
An FPGA Bridge Preserving Traffic Quality of

Service for On-Chip Network-Based Systems

Ashkan Beyranvand Nejad and Matias Escudero Martinez

Delft University of Technology, the Netherlands

A.BeyranvandNejad@tudelft.nl

Kees Goossens

Eindhoven University of Technology, the Netherlands

K.G.W.Goossens@tue.nl

Abstract—FPGA prototyping of recent large Systems on Chip
(SoCs) is very challenging due to the resource limitation of
a single FPGA. Moreover, having external access to SoCs for
verification and debug purposes is essential. In this paper, we
suggest to partition a network-on-chip (NoC) based system into
smaller sub-systems each with their own NoC, and each of which
is implemented on a separate FPGA board. Multiple SoC ASICs
can be bridged in the same way.

The scheme that interconnects the sub-systems should offer the
application connections the required quality of service (QoS). In
this paper, we investigate bridging schemes at different levels of
the NoC protocol stack. Comparing the distinct design criteria
for the proposed schemes, a bridge is designed. The bridge
experiments show that it provides QoS in terms of bandwith
and latency.

I. INTRODUCTION

FPGA prototyping of SoCs has become common for early

software development and hardware design verification. Elec-

tronic consumer applications demands, and recent advances in

chip design technologies, are increasing the size of new SoCs

dramatically. One FPGA’s capacity, however, is not enough for

prototyping the large designs in which recently there has been

a large efforts of utilizing scalable on chip interconnection

network, which is known as Network on Chip (NoC) [1],

instead of the traditional bus paradigm. To prototype a large

design, a system is required to be partitioned into number of

sub-systems, each of them is implemented on a single FPGA.

An off-chip scheme is therefore required to connect these

FPGAs in order to emulate the design. Although an FPGA

emulation board typically includes one FPGA chip, multi-

FPGA boards also exist. Hence, not only a bridging scheme

between multiple FPGAs on a single board is needed, but also

an FPGA board-to-board bridge (off-board bridge) is essential.

Similarly, multi-ASIC systems [2] can be constructed by

providing a bridge between the NoCs on each chip.

Furthermore, run-time configuration of the on-chip intercon-

nect for different use cases [4] requires a host which is locally

responsible for the configuration of the NoC. Having an off-

board bridge to an external host such as a Personal Computer

(PC), allows the interconnect configuration to be performed

remotely. Accordingly, the system verification and debug by

accessing from outside of the chip to the on-chip system state

and memories contents is become possible.

978-3-9810801-7-9/DATE11/ c©2011 EDAA

The unified system resulting from connecting the sub-

systems located on different boards, should fulfill the appli-

cations requirements, i.e., the applications’ connections must

receive the appropriate bandwidth and latency (QoS) when

crossing both sub-NoCs and the bridge.

In this paper, we propose a bridging scheme between

multiple chips (FPGA, ASIC, etc.) that each contain a NoC.

There are many possibilities to divide such a system into

smaller sub-systems. We explore the various possible bridging

schemes by investigating the possible bridge insertion into the

interconnect at distinct layers of the protocol stack.

An interconnect protocol stack model for NoC-based sys-

tems, which is based on the OSI reference model [5], is

proposed in [6]. This model contains five layers referred

to as Session, Transport, Network, Data link, and Physical

layer. In this work, a proposed bridging scheme at each layer

is investigated to support the full decoupling of the FPGA

boards, while preserving the application QoS and being cost

efficient. For this purpose we introduce six design criteria

based on which the schemes are compared.

The rest of this paper is organised as follows. In Section II

we review related work. Section III gives an overview of the

on-chip interconnection network. We investigate the bridging

design space in Section IV followed by the bridge detailed ar-

chitecture in Section V. The experimental results are presented

in Section VI. Finally, section VII concludes this paper.

II. RELATED WORK

Significant research efforts have been done in different

aspects of interconnecting separate chips. These aspects regard

either the bridging over chips that are located on the same

board (on-board bridging) or bridging over different boards

(off-board bridging). The interface level of the bridge to the

systems on chip is another important issue.

An off-chip NoC interface is proposed in [7]. In this work,

the interface is implemented at the physical layer in order

to offer a unified view of the NoC protocol to different

NoC-based subsystems. This on-board interface has a parallel

connection of 78 signals between chips per each bidirectional

link.

The concept of sub-NoCs and their interconnection are

discussed in [8]. The sub-NoC interconnection is realized

at the network layer by a synchronizer module. They can

preserve the QoS of connections over on-board sub-NoCs. A



2 3 4 5 4 3 2 11

Physical

Link

Network

Transport

Session

Link

Network

Transport

Session

Physical

SlaveBusShellNIRouterRouterNIShellBusMaster

phit

flit

packet

connection

FIFO signals

streaming data

cmd, addr, data

element

message

transaction

cmd, addr, data

element

message

transaction

consistency model

Fig. 1. Overview of on-chip interconnect connection with the involved protocol stack layers at the links

Time Division Multiplexing Access (TDMA) synchronizer is

presented, that is in charge of adapting the TDMA slot tables

between two sub-NoCs keeping the guaranteed service.

From the aspect of ASIC emulation by utilizing FPGAs,

the work presented in [9] shows how a multi-processor SoC

(MPSoC) with 48 cores can be fitted in 4 FPGA’s by extending

a NoC with off-chip synchronous links. A multi purpose

emulation platform which can be used with different NoC

topologies is also presented in [10], [11]. Network links

between routers placed in different chips are emulated by

using high speed serial links as both inter-chip and inter-board

connections. However, their solution does not provide the QoS

management for the connections with different traffic classes.

In [12] a bridge is developed as a NoC interface of a multi-

core SoC to the Internet. The bridge operates at the transport

layer of the NoC and at the application layer of the Internet

side. Multi-processor systems can also take advantage of the

intrinsic multi-hop nature of the NoC, that can allow inter-

chip connection transparently for the IPs [13] [14] [3]. In [13]

the design and implementation of an inter-chip interconnect

for 4 DSP’s per chip is presented. The inter-chip interconnect

module is responsible for the conversion and transmission of

data between multiple SoCs using PCI Express as the off-

chip connection. The bridge is located at the data link level.

Since there are different clock frequencies in the intra-chip

connections compared to the inter-chip connections, the bridge

is also in charge of accommodating the data rates using an

asynchronous buffers.

The companion chip architecture of [2] provides the require-

ments for an inter-ASIC NoC-based bridge but no architecture

or implementation.

All the works mentioned above suffer from lack of either

providing off-board SoC interconnection or preserving the

QoS of applications of which the connections are bridged.

In this paper we bring these two together to propose a generic

bridge scheme that manages the QoS of applications, while it

connects the SoCs implemented on the different FPGA boards.

III. ON-CHIP INTERCONNECT OVERVIEW

In this section an overview of an interconnection network, to

which the bridging scheme is applied, is given. A connection

between two Intellectual Property (IP) components is set up

via the interconnect. The IPs are illustrated as a master and a

slave in Figure 1.

The interconnect is formed by the traditional bus paradigm

combined with a NoC. The master issues a request (e.g.

write or read) to the bus. The bus is responsible for handling

the distributed shared-memory communications in order to

send the request to an specific connection shell (point 2

in the Figure). The bus communication uses one of the

standard interfacing protocols (e.g., DTL [15], AXI [16]). A

shell serializes/de-serializes the protocol specific data elements

(Commands, Address, Data) to/from a Point-to-Point Stream-

ing Data (PPSD) [6] in a handshake-based interfacing protocol

at point 3. The PPSD is then packetised/de-packetised by the

Network Interface (NI) to/from a network data packets from/to

flow control digits (flits) at point 4. A flit is formed by a

sequence of physical digits (phits) which are the unit of data

transferred in a clock cycle on a hop of the interconnect. The

connection packets reside in a dedicated NI buffer waiting to

be scheduled at an specific time. A Time Division Multiplexing

(TDM) scheduler schedules the flits according to its pre-

programmed time-slot table in the NI. This implies a timing

dependency between interconnect hops, in which the data

should arrive in the next hop at a specific time according to

the TDM table. The flits are routed by routers through the

links (point 5) on a path determined in the flit header of a

packet [18]. Once the request reaches the destination NI, the

above procedure occurs in reverse till the slave accepts the

request.

The slave’s response follows the same scenario. A connec-

tion therefore is formed by a request channel and a response

channel. The interconnect deals with the connection traffics

differently based on the required service classes. The service

provided for a connection data is either Guaranteed Through-

put (GT) or Best Effort (BE). In this paper we apply our

analysis to NoCs that provide both GT and BE QoS classes,

such as Nostrum [17] and Æthereal [18], but it can be equally

applied to any NoC that uses connections to provide QoS.

IV. DESIGN SPACE INVESTIGATION

Considering the on-chip interconnect illustrated in Figure 1,

there are various physical communication links in the network.

It is possible to cut the interconnect at each of these links to

insert a bridge in between. This would divide the interconnect

into two (or more) sub-interconnects. Moreover, there is more

than one layer of the interconnect protocol stack which is

involved at a communication link. This would imply that the

bridge can be also implemented at different layers of the

protocol stack.



A. Bridge Requirements

Having the various design choices, we first present the

requirements for the bridge, in order of priority:

1) Transparency: ideally from an application point of view

the bridge should be invisible. This is achievable by

having as little manipulation as possible in the travelling

data over the bridge. The lower protocol stack layer the

bridge is implemented on, the simpler is to design a

bridge that is transparent to the applications.

2) Decoupling: two bridged sub-systems will be imple-

mented on different FPGA boards. The bridge therefore

should support the full decoupling [19] between the two

systems. Decoupling includes both physical and tempo-

ral dependencies, e.g., voltage levels, frequency, location

distance, etc. The physical dependency is due to the

board-to-board bridging and will be solved by the off-

board interfacing protocol. As explained in Section III,

the temporal dependency is inside the interconnect and

is because of the TDM scheduling scheme for GT traffic.

3) Quality of Service (QoS): the bridge should preserve the

Quality of Service (QoS) of the applications running on

the bridged systems, e.g. no GT traffic should wait for

any BE traffic to be serviced.

4) Cost: the cost is both the implementation cost in terms of

area (e.g. buffer sizes, number of wires, and size of logic

circuit), and the time cost in terms of throughput and

latency. The less the implementation cost of the bridge,

the more desirable the bridge.

In the rest of this section, we introduce the bridge design

criteria that have an impact on the aforementioned require-

ments. The interconnect protocol stack layers in every possible

physical communication links are also explored to realize the

most proper bridging solution based on the design criteria, in

order to fulfill the requirements.

B. Design Criteria

The design criteria are selected properties of the inter-

connect links, that can have either direct or indirect impact

on designing the bridge architecture, in order to fulfill the

aforementioned bridging requirements. The design criteria are

distinguished as following:

• Parallel/Serial Bridge: A bridge might be implemented as

a serial or a parallel link. The parallel link is faster, while

it is suitable for a short distance of bridging. However, the

serial one is slower and is suitable for a longer distance

of bridging. Moreover, the serial link would be more

cost efficient, due to the smaller number of wires, if it

is utilized on a proper link on which the data traverses

serially. Hence, the bridge scheme should support the

serial bridge.

• Flow Control: In the on-chip interconnect the flow of

data is controlled at two levels. 1) Link-level, which is

performed locally at the link of router-router or router-

NI, in order to control the flow at the data granularity

of the flits. 2) End-to-End level, which is done globally

at the end of the network communication channels i.e.

NIs, in order to control the flow of NoC packets for the

GT traffic [18]. We would see later in this section that it

can affect the QoS provided by the bridge. The bridging

scheme should provide both link-level and End-to-End

flow control to every sub-NoC.

• Buffering: A bridge can be implemented with no buffer,

one buffer, virtual-channel buffers, or virtual-circuit (per-

connection) buffers. Each of these implementation op-

tions implies different features for the bridge. Although

both the none-buffer and the one-buffer design have

the lower implementation costs, the virtual channel and

virtual circuit designs can distinguish among connections.

Consequently, the virtual channel and virtual circuit de-

signs can provide the proper QoS for every connections

separately. This criterion is a trade-off between the QoS

and cost requirements. Generally, the QoS has higher

priority than the cost.

• Path Manipulation: This criterion indicates if bridging

at a link would cause any changes in the determined

path of a packet (e.g. number of travelling hops). There

exists a time coupling between two ends of a link. If a

link delay is too long that the data can not arrive to the

other end at the required time, then there should be some

intermediate hops added. Hence, the data packet headers

are manipulated to compensate this longer path. This has

a direct impact on the timing and implementation cost.

• Frequency: The frequency dependency of two ends of a

link, located on different FPGA boards, is a challenging

design issue. This is essential because of the TDM

scheduling policy applied for GT traffic. Inserting the

bridge on a NoC physical link at a proper protocol stack

layer which has no frequency dependency between its

ends, would make the design much simpler.

• Separate Connections: Similar to the buffering, in in-

creasing QoS control, a bridge may not distinguish

connections and treat all data equally, or distinguish

different QoS classes (e.g. GT and BE), or distinguish

data belonging to each connection.

In this work, we require a serial bridging solution that takes

care of the both local and global flow control, and having a low

cost. The bridge should preserve the connections’ QoS, while

solving the frequency coupling problem. For this purpose,

we propose possible interconnect bridge implementations and

compare them based on these criteria.

C. Protocol Stack Exploration

The main purpose of bridging is to split an interconnect

into two (or more) smaller sub-networks. In this section we

explore the possible cut-point of an interconnect to find the

best place and scheme for bridging the sub-interconnects.

Figure 1 illustrates a protocol stack model of an interconnect

based on the proposal in [6]. The granularity of the data at

each layer on every interconnect links is also shown.

Point 4 & 5 in the Figure 1, are router-router/NI links which

can be selected at any link in the NoC.



(II)

(I)

(III)

(IV)

(V)

(VI)

NINI

A

NI NI

NI

Place of Link Cut

NI

A

Sh

Sh

Sh

Sh

Sh

Sh

Data Granularity of flits
Data Granularity of Protocol Elements

37 wires

≈ 100 wires (Addr, Data, Control)

Fig. 2. Bridging schemes based on the interconnect protocol stack

Physical Layer: According to the first bridge requirement

(transparency) the lowest possible interconnect protocol stack

layer is investigated. The first bridge proposal, which is

scheme I, is implemented at the physical layer. Since it acts as

the link wires, it deals the same with all traffic that might have

different QoSes. There is a frequency dependency between two

neighbor routers for the case of GT traffic. This scheme is too

expensive in terms of matching frequencies and long delay in

link-level flow control. So it is not a good bridging solution.

Link Layer: By adding a buffer to the previous implemen-

tation, resulting in Scheme II of Figure 2, we go up one layer

in the protocol stack to the link level. In this case, while the

bridge is similar to a pipelined NoC link which is transparent

to the packets, it should take care of the link-level flow control.

Here, the buffer is also shared among all traffic which might

cause GT packets to be stuck behind BE packets. This might

happen when a BE packet enters the buffer before the GT

traffic and is waiting to be transfered by the bridge. Since the

GT packets have higher priority they should not be waiting

for BE ones to be transferred. Consequently, this scheme does

not fulfill the bridge QoS requirement.

Network Layer: We would solve this problem by introduc-

ing another buffer in the scheme III. The buffers form two

specific virtual channels (BE & GT). This makes the bridge

to be at the Network level of the protocol stack, in which it

performs as a router. It therefore manipulates the path as a

new hop. The flow control at the link-level is performed for

BE traffic, while the GT traffic flow is handled by the TDM

scheduler.

Although the bridge QoS requirement problem is solved

by Scheme III, both Scheme II-III still suffer from frequency

dependency problem. The GT traffic requires not more than

one (or at least integer number of) slot time delay between

two neighbor hops. To achieve this for two ends of the bridge

on different FPGA boards, the bridge design will be very

complex. The complexity is to make TDM tables of the sub-

NoCs coherent that the data is sent and received with the

correct order [8]. Consequently, we propose Scheme IV in

which a Network Interface is added at both ends of the bridge,

shown in Figure 2, in order to remove the timing dependency

imposed by TDM scheduling policy.

Transport Layer: Scheme IV not only raises the imple-

mentation level of the bridge up to the Transport layer of the

protocol stack, but also it changes the bridge insertion point

to the point 3 in Figure 1. The NI takes care of both link

level and end-to-end flow control. It means that a connection

is terminated in the first sub-NoC and on the other sub-NoC

a new connection will be started. This technique solves the

frequency dependency problem. Here, since the packets are

de-multiplexed into the connections that they belong to, the

QoS can be preserved per connection in this scheme. Although

this scheme is very good in theory, there is a huge number

of wires (≃ num conn * 39) in parallel that the serial bridge

would be very expensive to support them. Scheme V proposes

an implementation of the bridge which includes connection

arbitration and scheduling. This scheme fulfills the decoupling

and QoS requirements of the bridge by a) having virtual circuit

buffering per connection, b) terminating a connection at first

sub-NoC to remove frequency dependency, c) forming a new

packet at the second sub-NoC, and d) control link level and

end-to-end flow of the data.

Session Layer: In scheme VI, the requirements are fulfilled

the same as scheme V. This scheme corresponds to the points

1 and 2 in the Figure 1. However, the granularity of the data

after and before the shell is different. So far in scheme I-

V, data on a link has been a sequence of phits. A shell de-

serializes this data to a parallel protocol specific data elements

e.g., DTL Command, Address, Data. Hence, the bridge pro-

posed in the scheme VI should either be implemented as a

parallel bridge. Moreover, the interfacing protocol dependent

data results in impossibility of interleaving the requests and

responses of different connections at the fine grained elements

e.g., Commands, Address, Data. This might cause the bridge to

be blocked by a single transaction for a long time and deadlock

may occur. The QoS support is therefore not possible.

TABLE I
EVALUATION OF THE BRIDGING SCHEMES AGAINST THE REQUIREMENTS.

Scheme Transp. Decoup. QoS Area Cost Latency

I (Physical) + - - + -

II (Link) + - - + -

III (Network) + - + - -

IV (Transport) + + + - +

V (Transport) + + + + +

VI (Session) - + - - -

Finally, Table I summerizes the requirements comparison of

the different bridging scheme implementations. A “+” means

that a scheme fulfills a requirement, where a “-” means not.

Since Scheme V fulfills all the requirements, it is the best

bridging scheme. This is also a generic scheme that not only

can be placed before and after an NI, but also it can be

connected directly to a shell or a streaming port of an IP.

V. BRIDGE ARCHITECTURE

In this section we present the detailed architecture of the

bridge based on Scheme V illustrated in Figure 2. The bridge

architecture block diagram is depicted in Figure 3.

Board-to-Board Interface: The proposed bridging scheme

in this paper not only connects sub-NoCs which are embedded

on different FPGA chips, but also provides the off-board



�
�
�
�

�
�
�
�

�
�
�
�

R
o
ck
et

IO

T
ra
n
sc
ei
v
er

DeSerializer

Serializer

Counter
Credit

E
th
rn
et

M
A
C

Packet formatting

Packet Parser

N
et
w
o
rk

In
te
rf
ac
e

DTL port

T
ar
g
et

p
o
rt
s

In
it
ia
to
r
p
o
rt
s

P
P
S
D

P
P
S
D

Bridge

Scheduler

C
lo
ck

D
o
m
ai
n
C
ro
ss
in
g

Fig. 3. The bridge architecture

interconnections. Typically the FPGA boards support common

off-board interconnect protocols such as PCI, Ethernet, USB,

and SPI. All these protocols transfer the data serially. USB and

SPI are master-slave protocols which are not applicable to our

proposal, whereas we might have both master and slave at both

side of the bridge. PCI can not provide long distance wired

connection. On the other hand, Ethernet provides a scalable

long distance wired connection. In this paper we implement

the Ethernet protocol by utilizing two hardware modules as

shown in Figure 3. The physical layer of OSI protocol stack [5]

is implemented by a Xilinx RocketIO transceiver; and the

data link layer is realized by Medium Access Control (MAC)

module. These modules are board and FPGA type specific.

Data Format: The Ethernet protocol implies the data trans-

fer in a specific packet format which is illustrated in Figure 4.

There are always 36 fixed bytes in the frame, while the

payload data length is variable. The bridge inserts the data,

to be transferred, in the payload field of the frame. Therefore,

the longer the length of the payload, the more efficient link

utilization. The bridge data consists of multiple connections

data, and the credit values regarding the link-level flow control

between two bridge modules of each sub-system. This is

encoded in two least significant bits of each data byte as shown

in Figure 4. Since the transmission of an Ethernet packet can

not be stalled, the NULL byte is needed when there is no

data in the buffers to be sent by the bridge. The NoC phits

data related to a connection follows the credits value for that

connection (encode as “10”) and the connection identifier byte

(encoded as “01”), respectively. In our NoC every phit is 37

bits which form 5 bytes in the payload.

0

1

0 1

1 Byte

NULL

NoC Phit

Conn. #

Credits

Preamble MAC dest MAC src Type Payload CRC Interframe gap
(8B) (6B) (6B) (2B) (64-1522B) (4B) (12B)

Fig. 4. Ethernet packet format with the bridged connections data encoded
in the payload

Multi-Connections: Figure 3 shows that data of multiple

connections data are buffered in the bridge at the first stage

of transmitter side. A buffer is then arbitrated and its data

transmission is scheduled. The data, which is at the granularity

of phits, is serialized and transmitted in the Ethernet packet

format. On the other side, the serialized data is converted again

to the original phits and placed in its corresponding buffer.

The reason of having a dedicated buffer for each connection,

while there are connection buffers in the NI, is that the bridge

generally can be also connected directly to a shell. Essentially,

a bridge which is placed before a shell is to handle the link

level flow control and to store the data to be accepted by the

shell. Moreover, the frequency on which the bridge operates on

is fixed to 125 MHz and is imposed by the Ethernet MAC and

physical modules. This is different from the operation clock

frequency of the NoC (50-200 MHz). The buffers therefore are

dual-clock First-in-First-out (FIFO) buffers which also provide

the clock domain crossing.

Scheduling and Arbitration: The arbitration and scheduling

of the connections is realized as a TDM scheme. The TDM

provides the QoS requirements by assigning time slots of the

transmission link to every connection. The TDM connection

table assignment is runtime programmable via a DTL port of

the bridge in a memory-mapped access. The number of slots

the TDM table that a certain connection has determines its

throughput and latency over the bridge.

Flow control: It is mentioned in Section III that an NI takes

care of the global end-to-end connection flow control and also

the link level flit flow control to the neighbor router. Likewise,

the NI does the same in a sub-NoC locally for the bridged

connections and links. However, there is also a global flow

control of data over the bridge needed. This flow control is

performed using a credit-based technique. The transmitter side

is initialized with the initial free space of each corresponding

buffer at the receiver side and is decremented during the data

transmission. As soon as a credit payload is received, the

credit counter is updated by adding the new value. The credit

transmission from receiver side is guaranteed by the TDM

scheduler when in every slot first the credit of corresponding

connection is sent. Hence, the bridge is deadlock free.

VI. EXPERIMENTS

A. Standalone Bridge

The bridge is synthesized for Xilinx Virtex 5 and 6 to

be implemented on ML510 and ML605 emulation boards

respectively. The embedded tri-mode Ethernet MAC Wrapper,

specifically designed for Virtex 5 and 6 FPGAs by Xilinx, is

used as the MAC layer module of the bridge. The physical

Ethernet interface is also available off-chip on the ML510

and ML605 boards. The bridge area cost is less than %1

of the FPGA resources, excluding the Ethernet MAC and

Physical layer modules. The bridge is synthesized to handle 4

connections with a TDM table of 16 slots and 64-phit (64*37

bits) buffer sizes.

Figure 5(a) shows the network (NI-NI) latency versus the

throughput of the bridge for different number of assigned slots

to a certain connection in the TDM table of the scheduler,

assuming the credits are available. The initial flat region in

the graphs shows that connections do not use their entire

allocated guaranteed bandwidth. Increasing the offered load

beyond the guaranteed bandwidth budget increases the NI-NI

latency to a finite maximum, since the waiting time outside



(a) (b) (c)

Fig. 5. Latency vs. throughput for one connection with variable slots assigned (a), for the connections initiated in the example platform from left sub-system (b)
and from right sub-system (c).

the NI (between IP and NI) is not included here. Allocating

more slots increases the bandwidth and lowers the latency.

B. System Level

Considering the set-up example platform in Figure 6, there

are five connections across by the bridge. The connections

traffic is initiated at the left sub-system by Tile0 and at the

right sub-system by Tile1. The traffic QoSs are also shown in

the figure. Figure 5(b) shows the latency versus throughput for

the traffic initiated from the left sub-system. The throughput

is variable according to the percent of the maximum possible

ideal bandwidth provided by the bridge based on the number

of slots assigned to a connection in the TDM table. The

connections 0 and 2 have the lowest latencies for the higher

bandwidths, since they are GT traffic. Connections 3 and 4 are

the credits of the corresponding connections initiated from the

right sub-system. Their data traffic is shown in Figure 5(c). The

lowest latency belongs to the GT traffic of connection 4. The

data traffic 0, 1 and 2 are the credit value of the corresponding

connections initiated from the left sub-system. The graphs

which are illustrated in these figures, follow the similar pattern

of the graphs shown in Figure 5(a). Therefore, the bridge

preserves the QoS of the connections while transferring the

traffic to the other sub-system.

Tile0 Tile1
Tile0 Mem

Tile0
Tile0

Tile1

Tile0 Tile1

Tile1

:GT0:
1:
2:
3:
4:

:BE
:GT
:BE
:GT

R0 R1

Tile0 Tile1

R0 R1NI NI NI

NINI

B
ri
d
g
e

B
ri
d
g
e M

em

Fig. 6. The example platform setup

VII. CONCLUSIONS

In this paper we have proposed a generic on-chip inter-

connects bridging scheme between sub-SoCs implemented on

different FPGA boards. For this purpose the protocol stack

layers of the on-chip interconnect are investigated to realize

the best level of bridge implementation at possible interconnect

links. The outcome is a bridging scheme at the transport layer

which fulfills the bridging requirements in terms of trans-

parency, decoupling, cost and application quality of service

preservation. We have evaluated the bridge implementation

under variable traffic loads and the results showed that the

bridge preserves the traffic quality of services. The area cost

of the bridge is less than %1 of the FPGA resources. The SoC

partitioning technique to generate the bridged sub-systems is

left as an open future research work.

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: on-chip
interconnection networks,” in Proc. Design Automation Conference
(DAC), 2001.

[2] F. Steenhof, H. Duque, B. Nilsson, K. Goossens, and R. P. Llopis,
“Networks on chips for high-end consumer-electronics tv system ar-
chitectures,” in DATE ’06: Proceedings of the conference on Design,
automation and test in Europe. 3001 Leuven, Belgium, Belgium:
European Design and Automation Association, 2006, pp. 148–153.

[3] C. Chang, J. Wawrzynek, and R. W. Brodersen, “BEE2: A high-end
reconfigurable computing system,” IEEE Design and Test of Computers,
vol. 22, pp. 114–125, 2005.

[4] A. Hansson and K. Goossens, “Trade-offs in the configuration of a
network on chip for multiple use-cases,” in Proc. Int’l Symposium on
Networks on Chip (NOCS), May 2007, pp. 233–242.

[5] J. D. Day and H. Zimmerman, “The OSI reference model,” in Proc. of
the IEEE, vol. 71, 1983, pp. 1334–1340.

[6] A. Hansson and K. Goossens, “An on-chip interconnect and protocol
stack for multiple communication paradigms and programming models,”
in Int’l Conf. on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Oct. 2009.

[7] E. Beigne and P. Vivet, “Design of on-chip and off-chip interfaces for
a GALS NoC architecture,” in 12th IEEE International Symposium on
Asynchronous Circuits and Systems, 2006. , March 2006.

[8] S. Evain, J.-P. Diguet, and D. Houzet, “NoC design flow for TDMA and
QoS management in a GALS context,” EURASIP J. Embedded Syst., vol.
2006, no. 1, pp. 4–4.

[9] X. Li and O. Hammami, “Multi-FPGA emulation of a 48-cores mul-
tiprocessor with NoC,” in 3rd Int’l Design and Test Workshop (IDT),
Dec. 2008, pp. 205–208.

[10] A.-M. Kouadri-Mostefaoui, B. Senouci, and F. Petrot, “Scalable multi-
FPGA platform for networks-on-chip emulation,” in Application -
specific Systems, Architectures and Processors (ASAP), 2007, July 2007.

[11] Kouadri-Mostefaoui, Abdellah-Medjadji, B. Senouci, and F. Petrot,
“Large scale on-chip networks : An accurate multi-FPGA emulation
platform,” in 11th EUROMICRO Conference on Digital System Design
Architectures, Methods and Tools (DSD), Sept. 2008.

[12] B. P. Kommineni, R. Srinivasan, R. Holsmark, A. Johansson, and
S. Kumar, “Modeling and evaluation of a NoC-internet interface,” in
Swedish System on Chip Conference, Bstad, April 2004.

[13] Y. Yin and S. Chen, “Design and implementation of a inter-chip bridge in
a multi-core SoC,” in Int’l Conf. on Design & Technology of Integrated
Systems in Nanoscal Era (DTIS), 2009, April 2009.

[14] A. Patel, C. A. Madill, M. Saldana, C. Comis, R. Pomes, and P. Chow,
“A scalable FPGA-based multiprocessor,” in Proc. of the 14th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2006.

[15] Device Transaction Level (DTL) Protocol Specification. Version 2.2,
Philips Semiconductors, Jul. 2002.

[16] AMBA AXI Protocol Specification, ARM, Jun. 2003.
[17] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed

bandwidth using looped containers in temporally disjoint networks
within the Nostrum network on chip,” in Proc. DATE, 2004.

[18] K. Goossens and A. Hansson, “The Aethereal network on chip after ten
years: Goals, evolution, lessons, and future,” in Proc. Design Automation
Conference (DAC), Jun. 2010.

[19] D. Wingard, “Socket-based design using decoupled interconnects,” in
Interconnect-Centric Design for Advanced SoC and NoC, J. Nurmi,
H. Tenhunen, J. Isoaho, and A. Jantsch, Eds. Kluwer, 2004, ch. 15,
pp. 367–396.


