
CARAT: Context-Aware Runtime Adaptive Task
Migration for Multi Core Architectures

Janmartin Jahn†, M. A. Al Faruque, and Jörg Henkel
Karlsruhe Institute of Technology, Chair for Embedded Systems, Karlsruhe, Germany

{jahn, mohammad.faruque, henkel}@kit.edu

Abstract—Multi core architectures that are built to reap perfor-
mance and energy efficiency benefits from the parallel execution
of applications often employ runtime adaptive techniques in
order to achieve, among others, load balancing, dynamic thermal
management, and to enhance the reliability of a system. Typically,
such runtime adaptation in the system level requires the ability to
quickly and consistently migrate a task from one core to another.
For distributed memory architectures, the policy for transferring
the task context between source and destination cores is of vital
importance to the performance and to the successful operation of
the system. As its performance is negatively correlated with the
communication overhead, energy consumption and the dissipated
heat, task migration needs to be runtime adaptive to account for
the system load, chip temperature, or battery capacity. This work
presents a novel context-aware runtime adaptive task migration
mechanism (CARAT) that reduces the task migration latency by
93.12%, 97.03% and 100% compared to three state-of-the-art
mechanisms and allows to control the maximum migration delay
and the performance overhead tradeoff at runtime. This novel
mechanism is built on an in-depth analysis of the memory access
behavior of several multi-media and robotic embedded-systems
applications.

I. INTRODUCTION

Task migration, the process of transferring a running task
from one core to another, has been thoroughly researched in
the field of distributed computing [3], [17], [18] and is now
re-gaining crucial importance in the domain of multi core
architectures. These architectures need to adjust their behavior
based on runtime observations to account for scenarios that
are hard to predict at design time [9], which is commonly
referred to as runtime adaptivity. Examples include runtime
adaptivity to achieve load balancing, to facilitate dynamic
thermal management or to resolve network congestion prob-
lems in network-on-chip architectures. Such runtime adaptive
systems require frequent (3-10 migrations per second in [8])
task migration between the cores [8], [11].

Supported by Intel’s projection that the number of cores per
chip will double every two years [2], recent trends indicate
that future multi core architectures will consist of hundreds or
even thousands of cores on the same chip [6]. Such systems
may have a distributed memory architecture where each core
has a private memory, supported by the increasing on-chip
memory capacity of state-of-the-art systems, e.g., Intel’s
Core i7 Gulftown integrates 13 MiB of on-chip memory.
A further increase in the chip transistor count following
Moore’s law will lead to large on-chip memory capacities in
future systems, while a 3D stacking of memories may further
increase this capacity [13]. Systems depart from the paradigm
of completely sharing memory resources because this does
not scale well with a large number of cores. It forms an access

†Part of this work was funded by the German Science Foundation
(DFG), SFB 588 (Humanoid Robots).

978-3-9810801-7-9/DATE11/ c©2011 EDAA

bottleneck that can significantly impair the performance of
a system [12]. In a distributed memory architecture, task
migration requires the transfer of the task context, the memory
contents that describe the state of a task. Hybrid memory
systems with both distributed on-chip memory and multiple
off-chip memories may need to transfer memory contents
between off-chip memories if a task is migrated between
cores that do not share the same off-chip memory. Thus, task
migration comes at the cost of a performance penalty and
increased on-chip communication. The policy how to transfer
the task context is of crucial importance to the performance
of the system. Frequent task migration may contribute
significantly to the network traffic which can increase the
power consumption and the temperature of the system. Thus,
a task migration mechanism needs to allow the middleware of
a runtime adaptive system to balance the performance versus
the increased bandwidth requirements adaptively based on
runtime observations. These include chip temperature, battery
capacity, or the load of the communication fabric. This paper
focuses on large multi core architectures that use a network-
on-chip [9] and employ distributed memories that are private
to each core. Migration of tasks between heterogeneous
cores (different ISA, address width, bit/byte endianess, etc.)
requires different program codes and a modified task context.
State-of-the-art systems solve this through checkpointing [7],
[14], [16] and application-level save-restore mechanisms [7],
while there exists no mechanism that is transparent to the
application. This paper, however, focuses on reducing the
latency and on controlling the trade-off with the bandwidth
requirements and the delay that arise from task migration
between homogeneous cores and does not tackle issues that
arise from heterogeneity. This is motivated by the observation
that the intrusive application-level migration mechanism
presented by [7] requires comparably long latencies (more
than 100-1000ms) and thus, frequent migrations are not
feasible. Therefore, this paper presents a middleware-level
migration mechanism that can be combined with application-
level migration between heterogeous cores to achieve fast,
transparent migration between identical cores and a slower,
application-level migration between heterogeneous cores.
In the following sections, we will discuss the motivation for
runtime adaptive task migration and discuss related work.
Section IV presents the details and algorithm used in CARAT
guided by a memory access behavior study, followed by
experimental results, with their interpretation concluding this
paper in Section VI.

II. MOTIVATION AND NOVEL CONTRIBUTION

Motivations for task migration include:
Load Balancing across cores can increase the performance, re-

duce the peak temperature or guide the aging of a system [11].
Thermal considerations can be especially important [15] as
cores may heat up each other, leading to increased leakage
power, transient errors or permanent physical damage.
Reliability considerations driven by system health indicators,
runtime error checking, and on-chip communication fault
statistics may dictate to avoid the excessive use of some cores.
In order to gracefully handle such situations, tasks may need
to be migrated to other parts of the chip.
Adaptivity at runtime requires task migration to allow an
adaptive response to changing system properties, e.g. the link
utilization or vitality in systems with on-chip networks, the
availability of working memory, hardware accelerators, etc.
Variability in sub-22nm CMOS causes a decreased predictabil-
ity of the exact functional, electrical and thermal behavior of
a system in the pre-silicon phase [6]. Runtime adaptivity with
task migration can address these issues.
Power consumption can be reduced when a multi core system
moves tasks away from cores (even though the load might be
perfectly balanced) to allow their shut-down.

For systems that require frequent task migrations, their
latency has significant impact on the overall performance of
the system and thus, the latency must be as small as possible.
In a distributed memory architecture, the total latency of a task
migration can be described as

L = D × (LP + LS + LR + (NPF × LPF))
where, D is the Manhattan distance of the cores. LP denotes
the latency caused by the transfer of the program code.
Program code typically does not change during runtime and
can be transferred while the task is running. Thus, LP can
be assumed to be 0. LS and LR are the latencies caused
by sending the stack (S) and registers (R), which need to be
transferred while the task is paused. The performance of a
task migration mechanism is dominated by the transfer of the
heap [5]. (NPF×LPF) denotes the number of heap page faults
multiplied with the latency of a single page fault, assuming
memory pages are transferred from source to destination in
parallel to the execution. A task migration mechanism can
reduce the number of page faults by optimizing the policy for
sending the required memory pages. The energy consumption
of a multi core system using a network-on-chip communica-
tion paradigm is to about 30% driven by the communication
volume [19]. Thus, increased bandwidth requirements not only
slow down the communication, can cause network congestion
and transmission failures, but also largely increase the energy
consumption of the system. Bandwidth requirements and the
migration latency are negatively correlated as transferring
additional pages decreases the probability for a page fault and
vice versa. This trade-off needs to be controllable in a runtime
adaptive manner, e.g. a system can choose to decrease the
energy consumption and to accept a higher migration latency
in order to allow the prolonged operation on a low battery
capacity, to reduce the temperature, etc.

Our novel contributions of this paper are as follows:
1) We present a context-aware runtime adaptive task migra-

tion mechanism (CARAT) that allows to largely reduce
the migration latency.

2) This mechanism incorporates an approach to control
the task migration delay and the tradeoff between the
latency and the task migration bandwidth requirements
in a runtime-adaptive manner.

3) The transfer policies of CARAT are based on a memory
access behavior analysis of the state-of-the-art multi-
media, compression, and embedded applications.

III. RELATED WORK

Related work in [8] concentrates on choosing targets and
deriving decisions when to trigger task migration and [11]
discusses distributed algorithms to migrate tasks in multi core
architectures to balance the temperature of the chip. Runtime
adaptivity for computer systems has been introduced by [20]
and has been used to for application mapping in [10]. Run-
time adaptive on-chip routing is researched and implemented
in [9]. State-of-the-art task migration mechanisms like [1],
[5] do not include runtime adaptivity and propose software
checkpointing. Here, the developer explicitly specifies the
state information to be transferred and how it is represented.
Other approaches require message-based producer/consumer
programming models and tasks empty their work queue before
they are migrated [16]. [7] requires an application-level context
save-restore mechanism. The drawbacks of these approaches
include (a) an increased development complexity and the use
of system-specific migration libraries. They (b) also do not
incorporate runtime adaptivity and thus cannot account for
the current system state. Additionally, the enforcement of
programming models (c) makes a port of existing applica-
tions to multi core architectures much more complicated. The
message- and checkpoint-based approaches suffer (d) from an
unpredictable and potentially very large task migration delay
that might render frequent task migration impossible. (e) The
performance of these approaches depends on the individual
implementations and thus, it is unpredictable on system level.

A middleware-level task migration framework that works
similarly to task switching in preemptive multithreading sys-
tems can allow a wider variety of applications, simplify
application development, and deliver a task migration delay
more predictable on system-level. Transparent task migration
mechanisms have been researched in the domain of distributed
systems [3], [4]. In [3], source and destination cores negotiate
for the required resources and, if successful, transfer the
task’s address space to the destination. They use a complex
marshaller and implement an establishment phase to translate
pointers. These systems implement the following migration
mechanisms: The eager-copy mechanism pauses the task and
sends the entire program context to the destination core, where
the task is resumed once this has completed. A bandwidth-
reduction lazy-copy mechanism initially only transfers the
minimum task context (program code, stack and registers)
and sends missing pages when accessed on the destination.
A latency-optimized pre-copy mechanism transfers the entire
program context while the task runs on the source and re-sends
pages modified after their transfer while the task is paused.
[17] proposes task migration with significantly reduced over-
head: It introduces a post-copy mechanism that transfers only

Execution on

source core
t0 t1 t2 t4 t3

duration

delay
latency

+
Execution on

destination core

Fig. 1. Latency, duration and delay of task migration

0 5 10 15

M
e
m

o
ry

 L
o

c
a
ti

o
n

Time (Billion Cycles)

Write

Read0x07270E00

0x05F5E100

0x04C4B400

0x03938700

0x02625A00

0x01312D00

0x00000000

Output Buffer

Input Buffer

(a) 7Zip encoder, 85 MB binary file

0 5 10

M
e

m
o

ry
 L

o
c
a

ti
o

n

Time (Billion Cycles)

Read
Write

0x12000000

0x0F000000

0x06000000

0x03000000

0x00000000

0x09000000

Scattered

memory

accesses

(read/write)

Linear reads

(accross

240 MB

in 1.24s)

(b) x264 encoder, 96 MB YUV movie (CIF res.)

0 1 2

M
e

m
o

ry
 L

o
c
a

ti
o

n

Time (Billion Cycles)

Read

Write
0x12000000

0x0F000000

0x06000000

0x03000000

0x00000000

0x09000000

Linear

read

accesses

Limited scattered access

(c) Robotic application, 640x480 stereo vision

Fig. 2. Memory access behavior after randomly-chosen task migration initiations

part of the task context while the task’s execution is paused,
and sends other data once the task has been resumed at the
destination core. The post-copy mechanism uses a page fault
mechanism where, whenever a page is accessed that has not
yet been transferred, the operating system initiates its transfer.
Task migration in multi core architectures, however, has fun-
damentally different requirements than in distributed systems.
Here, the migration latency is of crucial importance as it may
be invoked frequently. Aspects of data consistency and security
have only marginal impact as the data is not transferred over
unreliable and untrustworthy wide-area networks. To account
for these different requirements, to reduce the latency of task
migration, and to control the maximum migration delay and
the latency-bandwidth tradeoff adaptively, we are proposing
CARAT. It adapts the page migration concepts from [17], [18]
by incorporating a thorough memory access behavior analysis
for the state-of-the-art applications.

IV. THE CARAT MECHANISM

CARAT allows frequent migrations with a low impact on
system performance by providing a runtime adaptive mech-
anism to largely reduce the migration latency. This latency
is mainly driven by the waiting time for pages accessed on
the destination but not yet transferred (page fault) because the
size of the heap memory is typically larger by the order of
magnitudes than the registers and the stack. Thus, achieving
a low migration latency can only be achieved by intelligently
choosing the order in which to transfer the memory pages. It
should match the order of the accesses on the destination core
as closely as possible. Runtime adaptivity is achieved by intro-
ducing a latency/bandwidth tradeoff parameter α ∈ [0, 1] ⊆ R.
A system should use a high α value if the performance of the
task migration is of major concern. It may, however, reduce α
to conserve energy by reducing the amount of memory pages
that are transferred pro-actively, which means prior to causing
a page fault. A value of α = 0 transfers only pages when
they are accessed, and thus CARAT converges to the lazy-
copy mechanism in this case. To measure the performance of
CARAT and to compare it to existing mechanisms, we analyze
the performance penalty that it causes to the application
(latency), the total time spent for the task migration from the
initiation to the last page fault or completion of the transfer,
whichever comes first (duration), the time from the initiation
of the task migration to the stopping of the task on the source
core (delay), and the amount of data it transfers (bandwidth).
We ignore the time required to transfer stack and registers. The

latency of a task migration is the time where the execution of
the task is disrupted for task migration reasons. The duration
of a task migration is the time span between the initiation
and the completion of a task migration. The delay is the time
span between the initiation of the migration to the stopping
of the task on the source core. This is a crucial measure for
emergency task migration mechanisms initiated to resolve high
peak temperatures on a core, for example. The bandwidth a
task migration requires is the total traffic (in MiB) that arises
due to transferring the task from source to destination. The
relation of latency, duration, and delay is depicted in Figure 1.

A. Memory Access Behavior Analysis

The memory access behavior of an application is critical to
the performance of the different task migration mechanisms,
both in terms of latency and in terms of communication
overhead. This is because a disparity in the page transfer
policy and the access behavior increases the probability of
page faults, while the transfer of pages that are no longer being
used by the application unnecessarily increases the bandwidth
requirements. Therefore, we have analyzed the memory access
behavior of different applications with different input datasets.

We have chosen a complex, state-of-the-art multi-media ap-
plication (an x264 encoder), the 7Zip LZMA implementation
and a state-of-the-art embedded systems robotic application
that performs pipelined computer vision, feature extraction
and stereo matching. Figure 2 shows the memory accesses of
these applications after a randomly triggered task migration.
The figures only show accesses to blocks (a section of memory
allocated at once) allocated prior to the task migration as other
blocks are allocated on the destination core.

A first observation shows that different applications have a
very different memory access behavior, ranging from a linear
behavior of the 7Zip application to a very random, irregular
memory access of the x264 video encoder.

From these observations, we gain the following insights:
(a) trivially, not all pages are required at the same time, and
(b) when a page is accessed, it is likely that succeeding pages
will be accessed soon. (c) we find that an application might
separate read- and write buffers and thus, buffers that have
predominantly been written to are unlikely to be accessed with
heavy read accesses in the near future. (d) some applications
use small buffers to store frequently used operands, such
as filter kernels, that may be accessed excessively. (e) We
also find that memory blocks are mostly accessed from front
to back, not in reverse order. (f) We recognize that access

loop i=0..B

times

send program code

(2) send small,

frequently read

buffers**

(3) send pages not

read from blocks

recently read*

(1) send the next N* pages

of the ith last read blocks

(1) cancel current

transfer & start

sending page X

(2) add X to Page

Fault Queue and

increase PFBlock(X)

(3) set

NextX = X+1 and

SX = {N1, N2, N3}*

page fault? (X: address)

yes no

while task running

start

finish

ta
s
k
 fin

is
h
e
d

c
a
n
c
e
l p

re
-c

o
p
y
 p

h
a
s
e

for n=0..min(3,PFY)

p
o
s
t-c

o
p
y
 h

a
n
d
le

r

p
a
g
e
 fa

u
lt h

a
n
d
le

r

send remaining

single-page blocks

for each Y in PFQ

** m
u

ltip
ly

 w
ith

α

* m

u
ltip

ly
 w

ith
 α

(4) send blocks predominantly read after

having been written*

Stop

task

send stack & registers,

mark changed pages dirty
Resume

**

(1) send NextY

NextY ++

(2) remove Y

from PFQ if

#SY > SY

cancel if:

 #S > SMax* or

T > TTh

Fig. 3. Schematic view of the CARAT algorithm
behavior differs largely across applications and thus, a task
migration mechanism should not suffer from unexpected ac-
cesses beyond the performance of the existing mechanisms
and should not be tied to a specific application if a broad
applicability is desired.

B. Algorithmic Solution
The CARAT mechanism rationale is detailed in pseudo-

code in Algorithm 1 while the algorithmic flow is depicted
graphically in Figure 3: First, until the maximum task migra-
tion delay is reached (delay threshold) or until a maximum
amount of pages is transferred (bandwidth threshold), the
mechanism sends pages in parallel to the execution of the
task similar to the pre-copy mechanism. In contrast to this
mechanism, however, the pages are chosen based on the
following rationale: Until the specified maximum migration
delay is reached, do the following: First, send the next N ×α
pages of the B most recently read blocks. Second, send small
buffers that have been read frequently, where the total number
of buffers to transfer is multiplied by

√
α. Third, send α

(meaning α × 100%) of the remaining pages that have not
yet been accessed for read access in blocks where other pages
have recently been read. Fourth, send α of the blocks that
have been predominantly read after having been written. For
the design parameters N and B, we have chosen the values 8
and 4. Optimal parameter values needs to be derived through
design-space exploration, which is beyond the scope of this
paper. Then, the task is paused on the source core, the stack

Algorithm 1 CARAT transfer algorithm
Parameters:

α Latency/bandwidth tradeoff parameter
SMax Maximum number of pages in pre-copy phase
ThDelay Maximum delay threshold

Definitions:
T Current time / cycle counter
#S Number of transferred pages
SB Pages to transfer from block B
Block(X) Block containing page X
ΓB Largest page address of block B
PFB Page fault counter for block B
PFQ Page-fault queue
Next(X) Next page to send for page fault at X
N1, N2, N3 Design-time parameters (page-buffer size)

1: Phase 0: Initialization
2: Transfer program code
3: Phase 1: Adaptive pre-copy phase
4: while T < ThDelay AND #S < SMax do
5: X ←Choose next pageα
6: Transfer X , break if X = ∅
7: #S ← #S + 1
8: end while
9: Phase 2: Switch execution

10: Pause task
11: Transfer register contents and program stack
12: Mark transferred but overwritten pages as missinga
13: Continue task execution on destination core
14: Phase 3: Post-copy / page fault handler phase
15: while Task running do
16: if Page fault occurred at X then
17: // Page fault handler
18: Cancel current transfer
19: PFQ← X ∪ PFQ
20: PFBlock(X) ← PFBlock(X) + 1
21: Next(X)← X
22: if PFBlock(X) = {1, 2, 3, > 3} then
23: SX ← {X +N1, X +N2, X +N3,ΓBlock(X)}
24: end if
25: //Scale upper transfer boundary with α
26: SX ←MAX(1, SX × α)
27: end if
28: for all Y ∈ PFQ do
29: // Serve page fault queue (1-3 pages)

Interrupt if another page fault occurs
30: for n = 0 to MIN(3, PFBlock(Y)) do
31: if Next(Y) > SY then
32: PFQ← PFQ ∩ Y
33: Exit For Loop
34: else
35: Transfer Next(Y)
36: Next(Y)← Next(Y) + 1
37: end if
38: end for
39: end for
40: for all α× Single-page blocks not yet sent do
41: Send next single-page block α
42: end for
43: end while
aHardware support in the MMU is required.

and register contents are transferred and then the execution is
resumed on the destination core.

The unified, adaptive post-copy and page fault handler
transfers selected pages in parallel to the resumed execution
and responds to page faults. As the memory access behavior
analysis shows that a fair fraction of allocated memory might
not be used anymore (other than being freed) after the task
migration, the adapted post-copy send handler does not send
the entire memory of a task. This allows to reduce the total
amount of bandwidth requirements. The unified post-copy /
page fault handler transfers as follows: When a page fault
occurs, the current transfer is canceled and the missing page as
well as some succeeding pages are sent immediately, while the
number of succeeding pages to be sent depends on the design
parameters N1, N2, and N3: For the first page fault for this
block, the missing page and the succeeding N1×α pages are

sent. For the second page fault, the succeeding N2 ×α pages
are sent and for the third fault, the succeeding N3 × α pages
are sent. From the fourth page fault in a block, the entire block
is transferred. When this priority-sending of missing pages is
not yet completed before a page fault in a different block
occurs, each priority request is added to a queue which is
served in a round-robin fashion, weighted with the number of
page faults in each block to time-multiplex the communication
with a per-page granularity. When the priority-sending has
completed, single-page blocks are transferred. This accounts
for the observation that applications may use a fair number
of small blocks, which could increase the page fault count
tremendously as the block-wise sending described in the page
fault handler would fail to deliver a good performance.

C. Runtime Adaptivity
Runtime adaptivity is achieved through the tradeoff param-

eter α ∈ [0, 1] that balances latency and bandwidth require-
ments. For α = 1, CARAT reduces the latency as much as
possible, while smaller values steadily increase the latency but
decrease the bandwidth requirements. It converges to the lazy-
copy mechanism for α = 0 as no pages are transferred without
being requested through a page fault. Note that CARAT
exposes this runtime adaptivity to the operating system and
itself does not choose α based on runtime observations.

To achieve this behavior, each page transfer that is not a
response to a page fault is scaled (multiplied) by α, while
the small buffer advance transfers in the adapted pre-copy
phase are scaled with

√
α because small buffer transfers

cause relatively low communication traffic while delivering
a high probability of reducing page faults. However, α = 1
does not imply excessive bandwidth requirements; they are
typically smaller than those of the pre-copy and post-copy
mechanisms while delivering a significantly reduced latency.
Thus, α = 1 should be considered the default and lower α
values should be used to conserve energy, to reduce the heat of
the system or to account for high network loads. The runtime
adaptivity that CARAT provides through α, the maximum pre-
copy transfer volume and delay threshold are instrumented by
the operating system. While the discussion how to derive the
parameter values from system state observations is beyond the
scope of this paper, a relationship between the battery level
and α seems natural. This flexibility allows runtime adaptive
systems to control their power consumption, performance and
temperature tradeoff at a finer grain. CARAT is, however,
limited to multi core architectures with distributed memories.

V. EXPERIMENTAL RESULTS

We have analyzed and measured the behavior of CARAT
and compared it to implementations of the post-copy, pre-copy,
and lazy-copy mechanisms for the x264 encoder, the 7Zip
compression encoder and for the embedded-systems robotic
application. We have chosen the single-threaded implemen-
tations of these programs as we analyze the migration of a
single task. More precisely, we analyzed the memory access
behavior after a number of randomly-chosen task migration
initiations. We analyzed 12 task migrations per application to
get a reasonably large sample size.

Our experimental target architecture features 1 GHz pro-
cessing cores and a 4 GBit/s link bandwidth. Source and des-
tination cores are directly connected (single-hop distance, this
is not a constraint) and the network serves a 50% network load.

1,000

10,000

100,000

1.000,000

10.000,000

100.000,000

1.000.000,000

10.000.000,000

100.000.000,000

Lazy-Copy Pre-Copy Post-Copy CARATT
a

s
k

 M
ig

ra
ti

o
n

 L
a

te
n

c
y

(C
y
c

le
s

)

x264 7Zip robotic

0
 l
a

te
n

c
y

(r
o

b
o

ti
c
)

CARAT

100,000,000

10,000,000

1,000,000

100,000

10,000

1,000

100

10

1

0
 l
a

te
n

c
y

(r
o

b
o

ti
c
)

Fig. 4. Latency of the different task migration mechanisms
For the experiments, we have not constrained the maximum
task migration duration and set α = 1.

A. Monitoring Environment
We have collected the memory access behavior statistics on

a shared-memory system as the application behavior does not
depend on the target architecture. To achieve a lightweight and
non-intrusive memory access statistics, x86 debugging capa-
bilities are utilized. More precisely, guard pages are used that
trigger an interrupt when accessed for the first time. Windows
automatically removes the guard page flag after the iterrupt has
been handled. The interrupt handler merely logs the address
of the accessed page and a copy of the processor’s cycle count
register (RDTSC) to a pre-allocated memory structure. To get
an accurate overhead estimate, we have compared the total
runtime of 100 runs of the simulation framework with enabled
and disabled memory access monitoring. As a result, the
memory access behavior monitoring requires approximately
25.000 cycles per first-time page access, while a 42-second
run of the x264 encoder triggered 27667 interrupts, causing a
total application slowdown of roughly 0.5%. Note that memory
block sizes are known to the middleware as the OS keeps track
of the application’s allocations.

Table I shows the results for the analyzed dimensions of
latency, duration, delay and bandwidth of CARAT compared
to the lazy-copy, pre-copy, and post-copy mechanisms. These
numbers only include heap memory transfer as stack & register
transfer times are constant and merely offset these numbers.
The best result in each category is written green∗, while the
worst result is written in red color!. During our experiments,
we have found the values 8, 32 and 128 for the parameters
N1, N2, and N3, respectively, to deliver good results.

Interpreting the results depicted in Table I, we see that

Results
Lazy-Copy Pre-Copy Post-Copy CARAT

x2
64

Page Faults 14038! 0∗ 2 2
Pages Sent 14038∗ 26116! 26097 24923

Latencya 5,76E+07! 164120 238380 16398∗
Durationa 1,34E+11! 2,14E+08∗ 1,34E+11! 1,33E+11

Delaya 0∗ 2,14E+08! 0∗ 2,04E+08
Bandwidthb 54,84∗ 102,02! 101,94 97,36

7Z
ip

Page Faults 16960! 0∗ 1240 37
Pages Sent 16960∗ 52734! 47394 47389

Latencya 6,96E+07! 4,38E+07 1,02E+07 303118∗
Durationa 2,22E+11! 4,32E+08∗ 2,22E+11 2,22E+11

Delaya 0∗ 3,88E+08! 0∗ 7,90E+07
Bandwidthb 56,25∗ 205,99! 185,13 185,11

ro
bo

tic

Page Faults 1917! 0∗ 3 0∗
Pages Sent 1917∗ 4085! 4085! 4072

Latencya 7,87E+06! 0∗ 24660 0∗
Durationa 1,85E+09! 3,35E+07∗ 1,85E+09! 1,72E+09

Delaya 0∗ 3,35E+07! 0∗ 3,34E+07
Bandwidthb 7,49∗ 15,96! 15,96! 15,91

a Units: clock cycles b Units: MiB

TABLE I
RESULTS FOR THE DIFFERENT TASK MIGRATION MECHANISMS

0
1
2
3
4
5
6
7
8
9

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Alpha Value

Latency

16

14

12

10

8

B
a
n

d
w

id
th

(M
e

g
a

b
y
te

s
)

Bandwidth / latency
tradeoff of the x264

encoder Bandwidth

L
a

te
n

c
y

(M
il

li
o

n
 C

y
c

le
s

)

Fig. 5. Impact of α on the latency / bandwidth tradeoff

L
a

te
n

c
y

Communication Bandwidth

CARATα=1

Lazy-Copy

Pre-Copy

Post-Copy

The pre-copy mechanism suffers

from a very high task migration

delay (not in this figure)

The lazy-copy mechanism reduces the

communication bandwidth to a minimum but

delivers a high task migration latency

CARAT exhibits the lowest task

migration latency with a user-

defined maximum delay and

moderate bandwidth

requirements

Post-copy mechanisms show optimal

delay, but suffer from high latency and

increased bandwidth requirements

CARATα=0.5

CARATα=0

α∊[0, 1] specifies the

trade-off between low

latency and low

bandwidth requirements

Fig. 6. Latency and bandwidth tradeoff

CARAT easily achieves the lowest task migration latency,
which is also depicted in Figure 4, and, compared to the
lazy- and post-copy mechanisms, the least amount of page
faults. This is achieved by subtly selecting the pages that
are subject to pre- and parallel transfer. On an average, this
reduces the latency by 93.12%, 97.03% and 100% for the
x264 encoder, the 7Zip encoder and the robotic application,
respectively, when compared to the post-copy mechanism, and
90.01%, 97.03% and 0%, compared to the best state-of-the-art
mechanism in each dimension. We can also see that CARAT
never delivers the worst result in each dimension, which shows
that the goal not to suffer from a penalty beyond the other
mechanisms is met. Additionally, as a maximum duration
of the task migration can be explicitly specified, CARAT is
especially applicable for runtime adaptive systems and allows
to keep real-time constraints more easily.

B. Runtime Adaptivity Results

The effects of scaling the α value to tradeoff between the
task migration latency and the bandwidth requirements of the
algorithm is depicted in Figure 5. The α scaling provides a
monotone relationship to the bandwidth reduction and the
latency increases, which are inversely related. This property
also allows to estimate the impact of changing the α value.
The bandwidth requirements for α = 0 match the bandwidth
requirements of the lazy-copy mechanism, while α = 1
requires less bandwidth than the pre-copy and post-copy
mechanisms with significantly reduced task migration latency.
Figure 6 illustrates the tradeoff between the latency and the
associated bandwidth. However, this figure does not show the
large delay penalty that the pre-copy mechanism comes with.

VI. CONCLUSIONS

This paper presents CARAT, a novel task migration mech-
anism that allows to largely reduce the migration latency and
to control the delay and the latency/bandwidth tradeoff. This
allows multi core systems to instrument task migration to
achieve dynamic thermal management, load balancing or for
reliability enhancement. CARAT allows the operating system
to account for the current system state adaptively at runtime.
It does not support to migrate tasks between heterogeneous
cores, but is orthogonal to application-level mechanisms that
tackle this issue. Our experiments show that compared to ex-
isting work, CARAT delivers the lowest task migration latency
while it never demands the longest duration, delay or highest
bandwidth requirements. Furthermore, the combination of a
pre-copy and a unified post-copy and page fault handler allows
to control the maximum delay. Consequently, task migration
may be used in a runtime-adaptive manner in multi core
architectures with a largely reduced latency.

REFERENCES

[1] A. Acquaviva et al. Assessing Task Migration Impact on Embedded
Soft Real-Time Streaming Multimedia Applications. EURASIP Journal
on Embedded Systems, 2008.

[2] A. Agarwal. CPU Designers Debate Multi-Core Future. EE Times, 2008.
[3] Y. Artsy and R. Finkel. Designing a Process Migration Facility: The

Charlotte Experience. Computer, 22(9), 1989.
[4] A. Barak. Scalable Cluster Computing with MOSIX, for Linux. In In

Proceedings of Linux Expo 99, 1999.
[5] S. Bertozzi et al. Supporting task migration in multi-processor systems-

on-chip: A feasibility study. In Proceedings of the Conference on Design,
Automation and Test in Europe, 2006.

[6] S. Borkar. Design perspectives on 22nm CMOS and beyond. In
Proceedings of the 46th Design Automation Conference, 2009.

[7] P. Bungale et al. An Approach to Heterogeneous Process State
Capture/Recovery to Achieve Minimum Performance Overhead During
Normal Execution. In Proceedings of Parallel and Distributed Process-
ing Symposium, 2003.

[8] D. Cuesta et al. Adaptive Task Migration Policies for Thermal control
in MPSoCs,. In Proceedings of the IEEE 2010 Annual Symposium on
VLSI, 2010.

[9] M. A. A. Faruque, T. Ebi, and J. Henkel. Run-Time Adaptive On-
Chip Communication Scheme. In Proceedings of the 2007 IEEE/ACM
International Conference on Computer-Aided Design, 2007.

[10] M. A. A. Faruque, R. Krist, and J. Henkel. ADAM: Run-Time Agent-
Based Distributed Application Mapping for On-Chip Communication.
In Proceedings of the 45th Design Automation Conference, 2008.

[11] Y. Ge, P. Malani, and Q. Qiu. Distributed Task Migration for Thermal
Management in Many-Core Systems . In Proceedings of the 47th Design
Automation Conference, 2010.

[12] J. Howard et al. A 48-Core IA-32 Message-Passing Processor with
DVFS in 45nm CMOS. In Proceedings of the 57th International Solid
State Circuits Conference, 2010.

[13] G. H. Loh. 3D-Stacked Memory Architectures for Multi-Core Proces-
sors. In Proceedings of the 2008 International Symposium on Computer
Architecture, 2008.

[14] J.-Y. Mignolet et al. Infrastructure for Design and Management of
Relocatable Tasks. In Proceedings of the Conference on Design,
Automation and Test in Europe, 2003.

[15] F. Mulas et al. Thermal Balancing Policy for Multiprocessor Stream
Computing Platforms. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 28(12), 2009.

[16] V. Nollet et al. Centralized Run-Time Resource Management in a
Network-on-Chip Containing Reconfigurable Hardware Tiles. In Pro-
ceedings of the Conference on Design, Automation and Test in Europe,
2005.

[17] M. Richmond and M. Hitchens. A new process migration algorithm.
SIGOPS Operating Systems Review, 31(1), 1997.

[18] J. M. Smith. A Survey of Process Migration Mechanisms. SIGOPS
Operating Systems Review, 22(3), 1988.

[19] V. Soteriou and L.-S. Peh. Design-Space Exploration of Power-
Aware On/Off Interconnection Networks. In Proceedings of the IEEE
International Conference on Computer Design, 2004.

[20] S. R. White et al. Autonomic Computing: Architectural Approach
and Prototype. Integrated Computer-Aided Engineering, 13(2):173–188,
2006.

