
Run-Time Deadlock Detection in Networks-on-Chip
Using Coupled Transitive Closure Networks

Ra’ed Al-Dujaily†, Terrence Mak†, Fei Xia†, Alex Yakovlev† and Maurizio Palesi‡
†School of Electrical, Electronic & Computer Engineering, Newcastle University, UK

{raaed.aldujaily, terrence.mak, fei.xia, alex.yakovlev}@newcastle.ac.uk
‡Kore University, Italy, maurizio.palesi@unikore.it

Abstract—Interconnection networks with adaptive routing are
susceptible to deadlock, which could lead to performance degra-
dation or system failure. Detecting deadlocks at run-time is
challenging because of their highly distributed characteristics.
In this paper, we present a deadlock detection method that
utilizes run-time Transitive Closure (TC) computation to discover
the existence of deadlock-equivalence sets, which imply loops of
requests in networks-on-chip (NoC). This detection scheme guar-
antees the discovery of all true deadlocks without false alarms
unlike state-of-the-art approximation and heuristic approaches. A
distributed TC-network architecture which couples with the NoC
architecture is also presented to realize the detection mechanism
efficiently. Our results based on a cycle-accurate simulator
demonstrate the effectiveness of the TC-network method. It
drastically outperforms timing-based deadlock detection mecha-
nisms by eliminating false detections and thus reducing energy
dissipation in various traffic scenarios. For example, timing
based methods may produce two orders of magnitude more
deadlock alarms than the TC-network method. Moreover, the
implementations presented in this paper demonstrate that the
hardware overhead of TC-networks is insignificant.

I. INTRODUCTION

Deadlocks may appear in interconnection networks such as
Networks-on-Chip (NoCs) [1] and may lead to performance
degradation or even system failure. It is crucial to remove
deadlocks when implementing a routing algorithm. In the
literature, there are two strategies to deal with deadlocks:
deadlock avoidance and deadlock recovery [2].

In deadlock avoidance, resources are granted to packets in
a way that the overall network is deadlock free. This can be
based on a turn model which prohibits the routing algorithm
from making certain turns in the network [3], [4] or based on
the strict ordering of virtual channels [5]. In general, avoidance
techniques require restricted routing functions or additional
resources to prevent deadlocks [2].

Deadlock recovery, which has yet to be implemented in real
NoCs, implies that resources are granted to packets without
any routing restrictions. Hence, deadlocks may occur and
efficient detection and recovery mechanisms are required to
intervene. However detecting deadlock from a network is chal-
lenging, simply because of the distributed nature of deadlocks.
Heuristic approaches, such as time-out mechanisms, are often
employed to monitor the activities at each channel for deadlock
speculations. These techniques may produce substantial false

detections, especially with the network close to saturation
where blocked packets could be flagged as deadlock. This
makes it difficult to determine the best threshold value in these
mechanisms which could depend on packets length, traffic
load, traffic type and network size [6], [7], [8], [9], [10].

Several techniques have been proposed for reducing the
number of false detections in general computer networks.
In [8] a packet is suggested as deadlocked if all requested
channels by the packet are inactive for a given time out. The
work in [10] proposes a technique which is less susceptible
to false deadlocks at the expense of extra hardware. In [9]
the author proposed a technique that employs special control
packets to cross along inactive channels for more accurate
deadlock detections. Although these reduced false deadlock
alarms compared to the crude time-out mechanism, they are
still based on the time-out idea and finding the best threshold
values for different network settings is not trivial.

There are two deadlock recovery schemes, regressive and
progressive. A regressive recovery is based on an abort and
retry mechanism [11] which kills the suspected packet and
reinjects it after a time out. A progressive recovery however
utilizes additional hardware to bypass the suspected packets
to their destination sequentially [6] or concurrently [5].

In this paper, we present a deadlock detection method,
which guarantees true deadlock detection for NoCs. A run-
time transitive closure (TC) computation scheme is employed
to discover the existence of deadlock-equivalence sets, which
imply loops of requests. Also, the proposed detection scheme
can be realized using a distributed architecture, which closely
couples with the NoC infrastructure, to speed up the necessary
computation and to avoid introducing traffic overhead in the
communication network. The contributions of this paper are:
• Introducing a deadlock-equivalence set criterion for de-

tecting loop of packet requests.
• Presenting a new deadlock detection scheme to discover

the existence of deadlock-equivalence sets based on TC
computation. In addition a distributed architecture, TC-
network, is proposed to implement the detection.

• Evaluating the proposed deadlock detection scheme
through experimental studies and comparisons with the
state-of-the-art timeout detection scheme using various
traffic scenarios and evaluating the hardware area and
power overhead of the TC-network.978-3-9810801-7-9/DATE11/ c©2011 EDAA

II. METHODOLOGY

A. Assumptions

In line with existing work on deadlock detection/recovery
[6], [7], [8], [9], [10], we make the following assumptions:
• The network is a collection of routers connected by

channels. Each router is connected to a single core that
can inject/consume packets in the network via the router.

• Fully adaptive routing algorithm with minimal paths is
used.

• A finite time is required to consume a packet at the
destination.

• A buffer cannot contain flits belonging to different pack-
ets, i.e. atomic channel allocation [7].

B. Equivalence Set Criterion for Deadlock

Network resources and dependencies at any particular time
can be expressed as a Channel Wait-for Graph (CWG) [2], [5].
It is readily translated to an n× n adjacency Boolean matrix
[Gij]n×n as follows: 1) Gij = 1 when there is a head flit
in channel “i” requesting channel “j” (e.g. in Fig. 1 a head
flit occupy ch1 and requesting ch2) or if a non head flit in
channel “i” and its head flit in channel “j” (e.g. in Fig. 1 a
data or tail flit occupy ch2 and its head flit in ch3); 2) Gij = 0
otherwise (including when i = j). Let the vertices (channels)
from network N be V = {v, v2, . . . , vn}, and consider a subset
M = {v, v2, . . . , vm} of vertices for some m < n. M is a
Deadlock Equivalent Set (DES) if and only if in all its vertices
there are packets waiting for one another in a cyclic manner
to progress to their respective destinations. The evaluation
of equivalence relationships can be based on the Transitive-
Closure (TC) matrix [Tij]n×n of the original matrix [Gij]n×n.

The transitive-closure relationship can then be used to
determine whether there is a set of channels in the network
forming a DES. Suppose we have channel “a” and channel “b”,
a, b ∈ N . If these two channels form a deadlock-equivalence
set Ω(a, b), their corresponding TC will be Tab = Tba = 1
and Taa = Tbb = 1. This can be extended to m channels,
such that all pairs of elements in M meet the DES condition:

Ω(a, b) =

{
1, if Tab = 1 ∧ Tba = 1 ∧ Taa = 1 ∧ Tbb = 1

0, otherwise

∀a, b ∈ M (1)

In interconnection networks, a channel can appear in a DES
only once and cannot appear in multiple DES’s at the same
time. Members of the set of simultaneous DES’s, S = {Si},
are therefore pairwise disjoint, that is Si, Sj ∈ S and i 6= j
implying Si ∩ Sj = φ.

C. Equivalence Set Computational Complexity

The DES provides a simple criterion for deadlock detection.
The technique is to derive the transitive-closure of the CWG
and identify the channels that satisfy the criterion. Figure 2
exemplifies this idea. The derived TC graph (Fig. 2-b) clearly

Flits occupying a channel

A head flit requesting a channel

ch1

ch2
ch3

ch4

ch5 ch6

Figure 1: Four packets in a 2D network are waiting for one
another and forming a deadlock configuration.

shows four vertices (channels) with self-reflexive paths and
all pairs of these satisfy the condition of the DES (Eq.1). The
computational procedure is outlined in Algorithm 1. It has
three nested loops containing a Θ(1) core. In lines 3-7, it
converts the directed graph (CWG) to a Boolean adjacency
matrix to reflect the existing paths in the graph. In lines 8-12,
the TC is computed. The code state T (k) should show a path
from vertex i to vertex j if 1) T (k−1) already shows a path
from i to j, passing through one of the vertices in 1.. k − 1,
or 2) T (k−1) shows a path from i to k and a path from k to
j; hence there will be a path from i to j through k.

The computation of the transitive-closure is expensive. The
algorithm requires a computational complexity of O(n3). In
the next section, we present a distributed architecture to realize
the TC computation and also exploit the reflexive property to
further simplify DES detections in NoCs.

Algorithm 1 A DES discovery using TC computation
1: Definitions: CWG is a directed graph generated from the NoC at certain
time; VCWG is a set contains all the vertices in CWG; ECWG is a set
contains all the edges in CWG.
2: n←| VCWG |;
3: for i← 1 to n
4: for j ← 1 to n
5: if (i 6= j ∧ E(i, j) ∈ ECWG) then Tij

(0) ← 1;
6 else Tij

(0) ← 0;
7: end for j, i
8: for k ← 1 to n
9: for i← 1 to n
10: for j ← 1 to n
11: Tij

(k) = Tij
(k−1) ∨

(
Tik

(k−1) ∧ Tkj
(k−1)

)
;

12: end for j, i, k
13: Compute DES ∀a, b ∈ n that satisfy:

T n
ab = 1 ∧ T n

ba = 1∧T n
aa = 1 ∧ T n

bb = 1

14: return DES

III. TRANSITIVE CLOSURE NETWORK ARCHITECTURE

A. Transitive Closure Computation with TC-Networks

Dynamic programming (DP) can yield the solution for
the transitive closure [12]. DP provides an opportunity for
solving the computation using a parallel architecture with
improved computation performance. Mapping TC computation
to a parallel computational platform can be achieved with the
introduction of a TC-network. The network has a parallel
architecture, and can be used to compute the TC solution
through the simultaneous propagation of successive inferences.

Flits occupying a channel

A head flit requesting a channel

A path from original CWG

A path added by the TC

P2

P1

P3

P6

P4

P5

(a)

(b)

ch1 ch1

ch0

ch2

ch3 ch4

ch5 ch6

ch7 ch8

ch9 ch10

ch2

ch3 ch4

ch5 ch6

ch7 ch8

ch10

ch0

ch9

Figure 2: a) The CWG of a particular network at a certain
time, b) CWG∗ represents the TC graph, the set of channels
{ch1, ch5, ch7, ch9} satisfy the DES definition (Eq.1).

Lam and Tong [13] introduced DP-networks to solve a set
of graph optimization problems with an asynchronous and
continuous-time computational framework. This new class of
inference networks is inherently stable in all cases and has
been shown to be robust with an arbitrarily fast convergence
rate [13]. A parallel computational network for solving the
shortest path problem is also proposed in [14].

A TC-network is constructed by the interconnection of
autonomous computational units. Figure 3 shows the structure
of a unit and the connections in a general inference network.
Each unit represents a binary relation (i, j) between two
objects and there are N sites to perform the inference action
as defined in the site function. The value of the corresponding
relation between i and j is then determined by resolving the
conflict among all of the site outputs. Basically, if Sk(i, j)
represents the site output at the k-th site and g(i, j) stands for
the unit output of unit (i, j), then the TC computation can be
stated in terms of network structure

Sk(i, j) = g(i, k) ∧ g(k, j) (2)

g(i, j) = ∨∀kSk(i, j) (3)

where ∧ is the inference for the site function and the
conflict-resolution operator for the unit function. The operator
∨ denotes the unit which resolves the binary relation (i, j).

The computational units will be interconnected in the same
way as the TC computation structure. Each unit represents
a node and an interconnection represents an edge. Such a
TC network converges to the solution and can be readily
implemented using a distributed network. Also, this network
architecture, with its simplicity and parallelism, is ideally
suitable for on-chip DES detection.

B. Coupling TC-networks to NoCs

An on-chip communication network itself defines the graph
vertices of its TC-network. This provides an opportunity for
TC computation embedding a TC-unit at each node. Unlike
general computer networks, where internode information can

(i,j)

k
.
.

.

.

Unit

Unit output function (OR)

Site k function (AND)

(i,k)

j

(k,j)

i

(i,k)

j

(k,j)
i

Figure 3: Unit interconnection in a general TC-network where
1 ≤ i, j, k ≤ n; k 6= i, j.

only be exchanged through packets, on-chip networks can
take advantage of additional dedicated wires to transmit data
between routers. The TC-network shown in Fig. 4 consists of
distributed computational units and links between them. The
topology of the network resembles the defined graph topology,
which is the communication structure of a NoC. At each node,
there is a computational unit, which implements Eqs. 2 and 3.
The output of the unit will be propagated to neighbour units via
interconnects. The TC-network tightly couples to the NoC and
each computational unit locally exchanges control and system
parameters with the router. The run-time information, such as
local channels’ occupation and request status, will be input to
the computational unit simultaneously. The simplicity of the
computational unit provides for a run-time response and does
not consume any data-flow network bandwidth.

Back to Fig. 2, the CWG vertices do not include self-
reflexive paths. Any self-reflexive path in the TC graph corre-
sponds to a DES. This property can be used to further simplify
DES detection. Deadlocks have been reported to be infrequent
events [7], [10], [15] in networks. As a result, it is possible
to employ a light-weight network based on mutual exclusion
units to implement TC-networks to discover the existence of
the self-reflexive path for each channel. The mutual exclusion
circuit ensures that only one channel can use the TC-network
at any time and channels are checked sequentially using
a simple token-ring protocol. One possible token-ring path
for mesh and torus networks is the one presented in [6], a
Hamiltonian cycle. The token-ring could be implemented as
an asynchronous circuit [6] or could be clocked using router
clocks.

Each TC-unit seizing the token will initiate checking of
the corresponding router channels. The rest of the units will
implement a transitive property that passes the test signal to
neighbour units if and only if there is a chain of channel
dependencies between its input and output. This makes the
TC-network self-pruning and will keep switching power to
minimum. The function performed in the TC-unit that seizes
the token starts by asserting a logic high test signal on the
output TC-link corresponding to the channel to be tested. The
corresponding input, TC-link, is then checked (see Algorithm
2). In case of a match between an input and output, a self-
reflexive path exists and the channel is part of a DES. The
TC-unit then sets a detection flag that may be used by the
node router to trigger a recovery. Otherwise the detection flag

R R R R

R R R R

R R R R

R R R

Tile area TC interconnect TC-unit

R

Router

Bidirectional

Network

Channels

Channels

occupation &

requisition

status

Deadlock

Detection

Figure 4: A TC-network coupled to a mesh network.

Algorithm 2 Pseudo code of the TC-unit computation
1: Inputs:

tc_rx[m] : TC input signals from neighbor routers,
ch_oc[m]: channels occupation input from the local router,
ch_req[m][n] : channels request input from the local router,
token_in: token input signal

2: Outputs:
tc_tx[n]: TC output signals to neighbor routers,
dd[n]: deadlock detection flags, output to the local router

3: Definitions:
“Par”: denotes parallel operations
n : number of router output channels
m: number of router input channels
tp: a temporary buffer;
k: channel number to check if has a self-reflexive loop

4: Par: (for i← 1 to n):
5: if (token_in = 1 ∧ k = i) then tc_tx[k] = 1;
6: tp = 0;
7: Par: (for j ← 1 to m)
8: tp = tp ∨ tc_rx[j] ∧ ch_oc[j] ∧ (ch_req[j] = i);
9 End Par
10: if (i = k ∧ token_in = 1 ∧ tp = 1) then dd[i] = 1;
11: else dd[i] = 0 ; tc_tx[i] = tp;
12:End Par

is reset and the next channel will be tested. Once the TC-unit
finishes checking all the channels of the corresponding router,
it passes the token to the next neighbour unit. The delay time
of the TC-network to converge and provide useful information
will mainly depend on the NoC size. However, the TC-network
can produce a legitimate output even if does not converge in a
single clock cycle since a deadlock is a steady and persistent
event [2].

IV. RESULT AND DISCUSSIONS

A. Evaluation Methodology

We measured and compared the percentage of detected
deadlocks using the TC-network method and the heuristic
time-out mechanism [6] for different network traffic and differ-
ent Packet Injection Rates (PIR). The percentage of detected
deadlocks is calculated as the ratio between the number of
packets detected as deadlock over the total number of packets
(received and detected). Moreover we calculated the consumed
energy caused by dropping detected packets. In general the

energy dissipated by a network is divided into the following
groups: 1) Routing energy which depends on the routing type,
2) Selection energy which refers to the type of selection if the
routing algorithm returns more than one option, 3) Forwarding
energy which is used in sending a flit, 4) Receiving energy
which is used in receiving a flit and 5) Standby energy. The
packet dropping energy is defined as follows:

Ewasted = hopcount × (Eforward + Ereceiving) + Flitage×

[Estandby + Flithead × (Erouting + Eselection)] (4)

where E denotes energy, hopcount is the number of hops
the flit passed before being aborted, Flitage is the number of
clock cycles the flit lived in the network (either moving or
waiting resources to be freed) and Flithead is a Boolean flag
that add the last term to the equation if the flit type is head,
i.e. if the blocked flit is head it will continue consume energy
by trying to reserve an output channel in each clock cycle.

The performance evaluation was carried out using a modi-
fied version of Noxim [16]. In particular, we modified Noxim
by introducing the TC-network and the crude time-out dead-
lock detection techniques. The simulated NoC is a mesh with
four port architecture, a fully adaptive routing with random
selection function, no virtual channels, and a crossbar switch.
Each input channel consists of four flit buffers and one clock
cycle is assumed for routing and transmission time across the
crossbar and a channel. The result are captured after a warm
up period of 10,000 clock cycles. The simulation time is set
to 300,000 clock cycles. To ensure the accuracy of results
captured with a higher confidence, the simulation at each PIR
is repeated many times with different seeds and their mean
values taken.

B. Evaluation Result

Figure 5 shows the performance results for a 4 × 4 2D
mesh NoC, and a uniform distribution of packet destinations
with different PIR. The packet lengths are randomly generated
between 2 and 16 flits. The majority of detected deadlocks
using the time-out mechanism are false alarms. For instance,
22% of the packets injected in the network are detected as
part of deadlocks with the threshold value set to 32 (Fig.
5-a). The TC-network instead detected that less than 1% of
packets are in true deadlocks, consistent with literature [15]
which stated that deadlock is an infrequent event. Figure 5-b
shows the network average delay versus the throughput for
full load range. It shows that smaller threshold values used in
the time-out mechanism improve these two important network
metrics because the time-out mechanism works as a congestion
monitoring rather than deadlock detection. Examining Fig.
5 (a and b) one could select the threshold value of 256 as
the best value for such a network setting as it produces a
minimum detection percentage of 2.7% with good throughput
and latency. The selection of the best threshold value for
different network settings (packets length, buffer size and
traffic type) was the goal of several studies [10], [8], [7], [9].

(a)

(b)

(c)

Figure 5: TC-Network and Time-out mechanism performance
under a uniform traffic scenario.

Figure 5-c shows the percentage of wasted energy due to
packet dropping to the total consumed energy. The figure
is similar to but not linearly proportional to the detection
percentage figure (Fig. 5-a). This is because significant energy
consumption is caused by the routing function [16] which
repeatedly try to route the head flit till the time out value
has elapsed in the case of the time out method (see Eq.4).
For instance, the time-out-128 detects 5.3% at saturation and
it waste 8.8% of the total consumed energy by aborting these
packets while the Time-out-512 detecting 2.6% at saturation
and wastes 9.1% energy. There are two reasons behind that:
the first one because the network with bigger threshold value is
delivering less flits at the given simulation time (Fig. 5-b). The
second reason is the Flitage in (Eq.4) is directly proportional
to the threshold value, in case when a packet is detected as
deadlocked.

To investigate different traffic scenarios and network sizes,
Fig. 6(a, b and c) shows the performance results with the
bitreversal traffic. The network size is 8 × 8 mesh and the

(a)

(b)

(c)

Figure 6: TC-Network and Time-out mechanism performance
under the bitreversal traffic scenario.

packet lengths are randomly chosen between 32 and 64 flits.
The results in general show a similar trend to the previous
example. Here we could select the threshold value of 1024
as the best threshold. The TC-network method detects around
0.07% of packets as deadlocked and dropping them consumed
energy of less than 3.6% compared to 4% detected using Time-
out-1024 and wasting energy of around 10%. For other traffic
scenarios the results are summarized in Table I for 8×8 mesh
with packets size randomly chosen between 32 and 128. The
table also summarizes the TC-network improvements.

C. Area, Power and Delay Estimation

It is crucial in designing NoCs that routers should not
consume a large percentage of silicon area compared to the
core blocks. We have designed in Verliog two fully adaptive
routers based on the Time-out and the TC-network methods.
These are then synthesised using Synopsys Design Compiler
and mapped onto the UMC 90nm technology library. We found
that the TC circuit uses 75% less area than the Time-out circuit
and will add only 0.76% area overhead to the total router area

Table I: TC-Network improvement compared to Time-out for different threshold values and traffic scenarios.

Time-out 64 Time-out 256 Time-out 1024 TC-Network
Traffic Type PIR (Sat.) DD?% EW †% Thro‡ DD% EW% Thro DD% EW% Thro DD% EW% Thro
Shuffle 0.0035 49.5 39.8 0.145 32.8 29.6 0.156 13.3 14.6 0.142 0.10 0.29 0.140
Transpose 0.015 35.2 27.6 0.269 12.6 11.1 0.269 0.90 1.00 0.266 0 0 0.267
Butterfly 0.005 28.9 33.8 0.280 11.7 16.7 0.290 2.30 4.20 0.290 0 0 0.295
Random1 0.001 18.1 16.3 0.039 2.80 2.70 0.047 0.20 0.22 0.048 0.07 0.11 0.047
Random2 0.001 20.2 15.5 0.039 4.90 4.60 0.045 1.28 2.30 0.048 0.69 1.2 0.044

TC Improvement 176x 83x 0.97x 75x 41x 1x 21x 14x 1x
?Detected Deadlocks, †Energy Wasted, ‡Throughput
1Random traffic with 4 hot spots located at the corners, 2Random traffic with 4 hot spots located at the center.

Table II: TC-Network delay estimation for different mesh
network sizes

Network
Size

Min.Delay?

(ns)
Min. Clock

Cycles
Max.Delay†

(ns)
Max. Clock

Cycles
3× 3 0.74 < 1 1.67 < 2
4× 4 0.74 < 1 2.97 < 3
6× 6 0.74 < 1 6.69 < 7
8× 8 0.74 < 1 11.90 < 12

8× 10‡ 0.74 < 1 14.87 < 15
?Shortest deadlock cycle will consist of 4 channels for 2D mesh
†Longest deadlock cycle will consist of N ×N channels for 2D mesh
‡Tile number of Intel TeraFLOPS chip [17]

compared to 2.9% for the Time-out implementation. A TC
circuit consumes 27% less power than the Time-out circuit.
The power overhead added by TC circuit to the total router
power is 0.08% compared to 0.11% added by the Time-out
circuit, with 10 bit threshold counter.

It is also important to estimate the delay of the TC cir-
cuit and TC interconnects. First the TC unit critical path
gates delay is calculated using the sdf file generated after
synthesising the circuit using worst case library. Second the
interconnect delay calculation assumes the tiles are arranged
in a regular manner on the floorplan with 2mm× 1.5mm tile
size, similar to Intel TeraFLOPS chip [17]. The maximum in-
terconnect length between routers will be 2 mm. The load wire
capacitance and resistance are estimated using the Predictive
Technology Model (PTM) [18] to be 0.146fF and 1.099 Ohm
per micron respectively. The wire delay between TC units can
be readily calculated based on the distributed RC model [19].
Table II shows the minimum and maximum delay required to
discover different DES’s for different network sizes. The table
also shows the equivalent maximum number of clock cycles,
assuming a router operating clock frequency of 1GHz.

V. CONCLUSION AND FUTURE WORK

This work studies deadlock detection and recovery in NoCs
as opposed to deadlock prevention. We proposed a new
deadlock detection method based on computing deadlock-
equivalence sets. Also, a transitive-closure network archi-
tecture is proposed to realize the detection computation in
parallel. The method eliminates the need of any kind of
time out mechanism, and delivers true deadlock detections
independent of the network load and message lengths. The
proposal is rigorously evaluated using a cycle-accurate simu-
lator to demonstrate the effectiveness of the TC-network based

detection method compared to the time-out mechanism. In
the future, we will investigate the methodology of using TC-
network on real-time deadlock detection and recovery in a
large-scale NoCs.

REFERENCES

[1] L. Benini and G. De Micheli, “Networks on chips: a new SoC paradigm,”
IEEE Computer, vol. 35, no. 1, pp. 70 –78, 2002.

[2] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers, 2004.

[3] J. G. Christopher and M. N. Lionel, “The turn model for adaptive
routing,” Parallel Processing Symposium, Proceedings 9th International,
vol. 41, no. 5, pp. 874–902, 1994.

[4] G.-M. Chiu, “The odd-even turn model for adaptive routing,” IEEE
Transac. on Parallel Distrib. Syst., vol. 11, no. 7, pp. 729–738, 2000.

[5] J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection Networks: An
Engineering Approach. Morgan Kaufmann Publishers, 2004.

[6] K. Anjan and T. Pinkston, “DISHA: a deadlock recovery scheme for
fully adaptive routing,” Parallel Processing Symposium, Proceedings 9th
International, pp. 537 –543, 1995.

[7] J. M. Martinez-Rubio, P. Lopez, and J. Duato, “FC3D: Flow control-
based distributed deadlock detection mechanism for true fully adaptive
routing in wormhole networks,” IEEE Trans. on Parallel Distributed
Syststem, vol. 14, no. 8, pp. 765–779, 2003.

[8] J. M. Martínez-Rubio, P. López, and J. Duato, “A cost-effective approach
to deadlock handling in wormhole networks,” IEEE Trans. Parallel
Distrib. Syst., vol. 12, no. 7, pp. 716–729, 2001.

[9] L. Soojung, “A deadlock detection mechanism for true fully adaptive
routing in regular wormhole networks,” Computer Communications,
vol. 30, no. 8, pp. 1826–1840, 2007.

[10] P. Lopez, J. M. Martinez-Rubio, and J. Duato, “A very efficient
distributed deadlock detection mechanism for wormhole networks,” in
HPCA ’98. IEEE Computer Society, 1998.

[11] J. H. Kim, L. Ziqiang, and A. A. Chien, “Compressionless routing:
a framework for adaptive and fault-tolerant routing,” IEEE Trans. on
Parallel and Distrib. Syst., vol. 8, no. 3, pp. 229–244, 1997.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. MIT Press and McGraw-Hill, 2001.

[13] K. Lam and C. Tong, “Closed semiring connectionist network for the
bellman-ford computation,” IEE Proceedings on Computers and Digital
Techniques, vol. 143, no. 3, pp. 189 –195, 1996.

[14] T. Mak, P. Y. Cheung, W. Luk, and K. P. Lam, “A DP-network for
optimal dynamic routing in network-on-chip,” in CODES+ISSS ’09.
ACM, pp. 119–128, 2009.

[15] S. Warnakulasuriya and T. Pinkston, “Characterization of deadlocks in
interconnection networks,” in IPPS ’97. IEEE Computer Society, 1997,
pp. 80–86.

[16] F. Fazzino, M. Palesi, and D. Patti, “Noxim: Network-on-chip simulator,”
http://noxim.sourceforge.net/.

[17] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts,
Y. Hoskote, N. Borkar, and S. Borkar, “An 80-tile sub-100-w teraflops
processor in 65-nm cmos,” IEEE Journal of Solid-State Circuits, vol. 43,
no. 1, pp. 29–41, 2008.

[18] “PTM: Predictive technology model,” http://ptm.asu.edu/.
[19] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated

Circuits: A Design Perspective. Upper Saddle River, N.J.; London:
Prentice Hall, 2002.

