
Design of Voltage-Scalable Meta-Functions for

Approximate Computing

Debabrata Mohapatra, Vinay K. Chippa, Anand Raghunathan and Kaushik Roy

School of Electrical and Computer Engineering, Purdue University

{dmohapat,vchipp,raghunathan,kaushik}@purdue.edu

Abstract—Approximate computing techniques that exploit the
inherent resilience in algorithms through mechanisms such as
voltage over-scaling (VOS) have gained significant interest. In
this work, we focus on meta-functions that represent compu-
tational kernels commonly found in application domains that
demonstrate significant inherent resilience, namely Multimedia,
Recognition and Data Mining. We propose design techniques
(dynamic segmentation with multi-cycle error compensation, and
delay budgeting for chained data path components) which enable
the hardware implementations of these meta-functions to scale
more gracefully under voltage over-scaling. The net effect of
these design techniques is improved accuracy (fewer and smaller
errors) under a wide range of over-scaled voltages. Results based
on extensive transistor-level simulations demonstrate that the
optimized meta-function implementations consume upto 30% less
energy at iso-error rates, while achieving upto 27% lower error
rates at iso-energy when compared to their baseline counterparts.
System-level simulations for three applications, motion estima-
tion, support vector machine based classification and k-means
based clustering are also presented to demonstrate the impact of
the improved meta-functions at the application level.
Index Terms—Approximate Computing, Low Power Design,

Voltage Over-scaling, Meta-functions.

I. INTRODUCTION

A promising class of low-power design techniques, which

could be collectively classified under the paradigm of “approx-

imate computing”, has received significant attention recently.

These techniques relax the conventional requirement of perfect

equivalence between the specification and hardware imple-

mentation, and translate this flexibility into energy efficiency.

A number of traditional and emerging application domains,

such as multimedia processing, wireless communications, net-

working, and recognition, mining, and synthesis, demonstrate

the property of inherent resilience to “errors” introduced in

their implementation. This resilience is due to several factors:

(i) these algorithms are designed to deal with real-world

noisy input data, (ii) they frequently process large data sets

with significant redundancy, (iii) they utilize statistical or

probabilistic computations, and (iv) a small amount of error

in their outputs cannot be discerned due to limited human

perception.

Several examples exist of techniques that embody the

approximate computing approach [1], [2], [3], [4], which

we describe further in the next section. A related class of

techniques [5], [6] rely on detection followed by correction

This material is based upon work supported in part by the National Science
Foundation under Grant No. 1018621
978-3-9810801-7-9/DATE11/ c©2011 EDAA

or prediction followed by multicycle operation respectively

to avoid timing errors, allowing circuits to operate at “zero

margins” even in the presence of process, voltage, and temper-

ature variations. Most of these techniques utilize voltage over-

scaling (VOS) in order to obtain energy efficiency - the voltage

is scaled to a point where the delays of some paths in the logic

will exceed the clock period, thereby introducing “errors”.

A common underlying assumption for all these techniques is

that the circuit blocks used in the hardware implementations

scale gracefully under VOS, i.e., the probability of errors or

magnitude of errors introduced under VOS is relatively small.

However, this is not always the case, especially for circuits that

have been aggressively optimized for performance and thereby

contain a large number of paths whose delays are close to the

critical path [7]. If, contrary to the assumption, the building

blocks do not scale gracefully, then the algorithm will fail in

providing an acceptable output, limiting the extent to which

VOS can be applied.

In this paper, we consider common computational kernels

used in multimedia, recognition, and mining algorithms, and

propose design techniques to make the hardware implemen-

tations of these meta-functions behave more gracefully, i.e.,

generate fewer or smaller errors, under VOS. We concentrate

on meta-functions since they dominate the energy and execu-

tion time of algorithms, and also provide scope for new design

optimizations that improve scalability under VOS. The major

contributions of this work are as follows:

• We identify the computational kernels in representative

multimedia, recognition, and mining algorithms, and an-

alyze their behavior under VOS. We consider coarse-

grained meta-functions that are iteratively executed across

multiple cycles, which facilitates some of the proposed

design techniques.
• We optimize the meta-function implementations using

two basic techniques: (i) Dynamic segmentation with

multi-cycle error compensation, and (ii) Delay budgeting

of chained units, for improved scalability under VOS.
• Using a combination of transistor-level simulation and

system-level simulation, we analyze the benefits of the

proposed design techniques, and also demonstrate how

optimizations at the meta-function level translate into

benefits at the application level in terms of improved

energy vs. output quality tradeoffs.

The optimized implementations of the meta-functions can

be used as a drop in replacement for their conventional

counterparts in a wide range of algorithms. Moreover, the

design techniques used for optimizing the meta-functions are

generic in nature, hence, they can be also applied to the design

of other meta-functions that involve similar operations.

The rest of the paper is organized as follows. Section II

briefly presents the related work in this area and places

our contribution in this context. Section III identifies the

computational kernels that are considered as meta-functions in

our work. Section IV describes in detail the design techniques

used for optimizing the meta-functions. Simulation results

highlighting the impact of optimizations at the meta-function

level and at the algorithm level are presented in Section V,

while Section VI concludes the paper.

II. RELATED WORK

ANT (Algorithmic Noise Tolerance) [1] was one of the

earliest proposals to leverage the inherent error resilience

of algorithms in the context of hardware implementation of

signal, image, and video processing algorithms, improving

both energy efficiency and tolerance to deep sub-micron noise.

The concept of Probabilistic CMOS or PCMOS, wherein each

logic gate displays a probabilistic rather than deterministic

behavior, was proposed as an energy efficient alternative to

traditional always-correct computational models [4]. ERSA

(Error Resilient System Architecture) [2] is a programmable

multi-core architecture for deeply scaled technologies with

unreliable components, that combines one reliable processor

core with a large number of unreliable cores. A Significance

Driven Design (SDD) approach for process variation tolerance

and low power design that identifies and protects significant

computations and data in a preferential manner has been

proposed in [8], [3]. While a large body of research has

tried to exploit the inherent resilience of algorithms, most

of them are based on the implicit assumption that the under-

lying hardware building blocks scale gracefully under VOS.

Fig. 1: Computational

kernels of MRM algo-

rithms.

The primary contribution of this

work is a systematic design ap-

proach that aims at improving the

scalability of the underlying ba-

sic building blocks of multime-

dia, recognition, and mining algo-

rithms, under VOS. Unlike pre-

vious efforts that solely rely on

the inherent error resiliency of the

algorithms, coupled with the im-

plicit assumption regarding scal-

ing behavior of underlying compo-

nents, this work goes a step further

by identifying the computational kernels in the algorithm and

proposing techniques for improving their robustness under

VOS. The dynamic segmentation and error compensation

technique exploits the multi-cycle aggregative nature of the

computational kernels that we consider, and delay budgeting

exploits the difference in the error characteristics of chained

components.

III. META-FUNCTIONS IN MULTIMEDIA, RECOGNITION

AND MINING (MRM) APPLICATIONS

The primary objective of our work is to facili-

tate the approximate computing paradigm through the

design of hardware “building blocks” that demonstrate

more graceful degradation under VOS. We consider

few representative algorithms and identifies their un-

derlying computational kernels as the meta-functions.

Fig. 2: Mathematical represen-

tation of meta-functions.

In this work, the three al-

gorithms considered are 1)

Motion estimation which is

the workhorse of MPEG [9]

video compression standard,

2) Support Vector Machine

(SVM) classification [10]

and 3) K-means cluster-

ing [11], which are widely

used in the fields of Recog-

nition and Data Mining. For each of these three algorithms,

we used software profiling to discover where the algorithm

spends most of its computation time. The results of our

profiling are shown in Figure 1. It is evident from Figure 1

that in each case there exists a computational kernel where

the algorithm spends 85-95% of its computation time. In the

case of the motion estimation algorithm, the meta-function

is identified to be the L1-norm which is the sum of absolute

differences (SAD). For SVM classification, dot product, which

is essentially a series of multiply and accumulate operations, is

identified to be the dominant meta-function. Depending on the

distance criterion used in K-means clustering, the dominant

meta-function can either be the L1-norm (SAD) or the L2-

norm which is the Euclidean distance between two vectors.

Mathematical representations of all three meta-functions for

two N dimensional vectors X and Y are given in Figure 2.

Baseline hardware implementations of these meta-functions

are shown in Figure 3.

A

L1-NORM

B

|A - B|

ACCUMULATOR

CLK
 CLK

CLK

A

DOT PRODUCT

B

A * B

ACCUMULATOR

CLK
 CLK

CLK

A

L2-NORM

B

(A - B)

ACCUMULATOR

CLK
 CLK

CLK

MULTIPLIER

(A-B)
2

Fig. 3: Architecture of meta-functions a) L1-Norm b) Dot

Product and c) L2-Norm.

From the results obtained in Figure 1, it is logical to assume

that improving the scalability of the underlying meta-functions

would naturally lead to a better energy efficiency vs. output

quality tradeoff at the algorithm level. We next present design

techniques to achieve this objective.

IV. SCALABLE META-FUNCTION DESIGN

VOS is a very effective technique for reducing power due

to the superlinear dependence of both dynamic and leakage

power on supply voltage. VOS differs from traditional voltage

scaling in that we do not scale the clock frequency, thereby

intentionally causing the critical paths to violate the clock pe-

riod. However, since the applications themselves are inherently

error resilient, the necessity to take strict corrective measures

to preserve the accuracy of computation can be waived. Note

that while any given implementation can be subject to VOS,

appropriate design techniques need to be used in order to

obtain a better energy vs. output quality tradeoff. In this

section, we present two basic design techniques to optimize

the meta-functions identified in Section III.

A. Dynamic Segmentation and Error Compensation (DSEC)

FA
 FA
 FA
 FA
 FA
 FA

M

U

X

0

Add Correction Term

Approximate Sum

M

 U

X

M

U

X

M

 U

X

N/K bit

FAs

N/K bit

FAs

N/K bit

FAs

N/K bit

FAs

0
 0
 0

Control

(VOS)

F

F

F

F

Low-overhead

Correction Term

Accumulator

Segmented Sum

Fig. 4: Dynamic segmentation with error compensation.

Figure 4 shows the design of a voltage scalable accumulator

which is an integral part of all three meta-functions under

consideration 1. Dynamic segmentation involves dividing the

adder in the accumulator into smaller bit width adders by

bit-slicing the data path. Depending on the degree of VOS,

the degree of segmentation can be dynamically controlled

based on control inputs to the multiplexers. Under nominal

VDD , the multiplexers select the original carry and feed it

to the subsequent stages. Note that each adder stage can be

implemented using any adder architecture. When operating

under VOS, the adder stages are isolated from each other

due to a carry of zero being forced by the multiplexers. The

segmentation based approach serves two primary purposes: a)

it reduces the critical path of the adder, allowing aggressive

voltage scaling at the cost of approximation, and b) it prevents

harmful glitch propagation across the adder stages from arbi-

trarily corrupting the output bits. However, application of the

standalone segmentation technique incurs significant error in

the meta-function computation due to its accumulative nature

across multiple cycles. In order to address this issue, we

augment the dynamic segmentation scheme with a multi-cycle

error compensation technique. Error compensation involves

1We focus on the accumulator since it is the component that directly feeds
the flip-flops. Therefore, the effect of VOS can be viewed as the accumulator
not having sufficient time to compute its output within the clock period.

addition of a low-overhead correction circuitry that keeps

track of the carries across sections of the segmented adder

that have been ignored in each cycle, by means of small bit

width counters. When there is an overflow in any one of the

carry counters, a “correction cycle” is introduced to adjust the

accumulator value based on these counter values.

CYCLE #
 A
 B
 |A-B|
 ACTUAL SEGMENTED EC COUNTERS

SUM
 SUM

 C2 C1 C0

1

2

3

4

5

6

7

8

9

10

D0

E7

20

E9

A1

B8

81

-

-

81

47

9F

74

44

5E

19

20

-

-

20

89

48

54

A5

43

9F

61

-

-

61

0000

0089

00D1

0125

01CA

020D

02AC

02AC

02AC

02AC

0000

0089

00C1

0015

00BA

00FD

008C

-

-

02AC

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

2

2

2

0

2

C

y

c

l
e

E

r

r
o

r

C

o

m

p

e

n

s

a

t
i

o

n

 C

o

u

n

t
e

r

O

v

e

r
f

l
o

w

C

o

m

p

e

n

s

a

t
i

o

n

T

e

r
m

=

2

2

0

0

0

0

1

1

1

2

2

2

0

Fig. 5: Illustration of DSEC.

The dynamic segmentation with error compensation tech-

nique is illustrated with an example in Figure 5. Let us

consider a 16-bit adder that is segmented into 4 parts, each

of 4 bits. The carries across the segmented stages are tracked

by three 1-bit counters C0, C1, and C2, which track carries

into the 5th, 9th and 13th bit slice of the adder, respectively.
The sequence of inputs shown in Figure 5 causes simultaneous

counter overflows in C0 and C1 in cycle 7. Once an overflow

is detected in any of the counters, the error compensation

scheme kicks in by allocating two cycles for addition of the

compensating term which in the above example is 0x220. The
rationale behind allocating two cycles instead of one is that

we do not want any error in addition of the correction term

since it would defeat the purpose of the error compensation

scheme. It is to be noted that since the same adder is utilized

for addition of the correction term, the multiplexers need to

propagate the correct carries to subsequent stages, which is

achieved by setting the appropriate control signals. Note that

due to multi-cycle operation, the error compensation operation

uses the non-segmented adder (actual carry propagated by

multiplexers) and is error free.

2 3 4
0

5

10

15

20

25

Error Compensation Counter Size (Bits)

C
y
cl

e
O

ve
rh

ea
d

(%
)

Fixed Interval N=8
Fixed Interval N=16
Fixed Interval N=32
Dynamic Interval

Fig. 6: Cycles overhead due to

DSEC.

There are three aspects

that need to be addressed

in relation to the segmen-

tation and error compensa-

tion circuitry: a) increase

in critical path due to seg-

mentation muxes, b) the

cycles overhead associated

with the correction term ad-

dition and c) power con-

sumption due to the addi-

tional logic. The increase in

critical path in DSEC which is purely due to the segmentation

muxes (correction term accumulator does not lie in critical

path) is addressed by operating the DSEC based design at the

same clock period as the original design. The rationale behind

such an approach is to absorb any additional errors in DSEC

due to clock period violation in the overall error due to VOS.

Effectively, there in no clock period overhead in the DSEC

design. Moreover, due to the additional error compensation

circuitry, DSEC exhibits better error scaling trends even when

operated at clock period identical to the original design.

Figure 6 shows the cycles overhead due to correction term

addition as a function of the error compensation counter

bit width. We compare our proposed dynamic error com-

pensation scheme to the fixed interval scheme in which the

correction term is added every fixed number of cycles (N).

The results were obtained by running 12 CIF [9] benchmark

video sequences for the motion estimation algorithm for fixed

N = [8, 16, 32] cycles and dynamic cases. It can be observed
that the dynamic scheme clearly outperforms the fixed interval

scheme in terms of cycles overhead 2. In addition, dynamic

update eliminates the hazard of erroneous compensation due

to counter overflow associated with the fixed interval update.

Increasing the counter bit width allows us to perform error

compensation less frequently, thereby reducing the cycles

penalty, which is also beneficial from an energy perspective.

However, increasing the counter bit width increases the power

consumption of the error compensation circuitry, and needs to

be performed judiciously.

The other design issue concerns power consumption due to

the additional logic. At nominal VDD without any preventive

measures, the error compensation circuitry results in approxi-

mately 50% power overhead. In order to address this issue,

we take advantage of the fact that the critical path in the

error compensation circuitry is much shorter than the overall

clock period. Hence, due to the large slack available, we can

scale down the supply voltage in the error compensation logic

without affecting its functionality. Furthermore, the switching

power of the correction logic can be reduced by clock gating.

Combining voltage scaling with clock gating for the error com-

pensation circuitry allows us to reduce the associated power

overhead from 50% to 13%. This overhead is outweighed by

the ability to perform more aggressive VOS.

B. Delay Budgeting (DB)

Block A1

Op1

Block A2

Op2

A

H

Q
1

Q

8

ENB

Register

A

H

Q
1

Q

8

ENB

Register

Block A2

Op2

A

H

Q
1

Q

8

ENB

Register

A

H

Q
1

Q

8

ENB

Register

Block A1

Op1

A

H

Q
1

Q

8

ENB

Transparent Latch

Clock1

Clock1

Enable

Fig. 7: Delay budgeting for chained data

path components.

The second

design technique

for implementing

meta-functions

with improved

scalability is

based on the

concept of delay

budgeting for

chained data

path components.

Chaining of arithmetic units within a clock cycle is a

commonly used technique owing to the fact that the delay

of two chained arithmetic units is often much lower than the

sum of the delays of the individual units [12].

2The dynamic interval scheme appears to perform worse than the fixed
interval scheme for N = 32 when the counter bit width is 2. However, this is
misleading since in the N = 32 case the counter often overflows prematurely
(in less than 32 cycles) resulting in a significant fraction of the carries going
uncompensated. This loss in accuracy is not captured within the plot, which
purely reflects the cycles overhead.

Let us consider an example of two chained arithmetic units

A1 followed by A2 performing operations OP1 and OP2

respectively, as shown in Figure 7. Under VOS, with increase

in gate delay, the first block A1 is given implicit priority over

the second block A2 in terms of time available for performing

its computation (since the outputs of A1 can change arbitrarily

late while the outputs of A2 will be latched at the end of

the clock period). This may be sub-optimal from the point-of-

view of overall accuracy of the meta-function output, since the

second block may be penalized to a point where its accuracy

degrades drastically.

Figure 8 shows the scaling trend of individual arithmetic

units under VOS. It can be observed that nature of resilience

to errors under VOS varies with arithmetic units. Arithmetic

units such as the 16-bit and 32-bit RCA scale more gracefully

compared to the 8-bit subtractor and the Wallace multiplier.

This serves as the primary motivation behind the proposed

delay budgeting technique. Since different blocks have dif-

ferent error characteristics when they are provided with less-

than-necessary time to compute their results, the available

time (clock period) should be distributed between the chained

components so as to minimize the cumulative error introduced.

700 750 800 850 900 950 1000
0

10

20

30

40

50

60

70

80

90

100

Supply Voltage (mV)

A
ve

ra
ge

A
b
so

lu
te

E
rr

or

8−bit Subtractor
8−bit Wallace Multiplier
16−bit RCA
32−bit RCA

Fig. 8: Error scaling in individual data

path components.

The delay

budgeting scheme

takes advantage

of differences

in scalability

of error with

VOS for different

components,

to perform

an equitable

distribution of

delay among the

chained units to

achieve maximum

accuracy in the meta-function result. Assuming that A1 has

better error-versus-VDD characteristic than A2, we propose

the introduction of transparent latches in between the two

chained arithmetic units for better apportioning of the clock

period between A1 and A2. Depending on the control signal

to the latches, the output of A1 can be frozen at different

instants of time within a clock period. This allows A2 more

time for completion of its computation, which improves the

accuracy of the overall meta-function result. In the case

that there are more than two chained units (such as in the

L2-norm which consists of adder, multiplier and adder in the

chain), we treat the last block separately and consider first

adder along with multiplier as a joint unit. The two key issues

that need to be addressed in the delay budgeting scheme

are the energy overhead due to the transparent latches and

the generation of appropriate control signals to the latches

for freezing the output of A1 at the correct instant of time.

The energy overhead due to the transparent latches can be

outweighed if the scalability of the meta-function under VOS

700 750 800 850 900 950 1000
0

20

40

60

80

Supply Voltage (mV)

A
ve

ra
ge

A
b
so

lu
te

E
rr

or
(%

)
RCA
Segmented RCA
KS
Segmented KS

(a) L1-Norm

750 800 850 900 950 1000
0

10

20

30

40

50

Supply Voltage (mV)

A
ve

ra
ge

A
b
so

lu
te

E
rr

or
(%

)

RCA
Segmented RCA
KS
Segmented KS

(b) L2-Norm

750 800 850 900 950 1000
0

10

20

30

40

Supply Voltage (mV)

A
ve

ra
ge

A
b
so

lu
te

E
rr

or
(%

)

RCA
Segmented RCA
KS
Segmented KS

(c) Dot Product

Fig. 9: Error vs. voltage plots for different meta-functions using dynamic segmentation

is sufficiently improved (the meta-function can be operated

at a lower VDD than the conventional case, thereby offsetting

the energy overhead due to the latches). The second issue

pertaining to generation of control signals for the latches can

be addressed in multiple ways. A chain of inverters used to

delay the original clock provides multiple tapping points,

each of which corresponds to a different time instant for

freezing the outputs of A1. Depending on the degree of VOS,

a multiplexer is used to select the appropriate version of the

delayed clock to budget the total delay between A1 and A2.

V. EXPERIMENTAL RESULTS

In this section, we present results of transistor-level and

system-level simulations that demonstrate the benefits of the

proposed design techniques at the meta-function level and

application level, respectively. We implemented the proposed

scalable meta-functions in IBM 90nm CMOS technology.

Verilog RTL descriptions were synthesized using Synopsys

Design Compiler to obtain a gate-level netlist, which was then

converted to a HSPICE netlist. The error rate versus voltage

results for each meta-function were obtained by simulating the

transistor level netlist for real sequences of input data using

NanoSim. Since circuit-level simulations are slow, obtaining

both application-level quality (accuracy) and energy values

from circuit-level simulators is infeasible. Therefore, we used

software simulations based on error profiles extracted from

transistor-level simulations to obtain application-level output

quality, while transistor-level simulations on sampled test

benches were used to obtain energy values. The system quality

results for Motion Estimation were obtained by running 12

benchmark CIF [9] video sequences. The MiLDe [13] ma-

chine learning toolkit was used for running SVM classification

on the MNIST [14] data set. Phoenix [15] and the ADULT

[16] data set were used for K-means clustering algorithm.

TABLE I: EDEP for different meta-function designs.

Meta− Function RCA DSEC RCA KS DSEC KS

L1-norm 7.48 2.44 16.00 14.00

Dot product 14.8 3.37 39.50 8.45

L2-norm 32.70 14.50 68.70 19.80

A. Meta-Function Level Impact

Figures 9 and 10 show the average absolute error rate versus

VDD for for all three meta-functions using the DSEC and

delay budgeting techniques. Both linear (ripple carry adder or

RCA) and logarithmic (KoggeStone or KS) adders were used.

Note that even though results for RCA and KS are plotted on

the same graph, the intent in these graphs is not to compare

across different arithmetic units. Each of the cases (using RCA

and KS) have been synthesized to their own specific critical

path delay. It can be observed that DSEC outperforms the

original design in terms of improved scaling in error rate

with VOS. The proposed segmentation technique performs

well irrespective of the type of arithmetic units (linear or

logarithmic) employed. Similar results are shown in Figure 10

for the delay budgeting technique.

Traditionally, energy-delay product has been extensively

used to compare different architectures. In order to compare

the various meta-function implementations we use a slightly

modified metric — energy-delay-error product (EDEP) — that

not only takes into account energy and delay but also the

error rates at scaled VDD. The EDEP metric (normalized to

10−21J.s.%) for various meta-function implementations is
shown in Table I. The results clearly show the improved qual-

ity of meta-functions designed using the proposed techniques.

B. Application Level Impact

In this section, we evaluate the energy versus quality at the

application level for three representative algorithms, namely

Motion Estimation, SVM classification and K-means cluster-

ing. System-level simulation results for these algorithms uti-

700 750 800 850 900 950 1000
0

10

20

30

40

50

Supply Voltage (mV)

A
ve

ra
ge

A
b
so

lu
te

E
rr

or
(%

)

Original
Delay Budgeting

(a) L1-Norm

850 900 950 1000
0

10

20

30

40

Supply Voltage (mV)

A
ve

ra
ge

A
b
so

lu
te

E
rr

or
(%

)

Original
Delay Budgeting

(b) L2-Norm

700 750 800 850 900 950 1000
0

10

20

30

40

50

Supply Voltage (mV)

A
ve

ra
ge

A
b
so

lu
te

E
rr

or
(%

)

Original
Delay Budgeting

(c) Dot Product

Fig. 10: Error vs. voltage plots for different meta-functions using delay budgeting

28 29 30 31 32 33 34
0.4

0.6

0.8

1

1.2

Average Frame PSNR (dB)

N
o
rm

a
li
ze

d
E

n
er

g
y

RCA
Segmented RCA
KS
Segmented KS

(a) Motion Estimation

20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

1.1

Classification accuracy (%)

N
o
rm

a
li
ze

d
E

n
er

g
y

RCA
Segmented RCA
KS
Segmented KS

(b) SVM Classification

7.2 7.3 7.4 7.5 7.6 7.7

x 10
4

0.5

0.6

0.7

0.8

0.9

1

1.1

Mean Centroid Distance

N
o
rm

a
li
ze

d
E

n
er

g
y

RCA
Segmented RCA
KS
Segmented KS

(c) K-means Clustering

Fig. 11: Application-level results: Normalized energy vs. output quality

TABLE II: Area overhead of different meta-functions.

Area(µm2) L1-norm Dot product L2-norm

RCA 1976 4100 4727

DSEC RCA 2917(47.6%) 5962(45.4%) 6649(40.6%)

KS 2551 4996 5904

DSEC KS 3384(32.7%) 6539(30.9%) 7826(32.6%)

Base DB 2192 4577 5053

Proposed DB 2327(6.2%) 4939(7.9%) 5467(8.2%)

lizing the proposed scalable implementation of L1-Norm, Dot

product and L2-Norm, respectively, are shown in Figure 11.

The energy values are obtained considering an underlying

architecture that implements the algorithms. Since transistor-

level simulations take into account VOS in logic implementing

the meta-functions, we use them in conjunction with the

profiling results provided in Figure 1 to estimate system level

energy savings. In the case of Motion Estimation, we observe

an improvement in average frame Peak Signal to Noise Ratio

(PSNR) of upto 2dB at iso-energy, while energy savings

upto 17% are obtained at iso-quality (PSNR). Similarly, SVM

quality measured in terms of classification accuracy improves

upto 52% at iso-energy, and energy savings upto 30% are

achieved for iso-accuracy. We have used the mean distance-to-

centroid as a measure of algorithm level quality for K-means

clustering, where a smaller mean distance implies higher

accuracy of clustering. We obtain 30% energy savings at iso-

accuracy and 6% improvements in mean distance at iso-energy.

Table II presents the area overhead incurred by different

meta-function designs. small to moderately high area over-

heads (6.2%∼47.6%) are incurred at the meta-function level.
However, the area overhead, is significantly amortized to

∼10% when the meta-functions are incorporated in complete
hardware architectures for motion estimation, SVM and K-

means. The increase in critical path due to the additional

circuitry varies from 1.6%∼ 20.8% depending on the meta-
function implementation. However, for the sake of fairness

in comparison, we obtain error and energy values at iso-

frequency. This is achieved by operating the DSEC and delay

budgeting meta-functions at the clock period of the baseline

case, thereby violating its own clock period constraints. As

shown in Figures 9 and 10, such an approach does not degrade

the output error even at nominal VDD due to the relatively low

probability of occurrence of critical path activating inputs.

VI. CONCLUSIONS

We presented systematic techniques to design meta-

functions that exhibit more graceful scaling behavior under

VOS for use in approximate computation. Since these building

blocks are the workhorses of the algorithms under consid-

eration, improving their scalability significantly enhances the

energy versus quality tradeoff at the algorithm level. Moreover,

the proposed design techniques are independent of underlying

architecture of the constituent arithmetic units, and can be ap-

plied to meta-functions different from those considered in this

work. Therefore, we believe that the proposed concepts can

be applied to realize highly energy-efficient implementations

of a wide range of Multimedia, Recognition and Data Mining

algorithms.
REFERENCES

[1] Rajamohana Hegde and Naresh R. Shanbhag. Energy-efficient signal
processing via algorithmic noise-tolerance. In Proc. Int. Symp. on Low
Power Electronics and Design, pages 30–35, 1999.

[2] J. Bau et al. Error resilient system architecture (ERSA) for probabilistic
applications. In 3rd Wkshp. on System Effects of Logic Soft Errors
(SELSE), April 2007.

[3] Debabrata Mohapatra et al,. Significance driven computation: A voltage-
scalable, variation-aware, quality-tuning motion estimator. In ISLPED,
Aug. 2009.

[4] Krishna V. Palem. Energy aware algorithm design via probabilistic
computing: From algorithms and models to Moore’s law and novel
(semiconductor) devices. In Proc. CASES, pages 113–116, 2003.

[5] D. Ernst et al. Razor: Circuit-level correction of timing errors for low-
power operation. IEEE Micro, 24(6):10–20, 2004.

[6] Swaroop Ghosh, Swarup Bhunia, and Kaushik Roy. Crista: A new
paradigm for low-power, variation-tolerant, and adaptive circuit synthe-
sis using critical path isolation. IEEE Trans. on CAD, 26(11):1947–1956,
2007.

[7] Andrew B. Kahng, Seokhyeong Kang, Rakesh Kumar, and John Sartori.
Slack redistribution for graceful degradation under voltage overscaling.
In Proc. Asia and South Pacific Design Automation Conference, pages
825 –831, Jan. 2010.

[8] Nilanjan Banerjee, Georgios Karakonstantis, and Kaushik Roy. Process
variation tolerant low power DCT architecture. In DATE, April 2007.

[9] MPEG Standard. www.mpeg.org.
[10] Vladimir N. Vapnik. The nature of statistical learning theory. Springer-

Verlag New York, Inc., New York, NY, USA, 1995.
[11] J. B. MacQueen. Some methods for classification and analysis of

multivariate observations. In Proceedings of 5th Berkeley Symposium
on Mathematical Statistics and Probability, pages 281–297, 1967.

[12] J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits.
Prentice-Hall, Inc., New York, NY, USA, 2003.

[13] MiLDe Machine Learning Toolkit. www.nec-labs.com.
[14] Yann Lecun and Corinna Cortes. The MNIST database of handwritten

digits.
[15] C. Ranger et al. Evaluating mapreduce for multi-core and multiprocessor

systems. In Proc. Int. Symp. High Performance Computer Architecture,
pages 13–24, 2007.

[16] A. Asuncion and D. J. Newman. UCI machine learning repository, 2007.

