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Abstract

Non-volatile memories, such as Flash and Phase-
Change Memory, are replacing other memory and storage
technologies. Although these new technologies have desir-
able energy and scalability properties, they are prone to
wear-out due to excessive write operations. Because wear-
out is an important phenomenon, a number of endurance
management schemes have been proposed. There is a
trade-off between what techniques to use, depending on
the range of bit cell lifetime within a device. This range
in cell durability arises from effects due to process vari-
ation. In this paper, we describe modeling techniques to
analyze trade-offs for endurance management based on the
anticipated distribution of cell lifetime. This analysis con-
siders two general endurance strategies (physical capacity
degradation and physical sparing) under four distributions
of cell lifetime (constant, linear, normal, and bimodal). The
modeling techniques can be used to determine how much
redundancy is needed when a sparing endurance strategy
is adopted. With the correct choice of technique, the device
lifetime can be doubled.

I. Introduction

Future and current computer designs require memory
and storage subsystems that are dense, large, long-living,
energy-efficient, and low-cost. To achieve this goal, new
non-volatile memory technologies have been proposed and
applied. Two of the most promising technologies are Flash
and Phase-Change Memory (PCM) [1]. These technologies
have several desirable properties, including non-volatility,
low power consumption, and good scalability. However,
they have a significant problem associated with limited
write endurance. Flash and PCM devices wear-out rela-
tively quickly, which necessitates techniques to prolong
device lifetime.

Flash is a mature block-oriented technology that has
achieved sufficiently low cost and high density to be com-
petitive as solid-state storage [2]. Flash devices suffer from
reliability problems: a cell can be permanently damaged
after 10,000 to 100,000 erasures, temporary errors can
occur because of a large number of reads to a cell and
writes can affect the stored value of adjacent cells. The
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limit on the number of erase operations is severe, which
requires wear-leveling techniques to spread erasures/writes
among the cells for good device lifetime. Flash memory
manufacturers do not publish the specific cell lifetime
distributions. Instead, they may provide only the expected
number of erasures that cells can be expected to sustain
(10,000 to 100,000). The experimental results from [2]
show a correlation between failures and number of era-
sures. A large body of work has been done to improve
lifetime and performance in Flash memories [3], [4].

PCM has been proposed for storage and main memory.
Indeed, recent arguments that PCM can replace DRAM for
main memory are quite compelling [5], [6], [7], [8], [9].
PCM is projected to have better scalability than DRAM
and lower energy consumption. Unlike Flash, it is a bit-
addressable technology and has read performance equal to
DRAM [10]. However, similar to Flash, PCM suffers from
device wear-out. PCM devices may fail after only 107 to
109 write cycles, which is insufficient for main memory.
Because this problem is critical to the use of PCM in main
memory, many endurance and failure-handling approaches
have been suggested [5], [7], [8], [11], [6].

In developing and evaluating lifetime management tech-
niques for both Flash and PCM, different models of
endurance have been assumed. In this paper, we develop
analysis techniques to study how endurance models affect
device lifetime. We study memory lifetime with four
common distributions of cell endurance: constant, linear,
normal and bimodal. The normal distribution uses a gaus-
sian distribution of the cell endurance, the bimodal distri-
bution assumes that cells are either weak (low lifetime) or
strong (high lifetime), the constant distribution assumes all
cells have the same endurance, and the linear distribution
assumes that cells’ endurance varies from a low to a high
value. When using these distributions, we assume that a
wear-leveling mechanism exists that wears all pages at the
same rate2.

A wear-out prone memory subsystem is usually di-
mensioned with more capacity than required, either by
employing additional devices or by using larger devices.
This excess capacity is used to increase memory lifetime.
The actual strategies and mechanisms that manage failure
in wear-prone memory can be modeled as one of two
general types of algorithms. First, in physical capacity
degradation (PCD) algorithms, all the physical memory
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is initially used and, as cells are damaged, the memory
size is reduced. Second, physical sparing (PS) replaces
damaged cells with operational spare cells from the excess
capacity. Note that although wear-leveling is used in both
techniques, PCD uses wear-leveling on all non-damaged
pages, while PS uses it only on the pages that are currently
active and excludes the pages that are still spares.

Naively, PCD seems like it would always increase
device lifetime because it spreads writes over the entire
physical memory (with wear leveling), which makes the
memory live longer. However, we found that, for spe-
cific amounts of excess capacity, PS can actually yield a
much longer lifetime than PCD. We develop the analysis
to understand and evaluate the situations when one en-
durance management algorithm is preferred over another.
The selection of the appropriate endurance algorithm is
dependent only on the ratios of excess capacity to the
total number of cells, and the number of weak cells to
the total number of cells. Moreover, some wear-leveling
algorithms, such as stop-gap [6], are not suitable for PCD
since a constant physical memory size is necessary. Our
analysis can determine the amount of lifetime lost for PCD
and PS under the different endurance models.

The contributions of this paper are:

1) to develop and show how different models of cell en-
durance distribution affect device lifetime for phys-
ical capacity degradation and physical sparing,

2) to identify which endurance technique achieves a
higher lifetime according to the specific model and
device characteristics, and

3) to propose engineering constraints to achieve the
highest lifetime when device parameters can be
changed.

II. Analysis of endurance algorithms
with process variation

We assume the memory subsystem has M physical
pages, each of fixed size. Akin to many storage systems,
the set of pages is partitioned in two areas: a visible
addressable space of L pages and a reserved excess
capacity area of N pages, as seen in Figure 1. In other
words, L = M−N and we assume the memory subsystem
fails when there are less than L undamaged physical pages.
Note that the addressable user space has the same physical
size L independent of the endurance algorithm (PCD or
PS) and therefore the performance of user processes is the
same for both endurance algorithms.

The N excess capacity pages are used by each en-
durance algorithm in a different way. PCD uses the excess
capacity to distribute the writes among all M pages, while
PS uses the excess capacity to replace damaged pages
in the addressable space L. Because it is uncommon to

Term Description
M Number of physical pages
L Number of addressable pages
N Number of excess capacity pages
LPCD(M,N) Number writes before failure for PCD
LPS(M,N) Number writes before failure for PS

TABLE I. Parameters and terminology.

reserve more than 50% of the memory as excess capacity,
we assume that N<M

2 , that is, M>2N .

Fig. 1. Model of the endurance algorithms
We also assume that there is an ideal wear-leveling

scheme that distributes the writes among all pages used
(the wear-leveling algorithm is ideal in the sense that all
pages have had the same number of writes at any instant
of time). To distribute writes among the pages, a mapping
is necessary from addressable locations to physical pages,
as shown in Figure 1. This mapping depends on the
implementation of the endurance algorithm [5], [7], [8].
The lifetime of a set of M pages will be measured as
the number of writes that the memory supports until its
capacity is reduced below L. Table I summarizes the key
parameters and terminology used in the analysis of the
different endurance techniques and distributions.

In each subsection below, we compute the lifetime of
a memory for four different models of process variation,
namely constant, bimodal, linear and normal, for each of
the two endurance algorithms (PCD and PS). We present
the models by order of complexity.

A. The Constant Model

In the constant model, we assume that all pages have
the same endurance, WD. In the PCD case, all M pages
receive the same number of writes due to the underlying
wear-leveling algorithm. This implies that the lifetime
for a memory with M pages is: LPCD(M,N)=WD·M .
In the PS case, a page in the addressable space will
be damaged after WD writes. Because there are only



M−N pages to distribute the writes, M−N pages will
be damaged at the same time. Since M>2N implies
M−N>N , there will not be enough spares to replace
all the M−N damaged pages. Hence, the lifetime of PS
in this case is: LPS(M,N)=WD·(M−N). Comparing
the lifetimes, LPS(M,N)<LPCD(M,N), and thus, it
is clear that PCD leads to a longer lifetime than PS for
any number of spares under the constant model.

B. The Bimodal Endurance Model

The bimodal model assumes that pages are divided into
two sets: a low endurance set with K pages that has an
endurance of WDL per page and a high endurance set with
M−K pages that has an endurance of WDH per page. It
is assumed that WDL≪WDH .
In the PDC case, the K weak pages are damaged and
retired after WDL·M writes (since the memory starts with
M pages). There are two cases to consider:
• K≤N : For N pages to be damaged, some strong pages
have to be damaged since only K weak pages exist. This
allows an additional (WDH−WDL)·(M−K) writes to
be applied to the memory. Thus,

LPCD(M,N)=WDL·K+WDH ·(M−K) if K≤N (1)

• K>N : After WDL·M writes, the K weak pages will
be damaged and the number of available pages will be
less than M−N , thus leading to system failure. Hence,

LPCD(M,N)=WDL·M if K>N (2)

In the PS case, there are three cases to be analyzed:
• K≤N : When all the K weak pages are in the ad-
dressable M−N pages, they will be replaced when they
reach their endurance limit (WDL). The lifetime will be
determined by the endurance of the strong pages, WDH ,
and the size of the addressable space (M−N ). Hence,

LPS(M,N)=WDH ·(M−N) if K≤N (3)

• K>2N : When there are at least N+1 weak pages in
the addressable space, these weak pages will be damaged
after WDL·(M−N) writes and the number of spare pages
available, N , will not be enough to replace them. Thus,

LPS(M,N)=WDL·(M−N) if K>2N (4)

Fig. 2. Spare and addressable page en-
durance distribution in a bimodal model.

• N<K≤2N : Among the K weak pages, let i be the
number of weak spare pages and K − i be the number
of weak used pages, as shown in Figure 2. The K−i
weak used pages located in the addressable space will be
damaged first since they have the lowest endurance and
are being constantly used. Two cases may occur:

– K−i>N : If i<K−N , the number of weak used pages
is larger than the number of spare pages. This implies
that when the weak used pages are damaged, the mem-
ory will fail since there will not be enough spares to
replace all the damaged pages. The lifetime is then
LPS(M,N)=WDL·(M−N).

– K−i≤N : In this case, there are at most N weak
used pages. These weak used pages will be damaged
after WDL·(M−N) writes to the addressable space and
will be replaced by spares, extending the lifetime of
the addressable space by an additional WDL·(M−N)
writes. Given that K>N , then i>0, and some of the
newly commissioned spares will be weak and will be
damaged after an additional WDL·(M−N) writes. If
K−i=N , then no more spares will be available and
the memory will fail at this point (here we assume
that 2·WDL≪WDH , that is, the weak spare pages
will be damaged before the strong pages). However, if
K−i<N , some spares will still be available after the
first replacement round and the lifetime will be extended
by an additional WDL·(M−N) writes with any new re-
placement round for which spares will still be available.
The lifetime is then LPS(M,N)≥2WDL·(M−N),
with the equality achieved when only the first replace-
ment round is possible.

Summarizing, the lifetime in the region delimited by
N<K≤2N is:

LPS(M,N)

{
=WDL·(M−N) if i<K−N
≥2WDL·(M−N) if i≥K−N

(5)

It is important to note that the lifetimes for PCD and
PS depend on K

N , the ratio of weak pages to spare pages.

Comparing the lifetime of PCD and PS:
PCD has a higher lifetime than PS when (a) the number

of weak cells is larger than the number of spares (i.e., when
K
N<1); compare Equations (1) for PCD and (3) for PS, or
(b) the number of weak cells is much smaller than the
number of spares (i.e., K

N>2); compare Equations (2) for
PCD and (4) for PS.

In the case of N<K≤2N , the result depends on
Equation (5) since the lifetime of PCD, as clear from
Equation (2), is constant in this region.

The lifetime of the PS algorithm depends on the number
of weak pages in the spare area. The probability of having
x weak pages among the spares, Pr(i = x), follows a
hypergeometric distribution. PS will have a higher lifetime



than PCD when i≥K−N , which occurs with probability:

Pr

(
LPS(M,N)>
LPCD(M,N)

)
=

N∑
x=K−N

Pr(i=x) (6)

The average, E[i], of a hypergeometric
distribution is E[i]=

∑N
x=0 x·Pr(x)=NK

M . Since
LPS(M,N)>LPCD(M,N) only if i>K−N , the
probability can be estimated by:

N∑
x=K−N

Pr(i=x)≥0.5 if
NK

M
≥K−N (7)

By changing the condition in Equation (7) to
N
M=1−1/K

N , Equation (6) can be rewritten as a function
of the ratios of K, M , and N , showing that LPS>LPCD
more than 50% of the time:

Pr

(
LPS(M,N)>
LPCD(M,N)

){
≥0.5 if N

M≥1−N
K

<0.5 if N
M<1−N

K

(8)

Note that Equation (8) depends on the
ratios N

M and K
N and not on the specific

value of M . Figure 3 shows the curve
N
M=1−1/K

N in the region 1<K
N≤2, that is, when

N<K≤2N . The curve N
M=1−1/K

N creates two regions.
In the region above the curve, it is more probable that the
lifetime of PS will be higher than the lifetime of PCD
(points 1, 2, 3, 5 and 8 in Figure 3). The region below
the curve will have the opposite behavior, with higher
lifetime when using PCD (points 4, 6 and 7 in Figure 3).

Fig. 3. Regions where PS increases lifetime
Note that for the hypergeometric distribution the stan-

dard deviation, σ, is at most the square root of the average,
that is, σ≤

√
NK
M . The hypergeometric distribution can

be approximated by a normal distribution for which the
probability that i<E[i]−2σ or i>E[i]+2σ is less than
2.5%. This allows Equation (8) to be rewritten as:

Pr

(
LPS(M,N)>
LPCD(M,N)

){
≥0.975 if N

M≥1−N
K+2σ

K

≤0.025 if N
M<1−N

K−2σ
K

(9)

.
Given that σ=

√
NK
M , we can conclude that

2σ
K =2

√
N

MK implies that 2σ
K ≤ 2√

M
since N

K≤1.
Equation (9) indicates that there is a very nar-

row band (of width proportional to 2√
M

) around

the curve N
M=1−1/K

N of Figure 3 within which
Pr(LPS(M,N)>LPCD(M,N)) is between 0.025 and
0.975. Above this band the lifetime of PS is longer than
the lifetime of PCD (with very high probability) and below
this band, the lifetime of PS is shorter than the lifetime of
PCD (with a very high probability).

To examine the validity of our analysis, we plot in
Figure 4 the exact probability given by Equation (6), for
M = 2000 and M = 5000 at N

M=0.1 and N
M=0.2. This

corresponds to the cuts A and B in Figure 3. Clearly
the probability of LPS(M,N)>LPCD(M,N) goes from
100% to 0% very sharply near N

M=1−1/K
N , which shows

the approximation given by Equation (9) is true for large
values of M , which is what happens in real life.

Fig. 4. Probability of sparing having a higher
lifetime

C. The Linear Endurance Model

The linear model is a tractable approximation of the
normal distribution assuming that cells have lifetime lin-
early distributed between WDL and WDH . We model
it as the lifetime of page i as Wi=WDL + R·i with
R= (WDH−WDL)

M .
The lifetime under PCD is determined by the first N +

1 pages that wear out. We approximate this by N . Let
WDN=WDL+R·N be the point on the endurance curve
where N pages have failed. We can compute the area under
the endurance curve up to N (N ·WDN/2) and between N
and M (WDN ·(M−N)). The sum of these two areas is
LPCD(M,N)=WDL·M+R·N(M−N/2).

PS lifetime is determined by the endurance
(WDj) of the last page to die (jth page), that is
LPS(M,N)=WDj ·(M−N). It is apparent that j≥N ,
since the worst case is when all the spares have endurance
higher than WDN . The maximum value of j is N+ N2

M−N .
N2

M−N is the expected number of pages with WD≤WDN .
The impact of larger values of N on lifetime is minimal
because it increases J but also decreases the number
of pages in the addressable space. Large values of R
would in theory benefit PS but the probability that a
page needs to be replaced more than once before the
memory subsystem dies increases, reducing the number
of addressable pages that can be replaced. The end result
is a lower lifetime than predicted by the maximum j.
Using Monte Carlo simulations, we determined that the



lifetime of PCD and PS for the linear endurance model
are very similar, with a maximum of 3% difference.

D. The Normal Endurance Model

The normal model can be approximated by a constant
model if the standard deviation is small compared to the
average. The linear model is a good approximation if
the normal model has a large standard deviation and the
number of spares is small (we only are interested in the
pages with a low lifetime). In cases that the approximations
are not applicable, numerical simulations show that PCD
and PS present a very similar lifetime under the normal
endurance model with PCD always winning by less than
5%.

III. Uses of the lifetime models
In Section II, we showed that system lifetime under

a specific endurance model can vary depending on the
algorithm, the percentage of spares and percentage of weak
pages. The analysis and results above can be used in design
tool to obtain the longest lifetime of the memory.

The decision to use PS or PCD depends primarily on
the lifetime distribution of the pages. For the constant
model, PCD will result in the highest lifetime. In the linear
and normal models the difference is small allowing the
decision to be taken based on other design constraints.

The bimodal model is less straightforward and two
cases should be examined. The first case is when a
manufacturer produces a device with size M and wants
to sell it with a size L. If K

N≤1 or K
N>2 then PCD is the

recommended algorithm according to Equations (1)-(4). In
the more interesting case, 1<K

N≤2, the algorithm selection
depends on the relative values of N

M and K
N . Specifically,

if N
M≥1−1/K

N then PS should be used, otherwise PCD is
recommended.

In a second case, a manufacturer produces a device of
capacity M with K bad cells and by choosing N and
the endurance algorithm, can market it as a device of size
L=M−N . Using the objective of highest lifetime with the
largest addressable space, the selection of the endurance
algorithm and of N are coupled. Figure 5 shows how the
lifetime changes when N is varied in a system with a fixed
M and K. The maximum lifetime is achieved when N is
bigger than K, and we can choose N=K to minimize
resources, because the lifetime does not change for all
values of N that satisfies this relation. It is possible that,
for marketing reasons, restrictions will prohibit the use of
N≥K (e.g., when an already advertised device size has
to be sold but the devices were produced with too many
weak pages). In this case, if the restriction on N allows
N≥ KM

K+M , then PS should be used because N≥ KM
K+M

implies N
M≥1−1/K

N and Equation (9) indicates that the
lifetime of PS is longer than PCD (see middle section of

the figure). Finally, if it is not possible to use N≥ KM
K+M ,

then the use of spares is not recommended since (in this
case) the lifetime is constant for the PCD algorithm for any
value of spares, as shown on the left section of Figure 5.

Fig. 5. Lifetime impact of varying N for a fixed
K and M .

At times, the manufacturer knows M , N , and L but
K is variable. This can happen, for example, due to
wafer to wafer process variation or fabrication process
improvements. The selection of the algorithm to operate
the memory will be based on the region the memory
subsystem falls in, as described above.

All the previous results assume that the weak pages are
distributed randomly. If it is possible to identify the weak
pages, then those pages should be used as spares and a PS
algorithm should be used. This result is valid for the region
1<K

N≤2. The use of weak pages as spares guarantees
that the constraint of Equation (5) is valid, increasing the
lifetime of the PS algorithm.

In a constant model, PCD lifetime is independent of the
number of spares but PS lifetime actually decreases with a
larger number of spares. In this model, reserving space as
excess capacity is unnecessary and all memory should be
exported to the system. A linear model with a low value
of R behaves in a similar fashion to the constant model
and the same recommendations apply. A linear model with
larger R will have a similar lifetime with either PCD or
PS so either can be used. The amount of excess capacity
reserved determines the expected memory lifetime, since
a larger excess capacity will also increase lifetime while
reducing the addressable space.

IV. Experimental Results

We used simulations to validate the analytical model
and the accuracy of the approximations. A subset of bench-
marks from PARSEC, SPECCPU2006 and SPECjbb2005
were executed in Simics and main memory traces were
recorded and used as input to the PCM memory simulator
in [11]. The simulated system had M= 8 Million physical
pages and followed the bimodal model with K and N
set per experiment so specific values of N

M and K
N are

obtained. The endurance for a weak page was 100 times
smaller than the endurance for a strong page. We also
experimented with the linear and normal models with the
highest endurance varying from 10 to 100 times the small-



est endurance. The wear-leveling algorithm was based on
the one in [11].

Fig. 6. Lifetime, normalized for PCD lifetime,
for the points in Figure 3.

To operate at points 1 to 8 in Figure 3, we set the
values of N

M and K
N by choosing the appropriate values of

K and N , since M is fixed. Figure 6 shows the measured
lifetime, normalized to the lifetime for PCD for point 1,
for each of the algorithms. The smaller PCD lifetime for
points 4, 5, 6, 7 and 8, is caused by the specific wear-
leveling algorithm [11] used being non-ideal. Larger K

N
for the same N

M creates more weak pages and increases
the probability that a page with a higher number of
writes resides in a weak page, hence reducing the memory
lifetime. The analysis of Section II-B predicts that points
1, 2, 3, 5 and 8 have a higher lifetime with PS and points
4, 6 and 7 have a higher lifetime with PCD. The results
from Figure 6 agree with the model. The gain in lifetime
for points 1, 2, 5 and 8 agrees with the gain predicted
in Section II-B for PS, with one replacement round. The
higher result of point 3 is caused by the system being able
to replace damaged pages twice, that is, in two replacement
rounds. These results also validate the approximation of
Equation (9).

For the normal and linear models, we did find that the
lifetime was 3 to 5% higher for the PCD algorithm when
compared to the PS.

V. Related Work
PCM main memory has been proposed in [5], [6], [8].

In [6], a start-gap wear-leveling mechanism is proposed
for wear-leveling. The conclusions of Section II-B would
apply to this mechanism since it follows the assumptions
used in Section II. This wear-leveling mechanism has a
very low cost but does not allow, in its present form, for the
removal of damaged pages from the addressable space. The
ability to retire pages or use spares is essential to having
a large lifetime under a bimodal model. In [8], a 3D main
memory implemented with PCM is presented, which uses
row-level rotation and segment swapping (SS) for wear-
leveling. The SS used in [8] uses one counter per page and
thus may be too costly, especially for small pages and large
memories. In [5], another 3D main memory that uses PCM
is introduced. It uses byte shifting at row level (BS) and

SS as wear-leveling mechanisms. These techniques would
follow the analysis of Section II. In [11], a low-cost table-
based wear-leveling algorithm is introduced. It is simple to
modify the proposed architecture to support retiring pages
and a PS algorithm.

VI. Conclusion
It has been especially challenging to the computer

architecture community to compute the lifetime of wear-
prone memory devices, such as PCM and Flash, given
there are several possible models for cell endurance and
endurance management. In this paper, we developed the
analysis and models that can be used to compute the
memory lifetime for different endurance distributions We
consider two general endurance strategies based on physi-
cal sparing (PS) and physical capacity degradation (PCD).
We show that under constant endurance, PCD achieves
a higher lifetime. However, if there are weak and strong
cells, we show the relationship of the endurance algorithm
(PS or PCD) to the amount of excess capacity, and how
this relationship affects the lifetime of the memory. Our
models and analysis can be used to implement a tool to
determine the best endurance management algorithm and
the minimum amount of excess capacity needed for a long
memory lifetime. This choice is an important one since it
can extend the memory lifetime by up to two times under
specific conditions.
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