
Demand Code Paging for NAND Flash in
MMU-less Embedded Systems

José A. Baiocchi and Bruce R. Childers

Department of Computer Science, University of Pittsburgh

Pittsburgh, Pennsylvania 15260 USA

Email: {baiocchi,childers}@cs.pitt.edu

Abstract—NAND flash is preferred for code and data storage
in embedded devices due to its high density and low cost.
However, NAND flash requires code to be copied to main
memory for execution. In inexpensive devices without hardware
memory management, full shadowing of an application binary is
commonly used to load the program. This approach can lead to
a high initial application start-up latency and poor amortization
of copy overhead. To overcome these problems, we describe a
software-only demand-paging approach that incrementally copies
code to memory with a dynamic binary translator (DBT). This
approach does not require hardware or operating system support.
With careful management, a savings can be achieved in total
code footprint, which can offset the size of data structures used
by DBT. For applications that cannot amortize full shadowing
cost, our approach can reduce start-up latency by 50% or more,
and improve performance by 11% on average.

I. INTRODUCTION

In many embedded devices, application binaries are kept

in NAND flash storage, which has relatively high access

latency and energy compared to main memory. To be executed,

an application binary must be loaded to the device’s main

memory [1]. In low-cost devices without a hardware memory

management unit (MMU), copying the entire binary to main

memory, known as full shadowing, is often used. In this

approach, an application may suffer increased run-time and

start-up delay. The application must execute long enough

relative to its binary size that the copying cost from the slow

flash device is amortized. The application boot-up delay can

also be large, depending on code size, because the entire

shadowing cost is paid upfront before execution begins.

Demand paging has been proposed as an alternative that

allows partially loaded programs to be executed [2], [3]. It

divides an application binary into equal-sized portions, called

pages, which are copied from flash to main memory only when

needed for execution. An MMU is typically used to generate

a page fault when an unavailable page (i.e., in memory) is

accessed. The page fault is handled in the operating system

(OS) by loading the page. Demand paging reduces boot time

and will typically help performance by loading only some

pages, but it requires the complexity and cost of a processor

with an MMU and a full OS that supports paging. A cost-

sensitive device may not be able to justify these changes,

particularly when the device would otherwise use a simple

microcontroller and lightweight OS executive.

In this paper, we present a software-only approach for de-

mand paging of code stored in NAND flash without requiring

an MMU or OS support. The approach aims to improve boot-

time and performance of programs that do not amortize their

shadowing cost. The basis of the approach is dynamic binary

translation (DBT), a technology that enables the control and

modification of a program as it executes. A novel demand-

paging service is added to DBT to load code along newly

taken execution paths. Because DBT can introduce memory

overhead, our demand-paging service is designed to reduce

total code footprint. The code footprint savings can be used

to help offset memory requirements from data structures

maintained for DBT.

DBT provides important services in general-purpose sys-

tems, including virtualization, security, and dynamic opti-

mization. Due to these uses, it has also gained attention

for embedded systems, with much research on memory and

performance efficient DBT for embedded processors [4], [5],

[6]. DBT has also been used to create embedded software

services [7], [8]. Our demand-paging service may be combined

with these other services to increase their applicability and

benefit in cost-sensitive devices.

This paper makes the contributions: (1) A design and eval-

uation of a DBT-based demand-paging service for code stored

in NAND Flash, showing how boot time and overall execution

time are improved. (2) The integration and unified manage-

ment of the software buffers used by our DBT system to

store original (untranslated) code and translated code. (3) An

evaluation of our demand-paging service with different page

replacement algorithms (FIFO, LRU) and different unified

code buffer sizes, showing how code memory consumption

can be reduced with little performance loss.

II. LOADING AN APPLICATION FROM NAND FLASH

Flash has become standard to store code and data files

in embedded devices, due to its non-volatility, reliability and

low-power consumption. NAND flash is common for storage

because it has high density at a low cost per byte. A NAND

flash chip is divided into multiple blocks and each block is

divided into pages. In small chips, a page holds 512 bytes

of data and 16 control bytes. NAND flash can only be read

or written one page at a time. An entire block must be

erased before its pages can be written. Reading data takes

978-3-9810801-7-9/DATE11/ c©2011 EDAA

tens of microseconds for the first access to a page, and tens

of nanoseconds per each additional byte read. Flash has to

be managed due to wear-out from write operations, which

necessitates a Flash Translation Layer (FTL)[9]. The OS

accesses flash as a block device. Since efficient random access

to bare NAND flash is not available, application code stored

in flash must be copied to main memory to be executed. There

are two approaches to enable code execution: full shadowing

and demand paging.

Full shadowing copies the entire contents of a program’s

binary from flash to main memory [10]. This approach is

feasible when the binary fits in the available main memory

– i.e., it leaves room for the program’s data (stack and heap).

However, as the size of the binary increases, the application’s

boot time and memory demand also increase. Further, the load

time of the application may not be fully amortized because

a program may execute for a short duration relative to the

latency to load the application binary image.

Demand paging allows the execution of programs by

partially loading a binary image as needed. With demand pag-

ing, load latency can be improved and memory requirements

reduced by dividing code and data in NAND flash into logical

pages and copying them to main memory when requested

for execution. Because only the code that is executed is read

from the slow flash device, there is less total load overhead,

which can be more easily amortized. However, this approach

requires an MMU and OS support to generate and handle a

fault when a memory operation accesses a page that is not

in main memory [2]. OS management also incurs overhead

beyond the latency to access the flash device.

Ideally, a low-cost embedded device should get the ad-

vantages of demand paging (low load cost, quick start-up)

without its complexity (MMU and OS paging). A software-

only approach with a compiler and a run-time system is

one way to achieve this goal [3]. A compiler technique,

however, requires a program to be prepared ahead-of-time for

execution. For devices with different memory organizations,

separate versions of the software must be prepared, which is

burdensome and complicates in-the-field updates.

Instead of a compiler, we use DBT to control code execution

and provide demand paging for code in flash. Our technique

complements full shadowing since it targets applications that

have large start-up delay and/or cannot amortize shadowing

cost. When full shadowing works well, we do not enable

demand paging. This strategy needs no hardware or OS

support, and it permits applications, including legacy ones,

to be executed without advanced preparation.

III. DEMAND PAGING WITH DBT

Conventionally, DBT accesses an application’s code from its

process image in main memory [11], and the OS and hardware

provide virtual memory and paging. In our approach, DBT

takes the place of the OS loader. DBT controls application

execution and accesses a binary image in flash to load code

pages when needed for translation. DBT is incorporated as part

of the system executive and instantiated one time to serve all

 YES

 NO

Initialization

New

PC
Cached?

Finished?

Link

Fragment

Context

Restore

Context

Save

New

Fragment

Fetch

Decode

Translate

Next PC

Dynamic Binary Translator

NO

 YES

Fragment

Cache Build Fragment

Fig. 1. DBT system overview

applications that are incrementally loaded. The DBT system

is copied, with the executive, from ROM to main memory on

system boot-up.

A. Dynamic binary translation

DBT loads, examines and possibly modifies every instruc-

tion before it is executed for the first time. A high-level view

of DBT is shown in Figure 1. To ensure that all untranslated

application instructions are processed prior to their execution,

the translator must be invoked whenever new application

code is requested. New code is requested at the beginning of

execution and every time a control transfer instruction (CTI)

targets an untranslated application address.

As shown in Figure 1, the translator is first initialized

and takes control of the application. The translator checks

whether there is translated code for the current program

counter (PC). If there is translated code for the PC, that code is

executed. Otherwise, a group of translated instructions, called

a fragment, is created, saved in a software-managed buffer,

and executed. The software buffer is called the fragment cache

(F$), as shown on the left of Figure 1.

To build a fragment, each instruction is fetched, decoded

and translated for a particular purpose (e.g., to add security

checks), as shown in the loop on the right of Figure 1.

When incremental loading is applied by itself, the translate

step simply copies most untranslated instructions to the F$.

Translation stops when a CTI is found [5]. After a new

fragment is built, application context is restored and the new

fragment is executed. The translator replaces the untranslated

target of a CTI with an exit stub trampoline. A trampoline “re-

enters” the translator to find or create a fragment. A context

switch is done when the translator is re-entered.

To avoid unnecessary context switches, the fragment linker

overwrites each trampoline with a direct jump to its corre-

sponding target fragment once the target is translated. Indirect

CTIs may change their target at run-time, so they are replaced

by a portion of code that maps the original application address

targeted by the indirect CTI to its corresponding translated

address. This code performs a lookup into an indirect branch

translation cache (IBTC).

B. Adding Demand Paging to DBT

An application binary contains code and statically initialized

data (e.g., literal strings). The binary also contains metadata

that indicates where code and data should be placed in memory

(i.e., their memory addresses). When full shadowing is used,

File System

NAND Flash

Storage

Memory

App.

Code

Binary

LOAD

ALL

OS

Data

(a) Fully Shadowed

File System

NAND Flash

Storage

DBT

Memory

Binary
Scattered

Page

Buffer

LOAD

PAGE

Data

Fragment

Cache

(b) Demand Paging

Fig. 2. Application Binary Loading

the OS executive loads the code and data from the binary to

main memory and starts application execution, as illustrated

in Figure 2(a).

Our approach is shown in Figure 2(b); DBT replaces the

OS loader. During initialization, the DBT system loads data

from flash to main memory. Code pages are loaded on-demand

when the translator builds a new fragment. A memory buffer,

called the page buffer, holds the code pages copied from the

binary image. To achieve the best performance, the page buffer

can be made as big as the code segment in the binary. Each

loaded page is then placed at the same memory address that a

full shadowing loader would put it. We call this approach the

scattered page buffer (SPB).

To perform demand paging, the fetch step in Figure 1 has

to be changed to detect and handle page faults in software.

The new fetch step implements Algorithm 1.

Algorithm 1 Fetch step with scattered page buffer

1: instruction←∗(PC)
2: if instruction = 0 then {software page fault}
3: page← (PC−TADDR)/PSIZE
4: lseek(b f d, TOFFSET + page∗PSIZE, 0)
5: read(b f d, TADDR+ page∗PSIZE, PSIZE)
6: instruction←∗(PC)
7: end if

In Algorithm 1, TADDR is the start address of the code

segment in main memory, TOFFSET is the start offset of the

code section in the binary, and PSIZE is the size of a page.

The algorithm assumes the SPB is initialized to zeroes during

allocation and that 0 is not a valid encoding for an instruction

(a different sentinel value may be used).

The fetch step tries to obtain an instruction needed by the

program so it can be decoded and translated. Line 1 reads the

instruction from PC address. If the instruction is present, the

only additional cost relative to translating full shadowed code

is checking for a page fault on line 2. When a page fault is

detected, a page number is computed for the faulty address

and the necessary code page is copied from the binary to its

corresponding address in main memory (lines 3-5). On line 6,

the instruction is read again after the page is copied.

The SPB requires enough physical memory to hold untrans-

lated code pages, translated code and data. Demand paging

with DBT improves the application’s boot time since appli-

cation execution starts just after copying any data segments,

reading the first page and forming the first fragment. Only

pages containing executed code are loaded. Full shadowing

Free Space
Free Space

Fragments

Untranslated

Pages

Fragments Fragments

Untranslated

Pages

Untranslated

Pages

(1) Load & Translate (2) Overflow: Evict Page

low

address

high

address

Fig. 3. Unified Code Buffer

may load pages that are never executed. Loading only the

pages containing executed code reduces total load time, which

helps amortize time spent on translation.

C. Unified Code Buffer

Executing code under DBT increases memory usage since

the original code pages are treated as data and the application

code that is actually executed is held in the fragment cache.

To mitigate the increase in memory pressure due to DBT, we

combine a page buffer (PB) and the F$ into a Unified Code

Buffer (UCB). The UCB holds both untranslated pages and

translated fragments. Its size can be restricted to be smaller

than the original binary size in flash. Thus, the code memory

footprint can be made smaller with our demand-paging service

than with full shadowing, and the savings in code footprint can

be used to offset the relatively small data structures needed by

DBT [6], [12].

Figure 3 illustrates the organization and management of

the UCB. The UCB has a fragment portion that starts at its

lowest address and grows towards its highest address. There

is an untranslated code page portion at the highest address

that grows toward the lowest address. The first loaded page

is placed at the bottom and each new page is placed on top

of the previously loaded page as long as there is empty space

in the UCB. When the UCB is full and a new page must be

loaded, a page replacement algorithm chooses a cached page

to be replaced. When the fragment portion of a full UCB

needs to grow, the replacement algorithm selects a page to

overwrite with the code page at the top of the page region.

Then, the space used by the top page is assigned to the

fragment portion of the UCB. A full UCB may need to be

repartitioned frequently if the pages are small, with a negative

impact on performance. To avoid frequent UCB management,

multiple pages can be removed at once from the page region

and assigned to the fragment region.

Algorithm 2 Fetch step with unified code buffer

1: page← (PC−TADDR)/PSIZE
2: o f f set← (PC−TADDR) mod PSIZE
3: if pmap[page] = 0 then {software page fault}
4: lseek(b f d, TOFFSET + page∗PSIZE, 0)
5: pmap[page]←getpframe()
6: read(b f d, pmap[page], PSIZE)
7: end if
8: instruction←∗(pmap[page]+o f f set)

TABLE I
SIMPLESCALAR CONFIGURATION

Parameter Configuration

Fetch queue 4 entries
Branch predictor bimodal, 4 cycle mispred. penalty
Branch target buffer 128 entries, direct-mapped
Return stack 3 entries
Fetch/decode width 1 instr./cycle
Issue 1 instr./cycle, in-order
Functional units 1 IALU, 1 IMULT, 1 FPALU, 1 FPMULT
RUU capacity 8 entries
Issue/commit width 2 instr./cycle
Load/store queue 4 entries

L1 D-cache 16 KB, 4-way, FIFO, 1 cycle
L1 I-cache 16 KB, 4-way, FIFO, 1 cycle
Bus width 4 bytes
Memory latency 36 cycles first, 4 cycles rest
Flash page size 512 bytes
Flash read latency 325,000 cycles

When using the UCB, fetch invokes Algorithm 2. Lines 1-2

compute the page number for the PC address and the offset

of the instruction within that page. A map table (pmap) holds

the address where each page has been loaded. Line 3 checks

whether pmap has the page number. If not, the page fault is

handled on lines 4-6. On line 8, the instruction is read.

getpframe (line 5) finds a free page frame in the PB

for the new page. When the PB is full, one currently loaded

page must be replaced. A page replacement algorithm chooses

which page to replace. We consider two standard replacement

algorithms: FIFO (first-in, first-out) and LRU (least recently

used). Unlike hardware demand paging, LRU is defined in

terms of memory accesses done for translation rather than

memory accesses for execution. Since it is difficult to ensure

that a page is no longer needed, performance may degrade if

a replaced page is loaded again.

IV. EVALUATION

A. Methodology

We implemented our techniques in the Strata DBT [11] for

SimpleScalar/PISA. For direct execution with full shadowing,

we use Strata to load the application binary into main memory

and then transfer control to the original code (no translation is

done). We enhanced SimpleScalar’s timing simulator to obtain

boot time, total execution time and number of flash page reads.

Table I shows the simulator configuration, which resembles an

400 MHz ARM1176JZ(F)-S processor.

SimpleScalar uses the host OS to emulate system calls. We

modified its system call interface to read binary instructions

from a simulated flash device. According to experiments [13],

the bandwidth for reading a 512-byte NAND flash page from

a Kingston 1GB CompactFlash card is 0.6 MB/s, regardless of

access pattern. Thus, we add 325,000 cycles to the simulator’s

cycle count for every page read from flash. We use MiBench

with large inputs. We could not compile mad and sphinx.

B. Scattered Page Buffer Results

Demand paging with SPB reduces the number of flash page

reads by 31% average versus full shadowing (FS) as shown

in Table II. The page count includes data and code pages.

Some programs have a large benefit; e.g., ghostscript has a

53% reduction (from 2047 to 971 page reads). This program

TABLE II
NAND FLASH PAGES READ (512 BYTES/PAGE)

Program FS SPB Program FS SPB

adpcm.dec 81 53 patricia 116 110
adpcm.enc 81 53 pgp.dec 524 318
basicmath 103 101 pgp.enc 524 290
bitcount 86 62 qsort 113 79
blowfish.dec 98 55 rijndael.dec 152 102
blowfish.enc 98 55 rijndael.enc 152 103
crc 83 58 rsynth 243 192
dijkstra 110 73 sha 84 57
fft 92 80 stringsearch 115 79
fft.inv 92 81 susan.cor 149 88
ghostscript 2047 971 susan.edg 149 95
gsm.dec 185 122 susan.smo 149 82
gsm.enc 185 142 tiff2bw 509 374
ispell 236 164 tiff2rgba 570 375
jpeg.dec 277 168 tiffdither 507 397
jpeg.enc 253 161 tiffmedian 517 368
lame 470 391 typeset 1230 909

a
d
p
c
m

.d
e
c

a
d
p
c
m

.e
n
c

b
a
s
ic

m
a
th

b
it
c
o
u
n
t

b
lo

w
fi
s
h
.d

e
c

b
lo

w
fi
s
h
.e

n
c

c
rc

d
ijk

s
tr

a ff
t

ff
t.
in

v
g
h
o
s
ts

c
ri
p
t

g
s
m

.d
e
c

g
s
m

.e
n
c

is
p
e
ll

jp
e
g
.d

e
c

jp
e
g
.e

n
c

la
m

e
p
a
tr

ic
ia

p
g
p
.d

e
c

p
g
p
.e

n
c

q
s
o
rt

ri
jn

d
a
e
l.
d
e
c

ri
jn

d
a
e
l.
e
n
c

rs
y
n
th

s
h
a

s
tr

in
g
s
e
a
rc

h
s
u
s
a
n
.c

o
r

s
u
s
a
n
.e

d
g

s
u
s
a
n
.s

m
o

ti
ff
2
b
w

ti
ff
2
rg

b
a

ti
ff
d
it
h
e
r

ti
ff
m

e
d
ia

n
ty

p
e
s
e
t0%

10%

20%

30%

40%

50%

60%

B
o

o
t

T
im

e

SPB

Fig. 4. Boot time with DBT/SPB relative to DE/FS

can produce its output in several formats, but only one format

is requested in a single execution, so many of its code pages

are never accessed. However, applications like basicmath and

patricia, have a small reduction (2% and 5%) because most

of their pages are executed.

DBT with SPB also reduces boot-up latency until the first

application instruction is executed by at least 50%. This benefit

is shown in Figure 4, which lists percentage reduction in boot

latency for DBT with SPB (DBT/SPB) versus direct execution

with full shadowing (DE/FS). tiff2bw and tiffdither have the

smallest reductions, around 50%. typeset and ghostscript have

impressive reductions; their new boot time is just 13.5% and

14.4% of their original time!

To obtain good performance with DBT, the time spent in

translation must be amortized by a reduction in other parts of

total execution time. DBT overhead has to be less than or equal

to the savings obtained by avoiding flash reads to achieve a

benefit from the service. Programs that cannot amortize the

load cost from full shadowing will benefit the most, while

programs that successfully amortize shadowing cost will likely

suffer slowdown with the technique.

Figure 5 shows speedup for demand paging. Speedup is

relative to full shadowing and native execution without DBT.

Execution time includes all latency cost for loading, translating

(for DBT only) and executing application code. The figure

shows two benchmark groups: ones that amortize shadowing

cost (left) and ones that do not (right). The overall average

speedup is 1.03 (bar “avg-all”). Many programs have better or

similar performance with DBT/SPB than DE/FS. The highest

speedups (right side) are for pgp.encode (1.41x), jpeg.decode

 0.6

 0.8

 1

 1.2

 1.4

b
a
s
ic

m
a
th

b
it
c
o
u
n
t

b
lo

w
fi
s
h
.d

e
c

b
lo

w
fi
s
h
.e

n
c

c
rc

d
ijk

s
tr

a ff
t

ff
t.
in

v
g
h
o
s
ts

c
ri
p
t

g
s
m

.e
n
c

is
p
e
ll

la
m

e
q
s
o
rt

ri
jn

d
a
e
l.
d
e
c

ri
jn

d
a
e
l.
e
n
c

rs
y
n
th

s
h
a

ti
ff
d
it
h
e
r

ti
ff
m

e
d
ia

n
ty

p
e
s
e
t -

a
d
p
c
m

.d
e
c

a
d
p
c
m

.e
n
c

g
s
m

.d
e
c

jp
e
g
.d

e
c

jp
e
g
.e

n
c

p
a
tr

ic
ia

p
g
p
.d

e
c

p
g
p
.e

n
c

s
tr

in
g
s
e
a
rc

h
s
u
s
a
n
.c

o
r

s
u
s
a
n
.e

d
g

s
u
s
a
n
.s

m
o

ti
ff
2
b
w

ti
ff
2
rg

b
a

a
v
g
-a

ll
a
v
g
-d

e
m

a
n
d

S
p
e
e
d
u
p

Use full shadowing Use demand paging

Fig. 5. Speedup with DBT/SPB relative to DE/FS

(1.24x), pgp.decode (1.24x) and susan.corners (1.24x). These

programs execute for short periods relative to the number of

flash reads with full shadowing.

Several programs can amortize full shadowing cost (left

side), which causes a loss (or a relatively small gain) for

demand paging. bitcount suffers a large loss with a 1.72

slowdown. This program is small, touches most pages, and

executes for a long time given its size. In this situation, demand

paging is not needed since it is ideal for shadowing. There is

overhead in other programs (e.g., qsort and typeset) for this

reason but it isn’t nearly as high (16% and 10%).

Programs that do not need demand paging can be identified

with offline or online profiling. Offline profiling can find the

ratio of execution to full shadowing cost. If this ratio is

favorable for full shadowing, then metadata can be used to tell

the DBT system to load the full image. Alternatively, demand

paging can be used upfront with online profiling of the ratio of

load activity to total execution. If the ratio shows that demand

paging is unnecessary, DBT could load any missing pages and

bail-out from further paging.

When demand paging is disabled for programs that don’t

need it (left side of figure), the speedup of DBT/SPB is

1.03-1.41, with a 1.14 average (bar “avg-demand”). These

results indicate that demand-paging provided by DBT can be

more effective in MMU-less embedded systems than direct

execution with full shadowing, particularly when demand

paging can be selectively enabled/disabled on a per-benchmark

basis. It always reduces boot time for MiBench and improves

overall performance in most cases.

C. Unified Code Buffer Results

Both the SPB and F$ consume memory; however, combin-

ing them into a unified code buffer (UCB) allows control of

code memory consumption. We studied the performance effect

of enabling the UCB and limiting its size. This may allow

placing the UCB in a small on-chip SRAM, if available [8],

[5], or offsetting the memory cost of the data structures needed

by the DBT.

Compared to an SPB with an unlimited F$, the UCB

adds two sources of overhead: additional flash reads due to

TABLE III
NAND FLASH PAGES READ WITH UCB-75%

Program FIFO LRU Program FIFO LRU

adpcm.dec 56 55 patricia 153 154
adpcm.enc 58 54 pgp.dec 329 324
basicmath 174 173 pgp.enc 292 291
bitcount 73 73 qsort 94 91
blowfish.dec 55 56 rijndael.dec 107 104
blowfish.enc 55 56 rijndael.enc 107 104
crc 66 64 rsynth 232 236
dijkstra 87 85 sha 70 67
fft 124 120 stringsearch 80 80
fft.inv 125 131 susan.cor 91 89
ghostscript 971 971 susan.edg 103 100
gsm.dec 128 129 susan.smo 82 82
gsm.enc 176 175 tiff2bw 374 374
ispell 183 189 tiff2rgba 375 375
jpeg.dec 187 183 tiffdither 412 409
jpeg.enc 188 185 tiffmedian 368 368
lame 534 529 typeset 1052 1045

premature page replacements and UCB repartitioning. We set

the size of the UCB to a percentage of the code section’s size

in the application binary. To avoid frequent repartitioning, the

amount of memory added to the fragment region on each UCB

repartitioning is set to 5% of the code size.

We first determine which page replacement algorithm works

best for the UCB. LRU has a higher management cost than

FIFO, since the page replacement order has to be updated

not only when the page is loaded, but also every time the

translator accesses it. However, this cost may be worth paying

since LRU can lead to better replacement decisions. Table III

shows the number of flash reads made with both algorithms

when the size of the UCB is 75% of the code size with full

shadowing. The results indicate that LRU is often better than

FIFO. FIFO has fewer flash reads in only 7 programs, while

LRU has fewer flash reads in 20 programs. Thus, we use LRU.

The final experiment in varies UCB size as shown in

Figure 6, which gives UCB speedup relative to direct execution

with full shadowing. SPB results are included for comparison.

The UCB size limits are 175%, 75% and 50% of the code size

with full shadowing. With a 175% limit, the programs need no

more flash reads than SPB. With a 50% limit, some programs

did not run to completion because the available memory is too

small for growing the fragment region (e.g., basicmath). For

this reason, we do not consider UCB-50% further.

As UCB size is decreased, the speedup is lower since more

flash reads are done to reload evicted pages. For example, in

pgp.dec, the 1.24x speedup with the SPB is reduced to 1.2

(UCB-175%) and 1.18 (UCB-75%). A similar trend happens

in jpeg.decode, where speedup goes from 1.24x with SPB to

1.19x (UCB-175%) and 1.14x (UCB-75%).

With UCB-75%, 25% of the memory space that would

be consumed by full shadowing can be “spent” for other

purposes in DBT-based demand paging. This provides one

word for every three instructions in the UCB to hold DBT

data structures (i.e., mapping tables). The size of the mapping

tables depends on the number of instructions in the UCB, and a

1:3 ratio is sufficient, particularly when data and code footprint

reduction for DBT are applied [12], [6], [8], [5], [14]. Overall,

the average speedups (bars “avg-all”) are 1.02x with UCB-

175% and 1.01x with UCB-75%. When DBT-based paging

 0.6

 0.8

 1

 1.2

 1.4

b
a
s
ic

m
a
th

b
it
c
o
u
n
t

b
lo

w
fi
s
h
.d

e
c

b
lo

w
fi
s
h
.e

n
c

c
rc

d
ijk

s
tr

a ff
t

ff
t.
in

v

g
h
o
s
ts

c
ri
p
t

g
s
m

.e
n
c

is
p
e
ll

la
m

e

q
s
o
rt

ri
jn

d
a
e
l.
d
e
c

ri
jn

d
a
e
l.
e
n
c

rs
y
n
th

s
h
a

ti
ff
d
it
h
e
r

ti
ff
m

e
d
ia

n

ty
p
e
s
e
t -

a
d
p
c
m

.d
e
c

a
d
p
c
m

.e
n
c

g
s
m

.d
e
c

jp
e
g
.d

e
c

jp
e
g
.e

n
c

p
a
tr

ic
ia

p
g
p
.d

e
c

p
g
p
.e

n
c

s
tr

in
g
s
e
a
rc

h

s
u
s
a
n
.c

o
r

s
u
s
a
n
.e

d
g

s
u
s
a
n
.s

m
o

ti
ff
2
b
w

ti
ff
2
rg

b
a

a
v
g
-a

ll

a
v
g
-d

e
m

a
n
d

S
p
e
e
d
u
p

SPB

UCB-175

UCB-75

UCB-50

Use full shadowing Use demand paging

Fig. 6. Speedup of DBT/UCB relative to DE/FS

is disabled (bars “avg-demand”), the average 1.14 speedup of

SPB is decreased to 1.12 (UCB-175%) and 1.11 (UCB-75%).

From these results, the UCB has only a small loss relative to

the SPB, yet it limits code space.

V. RELATED WORK

Embedded systems used to store code in NOR flash since

it allows eXecute-in-Place (XiP). [15] showed that adding

SRAM buffers to NAND flash can provide XiP. Otherwise,

code in NAND flash must be loaded to main memory for

execution. [2] shows that demand paging for NAND flash

uses less memory and energy than full shadowing. [16] shows

how to combine demand paging and XiP, using XiP only for

infrequently executed pages. [17] reduces the time to handle

a page fault by simultaneously searching for a page to replace

and loading a new page into the NAND flash buffer. These

approaches require an MMU to trigger a page fault.

The approach in [3] is the closest to ours since it also

targets an MMU-less system. It uses a compiler to modify the

binary before execution by changing calls/returns to invoke

an application-specific page manager. DBT delays the code

modification until run-time to handle binaries that have not

been prepared in advance.

DBT infrastructures have been ported to embedded plat-

forms and research has been done to make their code and

data structure memory usage small [12], [5], [6]. [14] explored

using scratchpad memory (SPM) and main memory for the F$.

The SPM can be managed as a software instruction cache. [7]

use a binary rewriter to form cache blocks that are shadowed to

main memory. A custom runtime copies code blocks to SPM

during execution. [8], [5] achieve a similar effect by placing

F$ in SPM. [8] uses fragment compression and pinning to

reduce the need to access flash for retranslation.

VI. CONCLUSION

This paper presented a novel software-only approach to

demand paging for code stored in NAND flash, targeted to

low-cost MMU-less embedded systems. The approach aims to

overcome high start-up delay and poor amortization that can

happen for full shadowing. In programs that do not amortize

shadowing cost, our results showed at least a 50% reduction

in boot-up time and an 1.11 average speedup.

REFERENCES

[1] A. Inoue and D. Wong, “NAND flash applications design guide,” Toshiba
America, March 2004.

[2] C. Park, J.-U. Kang, S.-Y. Park, and J.-S. Kim, “Energy-aware demand
paging on NAND flash-based embedded storages,” in Int’l. Symp. on

Low Power Electronics and Design, 2004.
[3] C. Park, J. Lim, K. Kwon, J. Lee, and S. L. Min, “Compiler-assisted

demand paging for embedded systems with flash memory,” in Int’l. Conf.

on Embedded Software, 2004.
[4] K. Hazelwood and A. Klauser, “A dynamic binary instrumentation en-

gine for the arm architecture,” in Int’l. Conf. on Compilers, Architecture

and Synthesis for Embedded Systems, 2006.
[5] J. A. Baiocchi, B. R. Childers, J. W. Davidson, and J. D. Hiser,

“Reducing pressure in bounded DBT code caches,” in Int’l. Conf. on

Compilers, Architecture and Synthesis for Embedded Systems, 2008.
[6] A. Guha, K. Hazelwood, and M. L. Soffa, “DBT path selection for

holistic memory efficiency and performance,” in Int’l. Conf. on Virtual

Execution Environments, 2010.
[7] J. E. Miller and A. Agarwal, “Software-based instruction caching for

embedded processors,” in Int’l. Conf. on Architectural Support for

Programming Languages and Operating Systems, 2006.
[8] J. Baiocchi, B. Childers, J. Davidson, J. Hiser, and J. Misurda, “Frag-

ment cache management for dynamic binary translators in embedded
systems with scratchpad,” in Int’l. Conf. on Compilers, Architecture and

Synthesis for Embedded Systems, 2007.
[9] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J.-S. Kim, “A

reconfigurable FTL (flash translation layer) architecture for NAND
Flash-based applications,” ACM Trans. on Embedded Computer Systems,
vol. 7, no. 4, pp. 1–23, 2008.

[10] J. Chao, J. Y. Ahn, A. R. Klase, and D. Wong, “Cost savings with NAND
shadowing reference design with Motorola MPC8260 and Toshiba
CompactFlash,” Toshiba America, July 2002.

[11] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. Davidson, and M. L.
Soffa, “Retargetable and reconfigurable software dynamic translation,”
in Int’l. Symp. on Code Generation and Optimization, 2003.

[12] A. Guha, K. Hazelwood, and M. L. Soffa, “Reducing exit stub memory
consumption in code caches,” in Int’l. Conf. on High-Performance

Embedded Architectures and Compilers, 2007.
[13] D. Ajwani, I. Malinger, U. Meyer, and S. Toledo, “Characterizing

the performance of flash memory storage devices and its impact on
algorithm design,” in Workshop on Experimental Algorithms, 2008.

[14] J. A. Baiocchi and B. R. Childers, “Heterogeneous code cache: Using
scratchpad and main memory in dynamic binary translators,” in Design

Automation Conf., 2009.
[15] C. Park, J. Seo, D. Seo, S. Kim, and B. Kim, “Cost-efficient memory

architecture design of NAND Flash memory embedded systems,” in
Int’l. Conf. on Computer Design, 2003.

[16] Y. Joo, Y. Choi, C. Park, S. W. Chung, E. Chung, and N. Chang,
“Demand paging for OneNAND Flash eXecute-in-place,” in Int’l. Conf.

on Hardware/Software Codesign and System Synthesis, 2006.
[17] J. In, I. Shin, and H. Kim, “SWL: a search-while-load demand paging

scheme with NAND flash memory,” in Conf. on Languages, Compilers,

and Tools for Embedded systems, 2007.

