent units that can be accessed in parallel. A bank
spans multiple devices, being partitioned into a bunch of sub-
banks. All the sub-banks in a device must share some common
resources such as I/O gating that allows access to the data pins.

R
an

k

 Figure 2. A generic DDRX DRAM structure with 1 channel, 1 module, 1 rank

Previously, we mentioned that the pin count limitation and
locality-sensitive feature in current DRAM memory contribute
to low performance and energy inefficiency. Here we take a
further step to analyze the detailed sources of avoidable energy
consumption and access delay in DRAM design.

1) Low Row-buffer utilization
To fetch a word-line from DRAM memory begins with first

delivering the command to target channel and then activating a
bank in a rank. As illustrated in Fig. 2, a single memory access
entails activating all the DRAM devices in a rank and reading
out a whole page of bits from the cell arrays. Among 4-64KB
data latched in row-buffers, only a 64-bytes cache line will be
needed to service the access request, thus the row-buffer
utilization is quite low. Moreover, because read operation in
DRAM cells is destructive, a write back is indispensable to
recharge the activated row in the bank. The whole process is
power-consuming and time-wasting.

To shorten delay and harvest energy in row activation,
open-page policy is adopted to leverage spatial and temporal
locality. In single-core processor, workloads typically exhibit
high locality. Consequently, for conventional DRAMs, the
large data trunk latched in the open row-buffers can be reused
by successive requests with little interference. However, the
irreversible trend of reduced locality in multi-core era makes
open-page policy increasingly unacceptable. In future CMPs, it
is commonplace that memory requests from different access
streams compete for the limited number of channels and banks,
therefore destroying the available locality. Comparatively,
close-page policy is immune to penalties imposed by row-
buffer miss, but completely gives up leveraging locality to
amortize operation latency and energy in memory access.

2) Requests conflict
In typical DRAM design, since all the sub-banks in a device

must share some common resources such as I/O gating that
allows access to the data pins. Intensive access commands will
compete for the memory banks, leading to conflict-induced
latency and data flushing in the row-buffers. When conflict-
induced stall occurs, the pending requests waiting at the
memory controller are likely to increase, and it is a major factor
causing the queuing delay. The conflicts can be mitigated
without hurting locality if the balance between locality and
service parallelism is achieved in memory.

0

2

4

6

8

10

12

14

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14B
an

dw
id

th
 D

em
an

d(
G

b
/s

)

From locality perspective, there are two solutions to raise
row-buffer utilization and mitigate request conflicts at the same
time. The first one is to exploit spatial locality in row-buffers as
much as possible before being destroyed by interfering streams.
The second one is preserve locality by avoiding interferences
from access streams to the greatest extent. In our FlexMemory,
we attack the problem from both angles separately and propose
two techniques that leverage the abundant bandwidth.

III. FLEXMEMORY

Our baseline DRAM structure integrated with silicon
photonics is shown in Fig. 3. Except the interfaces to photonics
device, storage cells and arrays are organized in chips as the
traditional DRAM. By attaching each independent DRAM
device with photonic components, photonic signals of the
modulated wavelengths will be received at the corresponding
memory chips with rings in resonance. Through DWDM,
memory requests carried by different wavelengths are
transmitted into target memory arrays via the same waveguide
and can be served in parallel, so that the communication
bandwidth is greatly improved.

Figure 3. Optical connected FlexMemory organization

A. Bandwidth exploitation and Super-line prefetching

Through DWDM provided by integrated silicon photonics,
communication bandwidth will not be scarce resources
anymore. With such high concentration of photonic
interconnects, massive data transfers are made easy and less
costly without worrying about the transmission line effects,
wiring power and heavy wiring load. We can take advantage of
the abundant bandwidth to reduce cache miss latency and raise
row-buffer utilization by enlarging the effective data fetch size.

Prefetching is a widely-adopted technique in memory
design. There are lots of complex prefetching methods
proposed to enhance performance [13-14]. However, their
effectiveness is constrained by the insufficient bus width in
electrical interconnects. When memory channel width is not a
problem, fetching large-sized data blocks to the secondary
cache will benefit a lot of applications by mitigating average
cache miss latency [13]. Based on that observation, our super-
line prefetching is employed to exploit spatial locality in row-
buffers by utilizing optical bandwidth.

In our FlexMemory, 128 signals with different wavelengths
can concurrently transmit on the waveguide, and each
wavelength is modulated at 10 Gb/s [2]. Assuming all the
memory devices in a channel share a common waveguide
supporting 128 wavelengths and each device occupies several
dedicated wavelengths, the peak bandwidth can reach more

than 1000 Gb/s. That means in every memory cycle, there are
enough wavelengths carrying memory data to the channel.
Therefore it is feasible to fetch a larger portion of data trunks
latched in the row-buffers rather than a fixed 64bytes line when
a read command activates the whole row in target arrays.
Compared with a 64-bytes cache line fetching, super-line
prefetching can feed the bus with data trunks as large as a page
size per read operation, which requires activating all the
devices of different wavelengths at the same time.

For example, in Fig. 3, when each device is equipped with
special ring modulators of several resonance wavelengths, the
access interface of each chip will be much wider compared
with DDRX DRAM in Fig. 2. If the number of wavelengths
dedicated to each device is properly set, most or even all the
data bits latched in the row-buffers can be placed on common
waveguide per cycle. The data trunks are transmitted to
secondary cache and finally consumed by processor.

Because applications have different levels of spatial locality,
in our FlexMemory, super-line prefetching is adaptive to
workload characteristics. The appropriate size of a “super-line”
depends on the bandwidth partitioning and page-level locality
of the program, which ranges from a 4KB of page size to
64byte cache line size by encoding the read command into
multiple wavelengths. For example, in Fig. 3, the read2 request
targeting device-N is encoded into 2 wavelengths according to
the wavelengths quota of the process, so the “super-line” of
128 bytes from the activated row-buffers will be read out in
response. Comparing our super-line prefetching with traditional
cache line fetching, a larger portion of data read out into the
row-buffers will be put on the data bus per read operation.
Owning to its “reading on demand” feature, unnecessary
recharging and activation activities will be greatly reduced.

B. Page folding and bandwidth management

Super line prefetching is useful in exploiting spatial locality
within a program. However, in multiprogrammed workloads, if
super-line fetching is enabled in multiple data streams and the
prefetch size is unreasonably large, prefetching will demand
excessive dedicated wavelengths for large data transfer in a
memory cycle, and the resulted data bus occupancy will lead to
access conflicts and queuing delay. Besides, the performance
improvement gained by super line prefetching heavily depends
on application characteristics, thus it is unwise to use the same
prefetch size for different applications concurrently running on
CMP. Conclusively, the bandwidth should be allocated and
managed in order to optimize system performance, trading-off
between prefetch size and service parallelism. Therefore, page
folding is proposed to achieve locality and parallelism
simultaneously. In brief, super-line prefetching successfully
exploits the bandwidth abundance, while page folding can be
employed to manage the bandwidth, benefiting from the auto-
separation and auto-detection characteristics of optical signals.

 To preserve locality and avoid conflicts in a wide range of
applications, work sets of different tasks are adaptively mapped
to different devices through page folding. For example, when
there is only one task running on the processor, the data stream
has a comparatively fine locality without interruptions from
other tasks. In this case, more priority should be placed on
request latency than throughput, and our FlexMemory system

will accommodate the data in DRAM devices as the electrical-
connected DRAM does shown in Fig. 2. The physical pages of
the program span the memory rows in multiple devices, so that
a large super line within a physical page can be prefetched in a
single memory cycle fully utilizing the 128 wavelengths
dedicated to different devices. When there are multiple tasks
executed in parallel on multiprocessors, the locality of each
access stream is likely to be destroyed by others. As shown in
Fig. 4, our FlexMemory will confine the data of different
programs to separate DRAM devices so that the locality of
access streams will not be disturbed by one another. In this case,
the physical pages of a certain task will be “folded” into one or
several dedicated chips depending on its wavelengths quota.

Figure 4. FlexMemory design: combining page folding and super-line

prefetching. Page A and page B belong to different processes

The page folding technique is implemented via page frame
allocation and wavelengths assignment. Page is the basic unit
that is allocated to an application by OS. Generally the page
frames corresponds to the DRAM rows which span all the
devices in a rank, so the physical page addresses are directly
used to index the according rows in main memory, However,
as illustrated in Fig. 5, in our FlexMemory, OS-allocated page
frames will be adaptively remapped to different position in
memory according to the wavelengths quota of processes.

Figure 5. Page folding implementation through data layout mapping between

different levels

The implementation of page folding is based on the page
allocation mechanism of OS, which mostly employs buddy
system to manage dynamic memory. In our FlexMemory,
before being reclaimed by kernel, all the free page frames are
reserved as system resource. Not until the page frames has been
allocated and touched by a certain process, the data set
placement in DRAM memory will not be determined. The final
DRAM address command transmitted into memory modules

are determined by two factors: physical page address in page
table entry, the wavelengths quota assigned to the requesting
process. In FlexMemory, wavelengths will be explicitly
allocated to independent processes considering their page-level
locality and bandwidth demands. The processes have only
access to the DRAM devices equipped with ring modulators
and detectors of corresponding resonance wavelengths.

Modifications should be made to process descriptor and
task state segment in OS. In our system, the process descriptor,
which contains all the necessary information of a single process,
has a bitmap type field revealing the wavelength quota
assigned by OS. Once a physical page is allocated to the thread,
physical address will be filled in the page table entry. However
the physical page address cannot be directly used to index the
DRAM memory. It should be firstly decoded together with the
according wavelength bits provided by hardware remapping
table in memory controller, and the decoded address signals
will be carried by special wavelengths to target memory banks.
The raised hardware cost is negligible because only a limited
number of entries will be contained in remapping table.
Considering that the TLB is on the critical path of memory
access, the wavelengths bits should be stored in it with the
physical address entries. Because the wavelength bits are only
needed for outstanding memory requests, page folding will
cause no additional penalty to cache access.

To further exploit the bandwidth allocation, processes,
which have a good page-level locality, will be allocated more
wavelengths, making their physical pages span more DRAM
devices, so that a large super-line in the page can be fetched per
memory cycle. In extreme cases, all the data read into the row-
buffers will be sent to the memory controller, completely
avoiding low utilization of row-buffers and effectively hiding
access latency via large prefetch size. Since bandwidth and
locality profiling are not the focus of this paper, it is assumed
that the programs characteristics are well studied before
execution. There are also lots of available techniques to profile
the bandwidth demand of workloads [15][16][17].

The extra benefits brought by page folding is that the
bandwidth can be easily and accurately partitioned between
different tasks, making it easy to target optimization goals like
QoS, fairness or even security [17][18][19].

IV. EVALUATION AND ANALYSIS

A. Methodology

To evaluate the impacts of our FlexMemory on
performance and energy efficiency, we use the full system
simulator GEMS/SIMICS toolset and CACTI-6.5 DRAM
modeling tool. The “memory controller” module in GEMS
simulator was heavily modified to capture our FlexMemory
working mechanism. Both open-page and close-page
management policies with first-ready-first-come-first-serve
(FR-FCFS) and batching scheduling are evaluated. The
simulated system is organized as shown in Table II.

Our benchmarks are selected from SPEC CPU2000 and
SPLASH-2 benchmarks. For all the programs from benchmark
suites, initialization phases are skipped to ensure that only the
main functionality is included. To comprehensively evaluate
the performance of our FlexMemory, single-threaded, multi-

threaded and multiprogrammed workloads are simulated. For
multiprogrammed workloads, various combinations of the
benchmarks are used.

TABLE II. BASELINE CMP CONFIGURATION

Processor 16 core, 3.0 GHz
Base memory Hierarchy Parameters

L1 I cache 4-way, 64KB, 64 B-line, 1-cycle
L1D cache 4 way, 64B-line, 32KB, LRU, 2-cycle
L2 Cache Shared, NUCA, 8MB, 8-way, 8 banks, LRU, 6 cycles hit

Memory
Electrical 4G, DDR2, 4 channels, 8 Ranks, 64 Banks

Optical 4G, 2 Ranks, 32 devices,128 wavelengths

B. Experimental Results

1) Performance Improvement
a) Single-threaded and multithreaded applications. For

single-threaded and multithreaded applications, the
FlexMemory is to allocate all the available wavelengths to the
single program on-chip, which has no competitor for system
resources. The physical pages belonging to the program will be
spread across the DRAM devices, ensuring that all the
wavelengths can be used for super-line prefetching. Fig. 6(a)
shows the cache miss rate reduction of single-threaded and
multithreaded applications for FlexMemory. Compared with
the electrical baseline, there is an average 56.5% cache miss
reduction for selected workloads. However, several programs
gain limited performance improvement. After interpretation of
application behavior, we conclude that their memory access
patterns often exhibit burst characteristics, leading to the
successive cache misses in a short interval. In this case, super-
line prefetching cannot dramatically reduce the penalty caused
by long memory access latency.

b) Multiprogrammed workloads We have been
emphasizing on the adaptiveness of FlexMemory, which can
flexibly balance between bandwidth demand and parallelism
requirement. This feature is manifested in the scalable
performance for various workloads. For multiprogrammed

workloads, we use different combinations of SPEC CPU2000
and SPLASH-2 benchmarks. Fig. 6(b) shows the speedup of
FlexMemory model for various workload mixes. The chosen
mixes encompass 15 applications from SPLASH-2 and SPEC
CPU2000 suites. From mix-1 to mix-14, the workloads become
more and more memory-intensive because the number of
programs concurrently running on CMP keeps increasing. As
with Fig. 6(b), the lightest workload mix-1 is composed of only
two programs while mix-14 contains 15 programs, each of
which is bound onto one processing core. In experiments, the
wavelengths allocation is based on the simulation result
profiled in pre-execution phase.

As shown in Fig. 6(b), most workloads have more than 1.3x
speedup. However, for mix-13 and mix-14, they have gained
slight performance improvements because the cache capacity
becomes a bottleneck. When the CMP is loaded with heavy
workloads that prefetch in a coarse granularity, conflict misses
in cache increase quickly.

2) Rowbuffer utilization
Because bitline charging activities in row-buffers contribute

to most of the dynamic DRAM power [20], we choose row-
buffer utilization (RBU) as the major metric to evaluate the
energy efficiency in memory operation. RBU indicates the
percentage of the row-buffer data finally consumed by the
processors during the whole execution time, which depends on
three factors: the row activation times, the activated row size
and total memory data size touched by processing cores (over-
fetched data not included). All the results are normalized to the
baseline DDR2 DRAM with close-page policy.

a) Single-threaded and multithreaded applications. Fig.
7(a) plots the row-buffer utilization for single programs. For
our FlexMemory, through page folding (PF) and super-line
prefetching (SP), data bits in row-buffers spanning 32 devices
are prefetched and consumed, ensuring a much higher
utilization than the baseline DRAM model. .

Figure 6. (a) Cache miss reduction of single-threaded and multithreaded programs. (b) Performance improvement of multiprogrammed applications

Figure 7. (a) RBU of single-threaded and multithreaded programs. (b) RBU of multiprogrammed programs. PF+SP means FlexMemory working in paging
folding and super-line prefetching mode, employing close-page.PF means FlexMemory without super-line prefetching, in this mode, employing open-page.

0%

20%

40%

60%

80%

100%

C
ac

h
e

M
is

s
R

ed
u

ct
io

n

0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

0.01

0.1

1

10

100

R
B

 U
ti

li
za

ti
on

PF+SP Close Page Open Page

0.01

0.1

1

10

100
PF+SP PF Open page Close page

b) Multiprogrammed workloads. For multiprogrammed
workloads, the evaluated RBU is reported in Fig. 7(b). Compared
to the open-page baseline, the close-page baseline is clearly
worse in terms of row-buffer utilization because every access
should reactivate the entire row. However, when the number of
concurrent programs increase, the normalized RBU of open-page
baseline is continuously shrinking because of a dramatic drop in
the row-buffer hit rate. For our FlexMemory combining page
folding and super-line prefetching, RBU is greatly promoted. The
explanation is obvious. Adaptive page folding can effectively
improves the spatial locality of successive access through data set
isolation, and super-line prefetching put larger fractions of row-
buffer data onto the optical channels sharing a single waveguide.

V. RELATED WORK

a) Memory Design. There are techniques such as mini-rank
[21] and multicore DIMM [22] aimed at lowering DRAM
operation power by reducing effective row size in DRAM
modules. A. Udipi et al. propose SBA and SSA to decrease the
dynamic power in memory access [23]. “Micro-page” is
proposed to attack energy inefficiency problem from OS
perspective [20]. These approaches save energy by reducing the
ratio of activated bits in DRAM chips, and often result in
performance degradation. In addition, they could not avoid the
limitation of electrical connection, which prevents major changes
to the DRAM organization. Other research work on DRAM like
3-D architectures is also described [24].

b) Photonic communication. There are techniques that
exploit photonics for on-chip and off-chip communication [2-10].
Batten et al. describe a low power processor-memory connection
for future manycore systems [3]. Krishnamoorthy et al. examine
future opportunities for adopting photonic communication into a
high-performance computing system at different levels [7].
Vantrease et al. propose Corona to use nanophotonic interconnect
for both inter-core and off-stack communication [5]. Beamer et al.
use DWMM to reduce intra-chip link power in DRAM memory
communication [2].

Unlike other traffic-avoiding techniques or single-objective
solutions, our FlexMemory attacks problems in DRAM from a
different angle by utilizing the surplus photonic bandwidth.

VI. CONCLUSION

Emerging nanophotonic technology greatly promotes
bandwidth in memory communication. Based on the observation,
we review the inefficient architecture of conventional DRAM
memory and propose a novel DRAM memory design, which
effectively utilizes the optical bandwidth resources. The proposed
FlexMemory avoids the conflict-inducing and energy-inefficient
access mechanism in traditional DRAM memory. Combining
page folding and super-line prefetching technique together, our
FlexMemory can preserve and exploit locality in different
applications. In evaluation of various workloads, we found that
our design improves performance and row-buffer utilization
significantly.

REFERENCES

[1] ITRS. International Technology Roadmap for Semiconductors, 2007 Edition.
http://www.itrs.net/Links/2007ITRS/Home2007.htm.

[2] Scott. Beamer, Chen. Sun, Yong-jin. Kwon, Ajay. Joshi, Christopher Batten,
Vladimir. Stojanovic, Krste. Asanovic, “Re-Architecting DRAM Memory
Systems with Monolithically Integrated Silicon Photonics”, International
Symposium on Computer Architecture, 2010, pp.129-140.

[3] Batten. C, Joshi. A, Orcutt. J, Khilo. A, Moss. B, Holzwarth. C. Popovic, M.,
Hanqing Li, Smith. H, Hoyt. J, Kartner. F, Ram. R, Stojanovic. V,
Asanovic. K, ‘‘Building Manycore Processor-to-DRAM Networks with
Monolithic Silicon Photonics,’’ HOTI 08, 2008, pp. 21-30.

[4] Kirman. N. Kirman, M. Dokania, R.K. Martinez, J.F. Apsel, A.B. Watkins,
M.A. Albonesi. D.H, ‘‘On-Chip Optical Technology in Future Bus-Based
Multicore Designs,’’ Micro, IEEE Volume: 27. Issue:1, 2007 , pp 56 - 66.

[5] Vantrease. D, Schreiber. R, Monchiero. M, McLaren. M, Jouppi. N.P,
Fiorentino. M, Davis. A, Binkert. N, Beausoleil. R.G, Ahn. J.H, ‘‘Corona:
System Implications of Emerging Nanophotonic Technology,’’ ISCA 08 ,
IEEE CS Press, 2008, pp. 153-164.

[6] L. Barroso and U. Holzle. The Datacenter as a Computer: An Introduction to
the Design of Warehouse-Scale Machines. Morgan& Claypool, 2009.

[7] A.V. Krishnamoorthy, Lexau. J, Xuezhe Zheng; Cunningham. J.E; Ho. R.,
Torudbakken. O, ‘‘Optical Interconnects for Presentand Future High-
Performance Computing Systems,’’ Proc. Hot Interconnects (HOTI 08),
IEEE CS Press, 2008, pp. 175-177.

[8] Binzhang Fu, Yinhe Han, Huawei Li, Xiaowei Li, “Accelerating Lightpath
setup via broadcasting in binary-tree waveguide in Optical NoCs Design,”
Automation & Test in Europe Conference & Exhibition (DATE), 2010, pp:
933 - 936

[9] C. Gunn,” CMOS photonics for high-speed interconnects,” IEEE Micro,
26(2), Mar. Apr. 2006, pp.58–66.

[10] Briere. M, Girodias. B, Bouchebaba. Y, Nicolescu. G, Mieyeville. F, Gaffiot.
F, O'Connor. I, “System Level Assessment of an Optical NoC in an
MPSoC Platform,” Design, Automation & Test in Europe Conference &
Exhibition, 2007, pp: 1 - 6

[11] Young. I.A, Mohammed. E, Liao. J.T.S, Kern. A.M, Palermo. S, Block. B.A,
Reshotko. M.R, Chang. P.L.D, “Optical I/O Technology for Tera-Scale
Computing,” Solid-State Circuits. IEEE Journal of Volume: 45, 2010 , pp:
235 - 248

[12] Stojanovic. V, Joshi. A, Batten. C, Yong-Jin Kwon; Beamer. S, Sun Chen;
Asanovic, K, “CMOS photonic processor-memory networks,” Photonics
Society Winter Topicals Meeting Series (WTM), 2010, pp: 118 - 119

[13] O. Temam, Y. Jegou, “Using Virtual Lines to Enhance Locality
Exploitation,” In Proceedings of the International Conference on
Supercomputing, 1994.

[14] W. Lin, S. Reinhardt, D. Burger, “Reducing DRAM Latencies with an
Integrated Memory Hierarchy Design,” In Proceedings of the International
Symposium on High Performance ComputerArchitecture, 2001.

[15] Ebrahimi, E., C. J. Lee, Onur. Mutlu, Yale. N. Patt, “Fairness via Source
Throttling: A Configurable and High-Performance Fairness Substrate for
Multi-Core Memory Systems,” ASPLOS. 2010

[16] N. Rafique, W. Lim, and M. Thottethodi, “Effective Management of DRAM
Bandwidth in Multicore Processors,” in Proc. of the 16th International
Conference on Parallel Architectures and Compilation Techniques(PACT),
2007.

[17] Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors,” in Proc. of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2007.

[18] Liu. F, Understanding How Off-Chip Memory Bandwidth Partitioning in
Chip Multiprocessors Affects System Performance. HPCA.2010

[19] K. Nesbit, D. Aggarwal, J. Laudon, and J. Smith, “Fair Queuing Memory
System,” MICRO-39. 39th Annual IEEE/ACM International Symposium
on, 2006, pp.208 – 222

[20] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian, A.
Davis, “Micro-Pages: Increasing DRAM Efficiency with Locality-Aware
Data Placement,” In Proceedings of ASPLOS-XV, 2010.

[21] H. Zheng, Jiang Lin; Zhao Zhang, Gorbatov. E, David. H, Zhichun Zhu;
“Mini-Rank: Adaptive DRAMArchitecture For Improving Memory Power
Efficiency,” In Proceedings of MICRO, 2008.

[22] J. Ahn, Leverich. J, Schreiber. R.S, Jouppi. N.P, “Multicore DIMM: An
energy-efficient memory module with independently controlled
DRAMs,”EEE Computer Architecture Letters, 8(1), 2009, pp.5–8

[23] Aniruddha Udipi, Naveen Muralimanohar, Niladrish Chatterjee, Rajeev
Balasubramonian, Al Davis, Norm Jouppi, “Rethinking DRAM Design and
Organization for Energy-Constrained Multi-Cores,” ISCA. 2010

[24] Loh, G. H. (2008). “3D-Stacked Memory Architectures for Multi-core
Processors,” 35th ISCA, 2008, pp.453 - 464

