
978-3-9810801-7-9/DATE11/©2011 EDAA   
   

Building real-time HDTV applications in FPGAs 

using processors, AXI interfaces and High Level 

Synthesis Tools
Kees Vissers, Stephen Neuendorffer 

Xilinx 

2100 Logic Drive 

San Jose, CA 95124, USA 

kees.vissers@xilinx.com, 

stephen.neuendorffer@xilinx.com 

Juanjo Noguera 

Xilinx 

One Logic Drive 

Citywest Business Campus 

Saggart, County Dublin, Ireland 

Juanjo.Noguera@xilinx.com

Abstract—Modern FPGAs enable complete system designs that 

include processors, interconnect systems, memory subsystems 

and a number of application functions that are implemented 

using High-Level Synthesis tools. 

Keywords-HDTV systems, processor subsystem, image 

processing applications, High-Level Synthesis. 

I. PROCESSING HDTV STREAMS  IN FPGAS. 

Modern FPGAs consist of high-speed I/O, conventional 
LUTs, and many distributed small memories. The latest silicon 
technology for FPGAs makes it possible and affordable to 
build complete HDTV processing systems in a consumer 
priced solution. The systems often consist of hard processors or 
soft processors with a modern interconnect and a number of 
dedicated processing blocks. An illustration is given in Figure 
1.  

AXI

Switch

Memory 

Controller Memory

UART RS232 

Timer 

Interrupt Cont.

Flash IF To Flash

AXI

AXI AXI

AXI

AXI
AXI

AXI

AXI

AXI

AXI

AXI

Switch

DMA
HLS

Block

DMA

adapter

Custom HW 

accelerator

Control registers
AXI

I/O

P
ro

c
e

s
s
o

r

 

Figure 1: A system architecture with processor and 

accelerators in FPGAs 

 
These systems contain a number of accelerators, dedicated 

memory interfaces and I/O to the external system. Many 
modern video SoCs have a similar architecture, integrating 
fixed-function video processing blocks with a small amount of 
customizable processing implemented in programmable 
processor cores. The key difference is that FPGAs can enable 
custom, high performance pixel processing algorithms to be 

implemented in an HDTV system. When combined with state-
of-the-art High-Level Synthesis (HLS) and predefined system 
templates defining standard video interfaces, FPGAs become a 
unified platform for video applications which can be 
completely programmed in C/C++ by an end-user. 

However, implementing this flow requires several 
significant pieces of technology.  Automatic and optimized 
High-Level Synthesis for the FPGA fabric is needed to 
program accelerators.  A system architect must be able to 
engineer and verify the system template and guarantee Quality 
of Service requirements to the end user without knowing the 
exact function that will be implemented.  An end user must be 
able to understand the performance and resource usage of a 
C/C++ program partitioned between multiple processors and 
FPGA accelerators without getting stuck in the minutiae of the 
system architecture.  We believe that the fundamental 
technology to solve these challenges exists today. 

II. HIGH – LEVEL SYNTHESIS TOOLS 

Figure 2: High-level Synthesis for FPGAs 

mailto:kees.vissers@xilinx.com
mailto:Stephen.neuendorffer@xilinx.com


High-level synthesis tools take as their input a high-level 
description of the specific algorithm to implement and generate 
the RTL description of an FPGA implementation. Modern 
high-level synthesis tools accept untimed C/C++ descriptions 
as input specifications. These tools give two interpretations to 
the same C/C++ code: (1) sequential semantics for input/output 
behavior; and (2) architecture specification based on C/C++ 
code and compiler directives.  Based on the C/C++ code, 
compiler directives and target throughput requirements, these 
tools can predictably generate high-performance pipelined 
architectures that are often as good as can be written manually 
in RTL, in a shorter amount of time. [1] Among other features, 
high-level synthesis tools enable automatic pipeline stages 
insertion and resource sharing to reduce FPGA resource 
utilization. In summary, high-level synthesis tools raise the 
level of abstraction for FPGA design, and make transparent the 
time-consuming and error-prone RTL design tasks. The overall 
design approach for the creation of an accelerator block is 
shown in Figure 2. The design of an accelerator now becomes 
and iterative design process all in C/C++ as shown in Figure 3.  

 

Figure 3: Iterative C/C++ refinement design approach

III. HDTV PROCESSING  

In modern HDTVs the size of the image is often 1920 by 
1080 pixels. When a progressive format is used, which 
broadcasts all the video lines in the frame, this is often referred 
to as a 1080p format. Commercial frame refresh rates range 
from 60 to 240 frames per second or more. The high frames 
rates are often used to reduce motion artifacts. Pixel data is 
often represented in either a luminance format, e.g. YUV, or in 
a color format, e.g. RGB. The number of bits used to represent 
a pixel is in the range of 24 to 36. When using 32 bits per pixel 
and 60 frames per second on an image size of 1920 by 1080 
pixels this gives a continuous video stream of 
1920*1080*60*32 = ~ 4 Gbit/s or ~ 500 Mbyte/s. In a typical 
video processing system there will be several streams to an 
external memory, or video frame buffers, and several video 
input and output streams. It is clear that these systems need to 
be designed in such a way that no pixel data gets lost, while 
keeping the buffers in the system as small as possible in order 
to reduce cost. 

For pixel processing accelerators, these data rates can be 
hard to accomplish.  With adequate buffering, the average pixel 
rate is approximately 125 Msamples/second.  For a processor, 
this typically means that a very small number of instructions 
can be issued per pixel, even when making use of SIMD 
parallelism.  In FPGA fabric, on the other hand, it is common 
to implement heavily pipelined accelerator architectures at 125 
MHz, even in slow consumer-grade FPGAs.  Furthermore, for 
many algorithms, these frequencies can be reached from High-
Level Synthesis.  As a result, even pixel-processing algorithms 
requiring hundreds or thousands of operations per pixel can be 
easily implemented. [2] 

However, more difficulty arises when the accelerators must 
be integrated in a system communicating with external 
memory.  Guaranteeing the system performance of these 
streams, when combined with other dynamic memory traffic 
can be a significant design problem. The system processors 
need to setup the rapid transfer of large amounts of data to and 
from external memory frame buffers, while keeping up with 

the real-time data requirements of the external video interfaces. 
This architecture implies significant performance requirements 
on the DMA subsystems, the processor response time and the 
interconnect response times. Furthermore the interface to 
external memory needs to be designed so that it can handle the 
worse case workload of all video streams and memory 
references from the processors. This is an important system 
level consideration. 

To understand these system-level considerations, we 
consider a system with one external HDTV video input, one 
external HDTV video output and 2 video accelerators each 
with two input streams and one output stream. In order to 
decouple the interfaces from the accelerator processing, we 
assume that the input is written directly to the external memory 
and the output is read directly from external memory. We also 
assume that each accelerator reads two inputs from external 
memory and writes a single output to external memory. For 
simplicity we assume all references are a single sequential 
stream. In this system we now have 3 video streams writing to 
external memory (the video input, and the two outputs of the 
accelerators), and 5 video streams reading from memory (two 
inputs per accelerator, and one output stream). The minimum 
bandwidth that needs to be supported for these video streams is 
then 8 * 500MByte/s = 4 GByte/s. Furthermore a typical 
control processor will generate a number of requests to external 
memory based on the transfer of data from the Instruction 
Cache and Data Cache. When you take a buffer of 4Kbyte at 
each input and each output in the system, this allows to buffer 
1000 samples (4 byte per sample). A memory controller will 
have an arbitration algorithm that needs to arbitrate between 
video streams and low latency requirements for cache misses. 
Typical cache miss latency needs to be in the range of 10 to 
100 cycles, where typical video streams can tolerate high 
latency but have stringent throughput requirements, as 
mentioned above. A typical system has to be designed to 
support the bandwidth and real-time requirements of all the 
streams.  The easiest way to guarantee these requirements is 
probably to include a Quality of Service mechanism in the 
memory and interconnect subsystem. In general, the challenge 



is to dimension the buffers and memory system small enough 
while guaranteeing system level performance. Typical numbers 
are that accelerators are stalled due to the interface (buffers 
empty or full, due to interconnect or memory controller) no 
more the 25% of their total cycles.  

 In many systems including in modern HDTV products 
the total system can consist of a combination of dedicated 
existing SoCs and some FPGA technology. In modern security 
systems the use of FPGAs is becoming an important 
implementation technology to achieve programmable HDTV 
video systems. These systems often combine a network 
interface, e.g. 100Mbs or 1Gbs Ethernet interface and a camera 
or display interface.  The end-to-end system performance 
requirement often requires a system analysis and performance 
simulation environment. In FPGA systems, the rapid 
implementation of the first prototype of the final product 
provides an early route to implementation and experimentation 
on the FPGA based system itself that is often not possible in 
the existing SoC development cycle.  

IV. CONCLUSION 

FPGAs are well positioned for use in high-performance 
video processing systems.  When combined with High-level 
Synthesis and video platforms with guaranteed quality of 
service, they can also be very easy to program.    

V. REFERENCES 

[1] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, 

and Z. Zhang, “High-Level Synthesis for FPGAs: From 

Prototyping to Deployment”, IEEE Transactions on CAD, to 

appear. 

[2] K. Denolf, S. Neuendorffer, and K. Vissers, “Using C-to-

gates to program streaming image processing kernels 

efficiently on FPGAs”, Proceedings of the conference on Field 

Programmable Logic (FPL), Sep. 2009. 

 

 


