
Parallelization of While Loops in Nested Loop Programs for
Shared-Memory Multiprocessor Systems
Stefan J. Geuns∗, Marco J.G. Bekooij†, Tjerk Bijlsma‡, Henk Corporaal∗
∗Eindhoven University of Technology, †NXP Semiconductors, ‡Twente University

stefan.geuns@gmail.com

Abstract—Many applications contain loops with an undeter-
mined number of iterations. These loops have to be parallelized
in order to increase the throughput when executed on an em-
bedded multiprocessor platform. This paper presents a method
to automatically extract a parallel task graph based on function
level parallelism from a sequential nested loop program with
while loops. In the parallelized task graph loop iterations can
overlap during execution. We introduce the notion of a single
assignment section such that we can exploit single assignment
to overlap iterations of the while loop during the execution
of the parallel task graph. Synchronization is inserted in the
parallelized task graph to ensure the same functional behavior
as the sequential nested loop program. It is shown that the
generated parallel task graph does not introduce deadlock. A
DVB-T radio receiver where the user can switch channels after
an undetermined amount of time illustrates the approach.

I. INTRODUCTION

Radios process infinite input streams until the user indicates
that a switch to a different channel is needed. After the switch-
ing reinitialization has to be performed in order to process the
new input stream. See for example the radio receiver as shown
in Figure 1 which demonstrates this behavior. Parallelizing this
application presents a number of difficulties, such as multiple
writers to a single variable, user dependent loop conditions
and an endless loop. Similar behavior is encountered in
other applications that show streaming behavior, such as a
video decoder or a telephone modem. The looping behavior
corresponds to a while loop with a termination condition that
depends on, for example, the user input.

These stream processing applications are often developed as
sequential code after which a time consuming and error prone
manual parallelization step is needed to convert the sequential
application into a parallel task graph that can be executed on
multiple processors.

Automatic parallelization tools have been developed to ease
this manual process of converting a sequential program to a
parallel task graph. However, to the best of our knowledge,
none of these tools can handle while loops where the exe-
cution of iterations can overlap in combination with function
level parallelism and are therefore less suitable for the above
mentioned stream processing applications.

In this paper we introduce a while loop for use in an
nested loop program (NLP) where the number of iterations and
the loop termination condition can be determined during the
execution of the loop. The NLP is parallelized automatically
by our tool that extracts function level parallelism. Buffers are
created from shared variables and synchronization is inserted
to ensure that data is written before it is read and remains
available until it is no longer used. It is shown that our
parallelization approach does not introduce deadlock.

def c h a n n e l t c h a n n e l ;
def d a t a t x , y , z ;
def i n t s t a t e ;

loop {
c h a n n e l = s e l e c t C h a n n e l () ;
r e s e t (out s t a t e) ;
loop{

x = r e a d I n p u t (c h a n n e l) ;
sw i t ch (s t a t e){

case 0:{ a c q u i s i t i o n (x , out s t a t e ’) ; }
case 1:{

y = f f t (x) ;
z = e q u a l i z a t i o n (y) ;
demap (z) ;
v e r i f y S y n c (x , out s t a t e ’) ;

} } } whi le (! channe lChangeReques t ()) ;
} whi le (1) ;

Fig. 1: NLP of a simplified DVB-T radio receiver.

Function level parallelism is extracted from an NLP by
creating a task from each function. This creates a pipeline
that enables a higher possible throughput on a multiprocessor
platform for applications which execute the same functions
often. From the extracted tasks a task graph is created with
the same functional behavior as the sequential NLP. In the
task graph the shared variables from the sequential NLP
form the edges in the graph and the tasks the nodes. Each
shared variable is translated to a circular buffer (CB) in which
overlapping windows [1] are used, such that pipelining can
be exploited. For shared-memory platforms, these CBs can be
implemented efficiently.

A CB with overlapping windows can contain multiple read
and write windows, which can overlap each other. In a window
a reading task (consumer) or writing task (producer) can use
any access pattern to read or write values, something which
is not possible in a first-in first-out (FIFO) buffer. It is also
possible to read locations multiple times and skip locations.
In a read window a consumer can only read values and in
a write window a producer can only write values. After a
location is written it can not be written again (called single
assignment) until all read windows no longer need the value at
that location. Single assignment is required because the reader
has no knowledge when which of the multiple producers
actually writes to a location, see Section IV. Each producer
has a set of full-bits where each full-bit corresponds with a
location in the CB and indicates if the location contains data.

CBs with overlapping windows employ a release consis-
tency memory model where both data and space have to be
acquired and released in order to access shared data [2]. See
Figure 2 for an overview of the operations that are possible
on a buffer. Before a producer can write data, empty locations
(space) have to be acquired first. After a location is acquired,978-3-9810801-7-9/DATE11/©2011 EDAA

acqDataL(rj , q)
. . .
readL(rj , q)
. . .
relSpace(rj)

acqSpace(wi)
. . .
writeL(wi, p)
. . .
relDataL(wi, p)

Task A Task B

Fig. 2: Operations on a buffer. Task A is a task that writes
to location p in a buffer using write window wi. Task B is a
task that reads from location q in the same buffer, using read
window rj .

data can be written and the location has to be released. The
consumer can then acquire the data, read it and release the
locations as space again. Acquiring and releasing space can
only be done on consecutive locations, for data this does not
have to be the case. The acquire statements move the front
of the window forward and can block, the release statements
move the tail of the window forward and can not block. After
a consumer acquired a location, it can be read multiple times.
Using these buffers can result in more parallelism compared
to using barriers at the end of each iteration, because parts of
iterations can now overlap. Bijlsma also introduced circular
buffers with windows where the read and write windows are
not allowed to overlap [3]. However it is shown that this
buffer type can not guarantee a deadlock free execution for all
input programs [1]. Therefore, we use CBs with overlapping
windows, which we show not to introduce deadlock. The
NLP has to satisfy single assignment in all so called single
assignment sections, which are introduced in this paper.

This paper is organized as follows. Section II presents re-
lated work. Section III gives the basic idea of the presented ap-
proach. Section IV presents the notion of a single assignment
section. This single assignment section is used to parallelize
while loops, as discussed in Section V. Section VI shows
that the code from the parallelization process is deadlock free.
Section VII discusses a case-study where a radio application
with while loops is parallelized. Section VIII presents the
conclusions and gives some ideas for future work.

II. RELATED WORK

There are a number of existing techniques which attempt to
parallelize while loops. Rauchwerger [4] is able to parallelize
while loops which contain linked lists. In contrast to our
approach, data level parallelism is used to execute multiple
loop iterations simultaneously. Our solution employs function
level parallelization which results in a pipelined execution of
tasks.

Collard [5] also extracts data level parallelism and spec-
ulatively executes the next iteration independent of the loop
condition. These parallelization methods are orthogonal to our
method and can be combined to create a hybrid approach that
exploits data as well as function level parallelism.

The approach presented by Turjan [6] transforms an NLP
into a Kahn process network (KPN). The disadvantage of that
approach is that it can only handle FIFO buffers. The conse-
quence is that skipping locations, reading locations multiple
times or reading locations in a different order than they are
written requires a reordering buffer and a potentially complex
controller or lookup table. Our buffers do not need such a
controller task or lookup table.

loop{
x [F (i)] = . . .
x [G(i)] = . . .
. . . = x [H(i)] ;

} whi le (1) ;

Fig. 3: NLP where DSA
is required for a pipelined
parallel execution.

loop{
x=A() ;
loop{

x=B () ;
} whi le (. . .) ;
C(x) ;

} whi le (1) ;

Fig. 4: NLP with statements
before, in and after the loop.

Traditionally compilers apply software pipelining to sched-
ule instructions in such a way that multiple iterations of loops
can overlap [7], [8]. The compiler which performs instruction
level software pipelining knows the execution times and finish
times of all instructions and can therefore create a schedule
that satisfies all dependency constraints. The difference with
our method is that we do not assume a global clock nor do we
create a fixed execution order and therefore we need to insert
synchronization in order to satisfy all dependency constraints.

Douillet [9] performs software pipelining for multicore
architectures. However, multiple producers where it is not
known at compile time which producer writes the actual value
are not supported by their synchronization statements.

III. BASIC IDEA

The parallelization process starts with extracting tasks from
the sequential NLP. A program that is parallelized must be in
single assignment form. Consider for example the NLP from
Figure 3 in which two producers write to the same array x,
both using an unknown data dependent index expression. If
dynamic single assignment (DSA) [10] was not guaranteed,
the given sequential order must be preserved because the
second assignment can possibly overwrite the result of the first
assignment. Therefore, no parallelism can be extracted from
this NLP without DSA. However, DSA can not be required on
the complete program as this is impossible for infinite sized
loops. Therefore, it is required that DSA holds for each loop
body and initialization statements of that loop. Because DSA
can not be verified automatically, NLPs are assumed to be in
DSA form.

Figure 4 shows an NLP with a statement using the same
variable before, in and after a loop. The optimal schedule
occurs when there is pipelining between the statements outside
and inside the loop, see Figure 5b. This in contrast to when a
barrier is used, see Figure 5a. To achieve the optimal schedule,
the tasks extracted from the functions A and C must know
if there are enough empty or full buffer locations after the
loop has ended. Therefore, these tasks must synchronize at
the same rate as task B and therefore an extra loop is added
to the corresponding tasks.

A

B

C

AA

B BB B B

C C

(a) Schedule with barriers, indicated by
the dashed lines.

A

B

C

AA

B BB B B

C C

(b) Schedule without barrier.

Fig. 5: Possible schedules with and without barriers.

i n t x ;
x = 3 ;
do{

i n t x , y ;
x = 5 ;
y = 2 ;
p r i n t (y) ;

} whi le (. . .) ;
p r i n t (x) ;

(a) Legal C program

def i n t x , y ;
x = 3 ;
loop{

x = 5 ;
y = 2 ;
p r i n t (y) ;

} whi le (. . .) ;
p r i n t (x) ;

(b) Illegal NLP

Fig. 6: Sequential program as C code on the left and as NLP
on the right.

IV. SINGLE ASSIGNMENT SECTION

A program that is parallelized must be in single assignment
form. Single assignment means that a scalar or an element in
an array is written only once. If this would not be the case, a
task that reads from a CB does not know when the relevant
writer has written its value. For example the variable state
from Figure 1 is written multiple times by three different tasks.
Two different forms of single assignment exists, static single
assignment (SSA) and DSA. SSA [11] means that there is
only a single assignment statement in the code that writes to a
scalar or array. DSA requires that a scalar or an element in an
array is written only once during the execution of a program.
A program in SSA form is not necessarily in DSA form or
vice versa.

However, both notions of single assignment are not suffi-
cient for while loops with an unknown iteration upperbound.
SSA can not handle multiple assignment statements to a single
variable, therefore if-statements with multiple branches writing
to the same variable are problematic. DSA can not guarantee
a finite array size because each loop iteration requires array
elements that are not yet written. For an infinite loop, this
would result in an infinite array size. For example in Figure 1
the variable state is written by three different statements,
therefore the code does not satisfy SSA. The variable x is
written an infinite number of times and therefore this example
is also not DSA.

We therefore introduce the notion of a single assignment
section (SAS). During the execution of a SAS each scalar
and array element can be written only once. A SAS belongs
to a scalar or a complete array. Therefore, at each point in
the code multiple SASs may exist and a scalar or array can
have multiple SASs. At the end of a SAS the value of the
variable from the SAS is lost, giving a variable a temporal
scope. Temporally scoped means that the value of a variable
is not only bounded by the location in the program, but also
by time.

The length of each SAS is defined at compile time by
the semantics of the sequential NLP. The first SAS of all
variables always starts at the beginning of an NLP. For each
scalar or array written before the end of the while loop, its
corresponding SAS ends at the end of the loop. This SAS is
executed as often as the number of iterations of the loop. A
new SAS is started by the statements after the while loop, if
any. From the second iteration onwards the SAS has a more
limited scope from the start of the loop until the end of the
loop as this part of the code contains the repeating statements.
Note that the variables in the loop condition are part of the

loop and therefore belong to the same SAS as if the variables
were written inside the loop. If a scalar or array is not written
before the end of the while loop, its SAS does not end at the
loop but continues until the end of the first loop where it is
written in or until the end of the NLP, whichever comes first.

Consider for example the program in Figure 6 which shows
a program with a loop. The program from Figure 6a is valid
according to the semantics of C. However, it is illegal as an
NLP containing SASs, see Figure 6b. When the program is
executed as C the print of the variable x would give 3 because
the scope of the x in the loop ends at the end of the loop. When
the program is used as an NLP, two problems arise. The first
problem is that the variable x is written two times in the same
SAS, first with the value 3 and then with the value 5. The
second problem is that the printing of x uses a value of x that
is not yet written, as the last write action to x was in another
SAS.

A SAS is valid if its corresponding variable is in DSA form
within the SAS and all locations are written before they are
read. The complete program is valid if all SASs of all variables
are valid.

Because the value of all variables is temporally scoped, the
values are destroyed at the end of a SAS. Because a SAS
ends at the end of a loop iteration there is no way to pass
values to the next loop iteration. To solve this we re-use the
stream concept also found in Silage [12]. In Silage a variable
is essentially a stream which can be shifted forward in time
using the “@” operator. Also in synchronous guarded actions
as proposed by Baudisch [13] this concept can be found in
the form of the next operator. This next operator delays the
write of a value by one macro step. In our case the macro
step is the execution of a SAS. This concept of writing to the
next execution of a SAS is annotated with a ’ in our NLPs.
A direct consequence is that this scalar or array element can
not be written anymore when executing the next SAS as this
would violate the DSA requirement.

V. PARALLELIZATION OF WHILE LOOPS

In our approach function level parallelism is extracted
from while loops. This means that each function in the NLP
becomes a task in the task graph. Communication between the
tasks is done via CBs. Circular buffers which support windows
are used because they allow for flexibility when elements in
arrays are produced out-of-order or when elements are not
read [1], [3]. These CBs require that all of the windows in a
buffer are moved an equal amount of times through the buffer
during execution. If a location is released from the window
the value at that location can no longer be acquired again by
the same window.

From the input NLP a task graph is extracted. A task graph
is a directed graph H = (T, S,A, σ, θ). The set of vertices is
T , where each ti ∈ T represents a task. The set of hyperedges
is S, where each (U, V) ∈ S, with U, V ⊆ T represents a
buffer. Each buffer si, with si ∈ S, corresponds with an array
ai, with ai ∈ A. This array corresponds to a variable declared
in the NLP. The capacity of each buffer si is given by θ(si),
with θ : S → N. The size of each array ai is given by σ(ai),
with σ : A→ N.

A hyperedge is an edge which can have multiple source
and/or destination nodes. For example in the task graph from
Figure 7b a hyperedge is present for the buffers sx and sb. In

x = f()

y = g(x) h(y)

sx

sy

def i n t x ;
def i n t y ;
loop{

x = f () ;
loop{

y = g (x) ;
h (y) ;

} whi le (. . .) ;
} whi le (1) ;

(a) NLP with a variable that is
only written in the statements be-
fore the while loop. The dots in
the loop condition indicate any
condition is allowed.

x = f()

x < 10x’ = g()

sx

sb

def i n t x ;
loop{

x = f () ;
loop{

x’ = g () ;
} whi le (x < 10) ;

} whi le (1) ;

(b) NLP with a variable that is
written in the statements before
the while loop and also in the
while loop.

Fig. 7: Two cases where different synchronization statements
are added. The task graph is shown at the top of each NLP.
The contents of the dashed box are the tasks in the inner loop.

the context of buffers, a hyperedge si = (U, V), with U, V ⊆
T , means that every task in U potentially writes to si and
every task in V potentially reads from si. The consequence
for buffers with overlapping windows is that each source and
destination task have a window in the buffer and therefore
need to move this window correctly. During the execution of
a SAS there can be only one producer which writes a value to
a location (DSA), even though there can be more producers.
If a hyperedge has multiple consumers, all of these tasks can
read any location, as long as it is written first.

For the task graph to produce correct results, synchroniza-
tion statements have to be inserted for all shared variables.
There are three cases each in which synchronization state-
ments are added at different locations in the program. In the
sections V-A, V-B and V-C these cases will be discussed.

A. Read-Only Variables
The simplest case to insert synchronization occurs when

a variable is only written in the statements before a loop.
Consider the example NLP in Figure 7a where the value of x
is determined before the loop construct. After parallelization
two buffers, sx and sy , are created and since there are three
functions in the example, also three tasks are created. These
tasks are shown in Figure 8.

In the example, the only writer of the variable x is the
function f . This means that the SAS for x starts at the
beginning of the program from Figure 7a and ends at the end
of the program as there are no other while loops. Inside the
loop the variable y is written by the function g. Therefore a
SAS for y is created from the beginning of the program to
the end of the while loop. From the second iteration of the
loop and onwards the SAS for y is defined from the start of
the loop until the end of the loop. This program is valid as all
SASs are in DSA form.

The synchronization statements for the buffers which are
only written by the statements before the loop are inserted

Task 1
do{

acqSpace (x) ;
w r i t e L (x , 0 , f ()) ;
r e l D a t a L (x , 0) ;

} whi le (1) ;

Task 2
do{

acqDataL (x , 0) ;
do{

acqSpace (y) ;
w r i t e L (y , 0 ,

g (readL (x , 0))) ;
r e l D a t a L (y , 0) ;

} whi le (...) ;
r e l S p a c e (x) ;

} whi le (1) ;

Task 3
do{

do{
acqDataL (y , 0) ;
h (readL (y , 0)) ;
r e l S p a c e (y) ;

} whi le (...) ;
} whi le (1) ;

Fig. 8: Parallelized code for the NLP in Figure 7a.

before and after any while loop in which they are read.
In the example the synchronization statements for buffer sx
are inserted before and after the while loop. Synchronization
statements for buffers written in the statements in the loop are
inserted in the loop. In the example this is done for the buffer
sy .

It would also be possible to insert the synchronization for
read-only variables in the loop. However, due to the temporal
scope of the variables all values would be lost after the first
iteration of the loop. A method to prevent this is to copy the
old value to the next SAS execution using the assignment
statement “x’= x;”. This statement must be inserted in the
loop. The disadvantages are that a new task is created for this
statement and the synchronization overhead is significantly
increased as every loop iteration synchronization must be
performed for the copy action.

B. Shared Variable Before the Loop
It can also be the case that an array is written in the

statements before the loop as well as in the statements inside
the loop. The generated synchronization code will be inside
the loop as the SAS is defined from before the loop until
the end of the loop. For all tasks extracted from functions
in the statements before the while loop, extra synchronization
statements have to be inserted, if buffers are used which are
also written in the statements in the while loop. This extra
synchronization is required by the used CBs. The CBs require
that all windows are no more than one iteration apart because
a write window can never overtake a read window and a
read window can never overtake the write window that is the
furthest in its execution.

An example NLP which writes to a variable both in the
statements before and in the loop is given in Figure 7b. The
variable x is written before the loop and also inside the loop,
this forces the synchronization to be inside the loop. The
SAS for x is defined from the start of the program up to
and including the loop condition. The generated code for this
example can be found in Figure 9. Task 1 from Figure 9
shows that the space acquired before the loop, is conditionally
acquired for the next execution of the same SAS, depending
on if the same SAS is actually executed again. When this task
is created using this scheme and executed, the synchronization
is done equally often as the synchronization of all other tasks.

Figure 9 also shows that a new task is created when a
variable or function is used in the loop condition. In the figure
a new buffer b is created to store the condition value.

Note that sometimes renaming the variables written to
before the loop can decrease the number of tasks in which

Task 1
i n t t ;
do{

acqSpace (x) ;
w r i t e L (x , 0 , f ()) ;
r e l D a t a L (x , 0) ;
do{

acqDataL (b , 0) ;
t = readL (b , 0) ;
r e l S p a c e (b) ;
i f (t){

acqSpace (x) ;
r e l D a t a L (x , 0) ;

}
} whi le (t) ;
acqSpace (x) ;
r e l D a t a L (x , 0) ;

} whi le (1) ;

Task 2
i n t t ;
do{

acqSpace (x) ;
r e l D a t a L (x , 0) ;
do{

acqSpace (x) ;
w r i t e L (x , 0 , g ()) ;
r e l D a t a L (x , 0) ;
acqDataL (b , 0) ;
t = readL (b , 0) ;
r e l S p a c e (b) ;

} whi le (t) ;
} whi le (1) ;

Task 3
i n t t ;
do{

do{
acqDataL (x , 0) ;
t = (readL (x , 0)

< 10) ;
r e l S p a c e (x) ;
acqSpace (b) ;
w r i t e L (b , 0 , t) ;
r e l D a t a L (b , 0) ;

} whi le (t) ;
acqDataL (x , 0) ;
r e l S p a c e (x) ;

} whi le (1) ;

Fig. 9: Parallelized code for the NLP in Figure 7b.

an extra loop must be added. For example if there are many
producers before the loop for a buffer x this would result in
many tasks which would all need the extra loop. However, if
these tasks write to a new variable y which is not written in
the loop, no extra loops must be added for y. Only a copy
statement must be added to copy y to x to make the values
available for the statements in the loop. This copy task will
be the only task with the extra loop as this is the only task
which writes to a shared variable.

C. Shared Variable After the Loop

The NLP from Figure 4 gives an example of a variable being
used in the statements before, in and after the first while loop.
Since the example has statements using x after the inner while
loop, a second SAS is created for x next to the SAS ending
at the first while loop. This second SAS starts after the inner
while loop and ends at the end of the outer while loop.

As before, all tasks have to synchronize an equal number
of times during the execution of the program. Therefore also
for the tasks that use a value after the loop, a loop containing
synchronization statements must be added. The consequence
for the example is that all tasks need both while loops.

It might be more intuitive to have the last SAS span beyond
the while loop, thus letting variable values also be available
after the first loop. For instance by extending the temporal
scope of a variable in the last iteration of the loop to include
statements after the loop. However, this will cause problems
as SASs from the same variable can now overlap each other.
Consider the example NLP from Figure 4 again. The first SAS,
containing the inner while loop, will overlap with the second
SAS, containing C. If C would also write to x, this will violate
DSA. Therefore a SAS runs up to the end of a loop.

VI. DEADLOCK FREEDOM

In this section we give the essence of a prove that using
CBs with overlapping windows never introduces deadlock if
all buffer capacities are at least the array sizes times the
number of simultaneous loop iterations used and the SASs
in the sequential NLP are all valid.

The parallel task graph can only deadlock due to a cyclic
dependency caused by the insertion of acquire statements
because these are the only blocking operations, see also
Figure 2. By construction the parallelized task graph with

inserted synchronization statements can always execute dead-
lock free using the sequential order defined in the NLP as
a schedule, assuming the sequential NLP was valid. It is
possible that when the application executes, it deviates from
this schedule. However, the sequential application is deadlock
free with the extra synchronization statements inserted using
the same method as for the parallel program, it must also be
deadlock free when executed in parallel because the sequential
order constraints are removed. Removing constraints can never
introduce deadlock as no cycles can be formed in a graph by
removing edges.

To show that the sequential NLP with synchronization
statements inserted does not introduce deadlock, we have to
consider the insertion of synchronization statements in more
detail. From the sequential NLP an NLP with synchronization
is created by inserting the acquire statements for a function
immediately before the function and the release statements
immediately after this function, analogously to the insertion
into the parallel task graph. Because we assume that all SASs
are valid, a written location is always released before it is
acquired for reading. Empty locations can always be acquired
as the buffer capacity is, by assumption, at least as large as the
number of executed acqSpace statements per write window.
Read locations are always released by construction, therefore
all following loop iterations can acquire them again.

For a while loop in the parallel task graph the acquire
statements for variables which are not written in the loop,
are moved to immediately before the loop. As all SASs were
assumed to be valid in the sequential NLP, all written locations
in the buffers are still released before being acquired for
reading. Therefore, the parallelization of the while loop does
not introduce deadlock.

Since the sequential NLP with synchronization statements
inserted does not introduce deadlock and the parallelization
process only splits this NLP, CBs with overlapping windows
are deadlock free, provided that the sequential NLP is valid.

VII. CASE-STUDY

This section illustrates our parallelization approach for
while loops by means of a case-study. Figure 1 shows the
structure of a, for explanatory reasons simplified, DVB-T re-
ceiver application which switches between two modes, named
0 and 1 here. After a potentially infinite amount of time, the
user can switch between channels and the application will
break the inner while loop and switch channels. This whole
flow is repeated infinitely often.

The task graph for the NLP from Figure 1 can be found in
Figure 10. As there are eight functions in the NLP, also eight
tasks are created. Because the loop condition is a function
which we want to execute only once in one iteration, the return
value of the function must be distributed to all tasks in the
loop. The buffer t is created for this purpose.

Because the equalization and demap functions are inside
the switch statement, the tasks formed from these function also
need read access to the variable state. An improved version
of the parallelization process can remove this edge in the task
graph as y and z already enforce this control flow. Note that
the five tasks that read from the CB state can be pipelined,
even though the loop condition is data dependent. Each of
these tasks needs a different value of the variable state if they
are pipelined, because they are executed in different iterations

channelChangeRequest

readInput

demap

acquisition

sx

sstate

st

reset

equalization fft

sysz

verifySync

schannel

selectChannel

Fig. 10: Task graph of the inner while loop of the radio receiver
from Figure 1. The buffer t is added to distribute the loop
condition to all relevant tasks.

of the loop. Therefore, the CB state needs a capacity of
five locations. This pipelining behavior can be seen in the
schedule in Figure 11, which is generated from the execution
of the radio receiver. The five tasks are each in different loop
iterations, indicated by the numbers in the schedule.

The state variable is a variable which is shared between
the statements before the loop and in the loop. Therefore the
task created from the reset statement must also contain the
while loop. The synchronization statements are in the while
loop for all tasks that use the state variable. The channel
variable is a variable which is only written in the statements
before the while loop. The synchronization statements for the
readInput task are therefore outside of the loop.

VIII. CONCLUSIONS

We have introduced an approach for the automatic paral-
lelization of nested loop programs (NLPs) that contain while
loops with unknown iteration upper bounds. Tasks are ex-
tracted from an NLP and circular buffers (CBs) are inserted to
facilitate communication between the tasks. Synchronization is
added to ensure schedule independent functional behavior that
is equivalent to the sequentially executed NLP. We have also
shown that deadlock is not introduced by the parallelization
process.

From each function in the NLP a task is formed. Dependen-
cies between variables are analyzed and CBs are substituted
for all shared variables. Synchronization statements to acquire
and release data are inserted using three different schemes in
such a way that synchronization can be performed for a while
loop with an unknown iteration upperbound.

We have introduced the notion of a single assignment
section (SAS), which defines the life-time of the variables
from an NLP. The life-time of the variables is defined such
that even in the case of an unbounded number of iterations,
dynamic single assignment (DSA) can be defined for the NLP.

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 1 2 3 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1 2 3 4 5 6 7 8 9 10 11 12
0 1 2 3 4 5 6 7 8 9 10 11 12
0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

init

selectChannel

reset

readInput

acquisition

fft

equalization

demap

verifySync

channelChangeRequest

Fig. 11: Scheduling trace of the radio receiver from Figure 1.

The DSA property allows for a pipelined execution of the
statements in the while loop.

The CBs use overlapping windows, for which we have
shown that the execution is deadlock free if the buffer ca-
pacities are at least the array sizes times the number of used
iterations. Using these buffers enables the extracted parallel
program to be pipelined across loop iterations.

The presented approach is demonstrated on a DVB-T radio
receiver that contains a while loop where the loop condition
depends on user input. Despite the multiple producers writing
to a single variable and multiple consumers reading from a
single variable, the while loop can be parallelized in such a
way that iterations can overlap.

Potentially interesting future work is to search for an
extension for circular buffers with overlapping windows where
windows can be temporarily disabled. Instead of inserting the
extra loops needed to move the windows an equal amount
of times, the unused windows can be disabled such that it
does not have to move in pace with the other windows,
thus reducing synchronization overhead. The window can be
reactivated if it is needed again. In this case the extra loop in
Task 1 from Figure 9 would no longer be needed.

The presented approach is demonstrated for a single ap-
plication, however we expect many other applications with
streaming behavior to have similar requirements on while
loops and can therefore benefit from the presented approach.

REFERENCES
[1] T. Bijlsma, M. Bekooij, and G. Smit, “Circular buffers with multiple

overlapping windows for cyclic task graphs,” in press.
[2] B. Li, P. van der Wolf, and K. Bertels, “TTL inter-task communication

implementation on a shared-memory multiprocessor platform.”
[3] T. Bijlsma, M. Bekooij, P. Jansen, and G. Smit, “Communication

between nested loop programs via circular buffers in an embedded
multiprocessor system,” in SCOPES ’08: Proc. of the 11th international
workshop on Software & compilers for embedded systems. ACM, 2008,
pp. 33–42.

[4] L. Rauchwerger and D. Padua, “Parallelizing while loops for multipro-
cessor systems,” in Proc. for the 9th International Parallel Processing
Symposium. Citeseer, 1995, pp. 347–356.

[5] J. Collard, “Automatic parallelization of while-loops using speculative
execution,” International Journal of Parallel Programming, vol. 23,
no. 2, pp. 191–219, 1995.

[6] A. Turjan, B. Kienhuis, and E. Deprettere, “An integer linear program-
ming approach to classify the communication in process networks,”
Software and Compilers for Embedded Systems, pp. 62–76.

[7] M. Lam, “Software pipelining: an effective scheduling technique for
vliw machines,” in PLDI ’88: Proc. of the ACM SIGPLAN 1988 con-
ference on Programming Language design and Implementation. ACM,
1988, pp. 318–328.

[8] H. Rong, A. Douillet, R. Govindarajan, and G. R. Gao, “Code generation
for single-dimension software pipelining of multi-dimensional loops,” in
CGO ’04: Proc. of the international symposium on Code generation and
optimization. Washington, DC, USA: IEEE Computer Society, 2004,
p. 175.

[9] A. Douillet and G. Gao, “Software-pipelining on multi-core architec-
tures,” in 16th International Conference on Parallel Architecture and
Compilation Techniques, 2007. PACT 2007, 2007, pp. 39–48.

[10] P. Vanbroekhoven, G. Janssens, M. Bruynooghe, and F. Catthoor,
“Transformation to dynamic single assignment using a simple data flow
analysis,” Programming Languages and Systems, pp. 330–346.

[11] B. Alpern, M. Wegman, and F. Zadeck, “Detecting equality of variables
in programs,” in Proc. of the 15th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. ACM, 1988, pp. 1–11.

[12] E. Wang, “A compiler for Silage,” University of California, Berkeley,
1994.

[13] D. Baudisch, J. Brandt, and K. Schneider, “Multithreaded code from
synchronous programs: Extracting independent threads for OpenMP,”
Design, Automation and Test in Europe (DATE), Dresden, Germany,
2010.

