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Abstract—Thermal issues have become critical roadblocks for 
achieving highly reliable three-dimensional (3D) integrated 
circuits. This paper performs both the evaluation and mitigation 
of the impact of leakage power variations on the temperature 
profile of 3D Chip-Multiprocessors (CMPs). Furthermore, this 
paper provides a learning-based model to predict the maximum 
temperature, based on which a simple, yet effective tier-stacking 
algorithm to mitigate the impact of variations on the temperature 
profile of 3D CMPs is proposed. Results show that (1) the 
proposed prediction model achieves more than 98% accuracy, (2) 
a 4-tier 3D implementation can be more than 40oC hotter than its 
2D counterpart and (3) the proposed tier-stacking algorithm 
significantly improves the thermal yield from 44.4% to 81.1% for 
a 3D CMP. 

Keywords-thermal; leakage; process variation; 3D; stack; yield; 
chip-multiprocessor; statistical learning; regression1 

I. INTRODUCTION 
With increased technology scaling, wire length has become a 

critical factor that limits the performance of integrated circuits. 
Recently, three-dimensional (3D) integrated circuits (ICs) have been 
proposed as one of the most promising methodologies to overcome 
this barrier [1][2][3]. In a 3D IC, conventionally fabricated planar dies 
are stacked on top of each other and connected using through-silicon 
vias (TSVs), resulting in lower communication latency. However, due 
to higher power density and lower thermal conductivity of inter-tier 
dielectrics [4][5], the thermal concerns for 3D ICs are exacerbated. In 
particular, the tiers further away from the heat sink tend to have 
elevated temperature profiles, often up to 25˚C higher than tiers 
closest to the heat sink [3]. Such a high operating temperature may 
reduce the mean time to failure and speed up the aging of a 3D IC.  

Another concern introduced by technology scaling is the increased 
contribution of leakage power dissipation to total power consumption. 
In addition, higher temperatures result in increased leakage power 
dissipation, because leakage power has exponential dependency on 
temperature [6]. To make matters worse, the increased leakage power 
leads to higher total power consumption, which in turn generates 
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more heat and further increases the temperature. This 
interdependency between temperature and leakage power forms a 
feedback loop, which in the worst case, may lead to thermal runaway. 
This phenomenon necessitates the accurate modeling of the interplay 
between leakage and temperature for 3D ICs, in order to ensure that 
the operating temperature of the 3D system lies within the maximum 
temperature constraint.  

In this context, it is critical to also accurately model the impact of 
process-induced leakage variability on the temperature profile of a 3D 
IC. Due to the exponential dependency of leakage power dissipation 
on process parameters, more than one order of magnitude difference 
can exist in the leakage power profile from one die to another [7]. 
Figure 1 depicts three temperature maps of the tier farthest away from 
the heat sink in a 3D Chip-Multiprocessor (CMP) in the absence (a) 
or presence (b)(c) of process variations. The hottest point and the 
average temperature in Figure 1(c) are approximately 19.7˚C higher 
than the corresponding ones in Figure 1(a). This shows that leakage 
variations may significantly increase the temperature of a 3D system. 
To be able to gauge the impact of process variations at the system 
level in 3D ICs, a comprehensive framework is needed for variation-
aware thermal modeling.    
A. PREVIOUS WORK 

Thermal modeling for both conventional planar and 3D ICs has 
received a lot of attention in the research community. Skadron et al. [8] 
proposed Hotspot – an accurate temperature model for planar ICs and 
later extended it to account for 3D circuits as well. From a mitigation 
perspective, Donald et al. [9] used dynamic voltage and frequency 
scaling (DVFS) to avoid thermal emergencies in chip-multiprocessors 
(CMPs). Ebi et al. [10] presented an agent-based power distribution 
approach to balance the power consumption of CMPs in a pro-active 
manner. Goplen et al. [11] and Cong et al. [12] proposed novel 
placement algorithms to reduce the temperatures in 3D systems. 
Chakraborty et al. [7] proposed a method to assign threshold voltages 
for 3D CMPs. Very recently, Zhuo et al. [13] presented a workload-
aware framework that accounts for local variations in both the process 
and temperature. 

The impact of process variations on the performance of 3D ICs has 
been recently addressed by Ozdemir et al. [14], Garg et al. [15] and 
Ferri et al. [16].  However, all these papers consider the impact of 
variations on the timing characteristics of 3D ICs, and not on leakage 
power or temperature.  
B. PAPER CONTRIBUTIONS 

To the best of our knowledge, previous research has not addressed 
the impact of leakage variations on the temperature profile of 3D ICs 
from neither an analysis nor a mitigation perspective. In this work, we 
address this issue for the first time, using a 2-tier and a 4-tier 3D 
implementation of a 16-core CMP as a case study. The experimental 
results confirm that the temperature profile of 3D CMPs shows much 
larger susceptibility to leakage variations when compared to an 
equivalent 2D implementation. In particular, using nominal leakage 
values to determine the maximum temperature for a 3D CMP can 

(a) nominal         (b) mild variation        (c) severe variation 
Figure 1: Temperature maps of top tier in a 3D CMP. 



 

 

 

severely underestimate the actual maximum temperature observed by 
a large fraction of 3D systems. 

Motivated by the evaluation results, we make two contributions to 
help 3D CMP designers mitigate the impact of leakage variations on 
the maximum operating temperature. First, using a learning-based 
regression model, we show that the maximum steady-state 
temperature of a 3D CMP can be accurately predicted as a linear 
function of total leakage power dissipation of each tier in a 3D system. 
The proposed learning model can be used to make quick and accurate 
post-silicon predictions of the maximum temperature for each 
fabricated 3D system and, as we will show, to enable thermal hotspot 
mitigation strategies. Our model shows less than 2% error and more 
than 30X speed-up when compared to actual temperature simulations.  

Second, in order to mitigate the impact of leakage variations on the 
temperature profile of a 3D system, we propose a simple yet effective 
tier-stacking algorithm that can be used for any symmetrically-
partitioned 3D system, such as the 3D CMPs studied in this paper. 
Based on the proposed temperature modeling methodology, our 
algorithm is able to select the optimal tier-stacking order to minimize 
overall temperature. The experimental results show that the proposed 
method significantly reduces the standard deviation of the maximum 
temperature distribution by 54%. In addition, for a 100˚C temperature 
constraint [31], the proposed stacking technique increases the thermal 
yield from 44.4% to 81.1%.  

The remainder of this paper is organized as follows. Section II 
introduces the related background knowledge required for our work. 
Section III details the proposed temperature prediction and tier 
stacking algorithm. Section IV presents the proposed implementation 
flow. Section V demonstrates the experimental results and Section VI 
concludes this paper. 

II. BACKGROUND 
In this section, we introduce the background knowledge relevant to 

our proposed methodology, including thermal modeling and leakage 
current characterization. We also discuss how these models are 
modified to account for the impact of process variation on 3D systems. 
A. THERMAL MODEL 

This section presents the thermal model used throughout the 
paper. Conventionally, heat flow is approximated as a heat current 
flowing through thermal resistance [17], resulting in temperature 
differences. This phenomenon can be modeled as the electrical 
current in an RC network, and the temperature differences can be 
expressed as: 

   (1) 

where  is a diagonal thermal capacitance matrix,  is a thermal 
resistance matrix,  is the 
temperature vector and  is the ambient temperature, 

 is the power vector, and  is a step function.  
For the purpose of steady-state thermal analysis the temperature 

does not vary with time. Therefore, Eq.(1) can be modified as follows: 

  (2) 

From Eq.(1) and Eq.(2), the power vector  is proportional to both 
transient-state and steady-state temperatures. In other words, the 
increase of power consumption directly affects temperature if other 
factors remain fixed. 
B. LEAKAGE CURRENT MODEL 

The power consumption of a circuit consists of active power and 
leakage power. This section focuses on modeling the feedback loop 
between leakage and temperature, since the active power is not 
sensitive to the temperature. Leakage power contains several 
components, among which sub-threshold leakage current and gate 
leakage current are main contributors [18]. Recently, due to the 

introduction of high-k dielectrics, the gate leakage component has 
become less important. We therefore concentrate only on sub-
threshold leakage power dissipation. Eq.(3) describes the leakage 
current model for a single transistor. For simplicity and without losing 
accuracy, terms not sensitive to temperature or effective channel 
length are merged together:  

   (3) 

where  is a technology dependent constant,  is transistor width, 
 is effective channel length,  is temperature,  is threshold 

voltage, and  is a positive constant. According to Eq.(3),  will 
increase when  decreases and  increases. Combining 
Eq.(1)(2)(3) determines the interdependency of temperature and 
leakage power. The increase of either temperature or leakage power 
will trigger this positive feedback loop.  

It is worth mentioning that  also exponentially depends upon 
 due to drain induced barrier lowering (DIBL). Eq.(4) models the 

relationship between  and : 

   (4) 

where  is the threshold voltage for long channel transistors, 
 is the DIBL coefficient, and  is the supply voltage. From 

Eq.(3)(4), it is clear that the decrease of  determines both 
exponential and linear scaling factors for leakage current. As a result, 
the  variation usually increases leakage power exponentially. 
Although there are also other factors affecting leakage current, such 
as gate oxide thickness and doping density variations, this paper 
mainly focuses on the  variation because of the aforementioned 
exponential dependency. 
C. PROCESS VARIATION MODEL 

Process variations affect several important metrics of an IC, such 
as power consumption and maximum clock frequency. Variations may 
also affect leakage current, which in turn increases the temperature 
due to the interdependency between temperature and leakage power.  
This section presents the variation model used in this paper.  

In general, the variation of  in 3D systems can be described 
as: 

    (5) 

where  is the nominal value of , and  is the total 
variation of . Let us further merge Eq.(4)(5) into Eq.(3) to 
demonstrate how  variations affect leakage currents: 

   (6) 

where  is a technology dependent constant, , and  are both 
positive constants. From Eq.(6), it is clear that if  increases, 

 may see a significant increase due to the exponentially and 
inverse-linearly dependent terms, respectively. Furthermore,  
can be decomposed as: 

  (7) 

where  is the wafer-to-wafer (W2W) variation,  is the die-
to-die (D2D) spatial variation,  is the within-die (WID) random 
variation, and s are the corresponding weights.  and  
can be modeled as Gaussian random variables. In [19], Cheng et al. 
proposed an accurate, deterministic model of  by exploiting 
across-wafer variation. In this paper, we use this model assuming 

 of 5% of ; furthermore, based on  [20], the relative ratio 
among  ,  and  is set to 0.7:1:1.  



 

 

 

III. METHODOLOGY 
In this section, we first introduce symmetric CMPs, the 

architecture used in this paper. In Section III.B, we propose a 
methodology to estimate the maximum steady-state temperature of a 
3D CMP. Also, the mathematical formulation as well as the accuracy 
of the proposed method is included. In Section III.C, we present the 
algorithm to determine the order of tier stacking for 3D CMPs by 
using the proposed methodology of temperature estimation. 
A. TARGET ARCHITECTURE 

The architecture used throughout this paper is a symmetric CMP, 
which consists of 16 out-of-order, Alpha 21264 cores [21]. The 
corresponding micro-architecture parameters are listed in Table 1. The 
floorplan of a single Alpha 21264 processor taken from [8] is 
replicated 16 times in a 4×4 mesh to create a planar 2D CMP. As 
shown in Figure 2(a), processing cores and caches are placed in a 
fine-grained, interwoven manner. The floorplans for the 
corresponding 2-tier and 4-tier CMPs are shown in Figure 2(b) and 
(c), respectively. Note that the floorplan of every other tier is flipped 
to ensure that cores are never stacked directly on top of each other 
[23]. For the 3D CMPs, we assume that tier 1 is the farthest away 
from the heat sink, while tier 4 is the closest to the heat sink. In 
addition, we point out that in this paper, the focus is on thermal 
evaluation as opposed to performance, which has been extensively 
addressed by [14][15][16]. Therefore, the detailed performance 
comparison between 2D and 3D CMPs is out of the scope of this 
paper and not addressed here. 
B. LEARNING-BASED MODEL FOR TEMPERATURE PREDICTION 

As shown in Figure 1 in Section I, the maximum temperature of 
a 3D CMP under the impact of process variations can be significantly 
higher than the temperature obtained under using nominal leakage 
power conditions. In addition to exceeding imposed thermal 
constraints, the elevated temperature could also lead to dramatically 
reduced reliability for 3D systems. Therefore, it is crucial to develop 
thermal modeling and mitigation methodologies which account for 
the impact of leakage variations. 

In the presence of leakage power variations, the maximum 
temperature for each 3D system is not known before fabrication, and 
hence a post-silicon temperature prediction mechanism is required. 
This information can help engineers filter the 3D systems that exceed 
the thermal constraint during the testing process, or be a useful input 
to post-fabrication thermal management strategies. Using Hotspot [8] 
or other simulation-based methods to determine the maximum 

temperature for each fabricated 3D system can be too time-consuming. 
We found that, under steady-state conditions, the maximum 
temperature-leakage curve can be approximated very well by a linear 
dependency function for most workloads, although analytically, the 
instantaneous leakage power depends exponentially on the operating 
temperature as shown in Eq. (3)(6). This observation motivates the 
development of a learning-based model to predict the maximum 
temperature of a 3D system based on leakage measurements. We aim 
to exploit per-tier leakage current measurements for predicting the 
maximum temperature of each fabricated 3D system. Note that these 
leakage measurements are routinely performed on bare dies before 
packaging as part of the popular IDDQ testing methodology [22], 
therefore we do not introduce any additional test costs for maxium 
temperature prediction. 

Based on the aforementioned observation, we propose a 
learning-based regression model, which expresses the maximum 
temperature for the 3D system as a linear function of per-tier leakage 
power values under steady-state conditions: 

   (8) 

where   is the maximum temperature of a 3D CMPs under the 
steady-state condition, s are fitting coefficients,  is a fitting 
constant,  is the total leakage power of tier , and  is the total 
number of tiers. For the purpose of experimental results presented in 
this paper,  is set to four. However, the framework is general and can 
be used for an arbitrary number of tiers. The physical meaning of s 
can be interpreted as the sensitivity of the maximum temperature to 
the leakage power of the ith tier. In addition, note that by convention, 

’s are annotated according to the distance from the heat sink, i.e.,  
is the tier furthest away from the heat sink, whereas  is the tier 
closest to the sink.  

Here, we separate the coeffcient-learning process into two 
phases: training phase and testing phase. The goal of the training 
phase is to learn the fitting coefficients s and constant , where s 
and  are the estimates of s and c. This can be done by minimizing 
the least square loss function: 

     (9) 

where m is the size of training set, i.e. the number of 3D CMPs whose 
 are known. In this paper, m is empirically set to 500. Please 

note that  can be obtained via various methods, including 
readings from thermal sensors or Hotspot simulation. In Eq.(9),  
and  are fed as inputs, while s and  are the outputs of the 
training phase. Note that s are not fixed for all kinds of CMP 
designs. Depending on different technology nodes, design specs, 
layouts and other factors, s may need to be re-learnt by re-
evaluating Eq. (9) with the corresponding  and . The 
accuracy of the proposed model can be further improved if more 
detailed measurements are available at test time, such as per-core or 
even per-component leakage power. These measurements can be 
included in Eq.(8) (9) as extra features to improve the accuracy. 

In the testing phase,  values determined from the training 
phase are plugged into Eq.(8) to calculate  as an estimate of 

: 

    (10) 
By using Eq.(10),  can be calculated if the per-tier leakage 
measurement  is given. No time-consuming thermal 
simulation is required in this phase. Please note that Eq.(10) is 
different from Eq.(8) because  and  of Eq.(10) are estimates 
but  and  of Eq.(8) are actual values. 

Parameters Values 
Number of cores 16 
Frequency 3.0 GHz 
Technology 45nm node with Vdd =1.0V 
On-chip network 4×4 mesh 
L1- I/D caches 64KB, 64B blocks, 2-way SA, LRU 
L2 caches 1MB, 64B blocks, 16-way SA, LRU 
Pipeline 7 stage deeps, 4 instructions wide 

Table 1. Processor parameters 

Figure 2: 2D and 3D CMP implementation. 
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To evaluate the accuracy of the proposed learning model, we use 
10-fold cross-validation [24] to calculate the prediction error. Cross-
Validation is a nearly-unbiased error estimator and is widely-used in 
machine learning and statistics fields. Figure 3 shows the cross-
validated results; the X axis stands for the predicted temperatures by 
using the learning-based model whereas the Y axis represents the 
actual simulated results obtained with Hotspot. It is clear that our 
estimation of maximum temperatures is very accurate. The correlation 
coefficient is 0.9797; the prediction error rate is 1.02%. Therefore, 
just relying on per-tier leakage power values obtained at test time, one 
can determine with high accuracy the maximum temperature for a 3D 
system, without actually integrating the tiers and performing full 
system testing. Note that since the active power is not sensitive to the 
change of temperature as mentioned in Section II.B, it is not included 
explicitly in the model, but may implicitly be modeled as part of the 
constant term. We would like to stress that this learning model does 
not aim to replace the original thermal model described in Eq.(1)(2) 
or thermal simulators like Hotspot. The model relies on accurate 
temperature analysis or simulation to provide inputs to learn the 
fitting coefficients. The goal of the proposed model is to allow for fast, 
compared to Hotspot, post-fabrication estimation of the maximum 
temperature of a 3D stack given the leakage power measurements of 
its constituent tiers. As we will show, this information can be used to 
determine an optimal tier-stacking order for symmetric 3D CMPs that 
minimizes maximum temperature.  

As an example, we list the values of s for a 16-core 4-tier CMP 
in Table 2. The values of s would be expected to be monotonically 
decreasing according to the tier ordering, i.e., , 
since the impact of tiers further away from the heat sink on the 
maximum temperature is expected to be higher. As expected,  has 
the largest value since it represents the weight for the leakage power 
of the top tier in the 3D CMP. Interestingly, the other three 
coefficients are not monotonically decreasing; instead,  is larger 
than either  or . The reason for this non-monotonic behavior 
stems in the relative positioning of processing cores: in tier 3, the 
cores are located directly underneath the cores of the hottest tier, i.e., 
tier 1. Therefore, the vertical heat conduction of cores between tier 3 
and tier 1 increases the impact of tier 3 leakage on the maximum 
temperature. On the other hand, the relative contribution of tier 2 is 
reduced since L2 caches are placed directly underneath the cores of 
tier 1. L2 caches tend to run cooler than cores since they have lower 
dynamic power dissipation. In addition, the channel lengths of L2 
caches are increased slightly to reduce the leakage power dissipation 
[25], thereby making them more robust to leakage variations. 

C. TIER STACKING 
As observed from the ’s of the learning model in Section III.B, 

the leakage value of each tier has a different impact on the maximum 
temperature – for example, the coefficient of tier 1 is almost four 
times greater than the corresponding coefficient of tier 4. This 
observation raises an intriguing possibility: is it possible to re-stack 
the tiers based on their leakage values, so as to keep the tiers with 
high leakage values closer to the heat sink, and therefore achieve a 
potential reduction in the maximum temperature? As a result, this 
stacking technique would only be applicable for symmetric 3D 
systems, i.e., each tier has the same layout. This is certainly the case 
for the 3D CMP system we study in this paper. Also, the stacking 
technique would be applicable to the systems that contain multiple 
identical stacked SRAM or DRAM layers, or to the recently 
introduced Reciprocal Design Symmetry (RDS) based 3D ICs [23].  

The central idea of this algorithm is to let s guide how to 
determine stacking orders. Recall that s represent the sensitivity of 
the maximum temperature to the leakage power of the ith tier, thereby 
providing a powerful clue of how to assign CMPs of different 
leakages to the most suitable tiers. In other words, the CMP with the 
largest leakage power should be placed on the tier with smallest , 
the CMP with the 2nd largest leakage on the tier with the 2nd smallest 

, and so on. This stacking algorithm would lead to the minimal 
. Please note that although the proposed learning model is used 

to predict the maximum temperature of the entire system under 
steady-state conditions, it is also a very good reference for capturing 
the trend for the maximum operating temperature. This stacking 
algorithm is exclusively enabled by our learning model due to the use 
of s; using other thermal models such as Hotspot simulation to 
exhaustively search for the best permutation of stacking orders would 
be dramatically slow. According to our data, searching for the best 
stacking order for 1,000 4-tier CMPs by using Hotspot simulation 
would take more than 5 days, while using our learning model and the 
proposed stacking algorithm would only take 4 hours; therefore a 30X 
speed-up is achieved. It is worth mentioning that these 4 hours are 
spent in the training phase to learn s. Once s are learnt, no 
additional simulation is required and the optimal stacking order can 
be determined instantly.  

For simplicity and without losing generality, we use a 2-tier 
CMP as an example to describe how the proposed algorithm works. 
All notations here are the same as in Section III.B. Let us assume the 
leakage power dissipation of CMP 1 is 2W, of CMP 2 is 1W,  = 20, 

 = 10, and  = 40. According to the proposed technique, CMP 1 will 
be placed on tier 2 since  is the smallest, and CMP 2 will be placed 
on tier 1. That is,  = 1W and  = 2W. Therefore,  
equals × + × +  = 80˚C, which is the minimal value. 
Any other stacking order will lead to larger . The complexity of 
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Figure 3: The scatter plot of estimated values vs. actual 

maximum temperature under the steady-state condition for a 
16-core, 4-tier 3D CMP. 
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the proposed algorithm is  because two instances of sorting 
are required to obtain sorted s and leakage values.  

IV. IMPLEMENTATION 

In this section, we describe the experimental setup in detail, 
followed by providing the overall implementation flow. First, we use 
modified versions of SimpleScalar [25], Wattch [26], and Hotspot [8] 
for the performance, power, and thermal simulators, respectively. We 
modified the leakage power model in Wattch based on [27] [28] and 
as described in Section II.B, for more accurate leakage values. As to 
the Hotspot configuration, Table 3 lists the detail parameter settings; 
the parameters not mentioned here are assumed to be the default 
values. In addition, TSVs setup similar to [30] is used and modeled by 
the thermal conductivity values of grid cells in Hotspot.  

According to [8], we separate SPECcpu2000 benchmarks into 
two categories: intermediate and intensive thermal demands, and then 
randomly select eight benchmarks from each category to form a 
representative multi-program workload for a 16-core CMP. To capture 
the worst-case scenario, the maximum temperature is assumed to 
occur when all processing cores are consuming power. Also, we 
assume that the workload executed in each tier includes programs of 
both intermediate and intensive thermal demands. This might not 
always be the case, especially when extreme task assignment 
strategies are used, but it is representative for realistic multi-
programmed workload mixes. With the above settings, we perform a 
full-system simulation for 500 million instructions, and then collect 
the power profiles for the temperature simulation.  

Figure 4 presents the overall flow of the proposed methodology. 
First, the benchmarks are fed in as inputs of performance and power 
simulators, to output both active and leakage power profiles. Second, 
we enter the variation parameters described in Section II.C to our in-
house variation map generator based on the models in [19][20], for 

 within each die. Third, we characterize leakage currents by 
using HSPICE simulation with the 45nm high performance Predictive 
Technology Model [29]. Next, the power estimation module collects 
power profiles, variation maps, temperature profiles and the leakage 
characteristics as inputs, and then updates the power values based on 
the current temperature value and process variations. The updated 
power values are fed into the temperature simulator to estimate the 
new temperature value. This temperature-power iteration will 
continue updating until the temperature value converges; the 
converged temperature and power profiles are analyzed by the 
learning-based regression model described in Section III.B to 
determine the coefficients. Note that in a real setting, at test per-tier 
leakage measurements will be used in the validated learning model to 
estimate temperature values. Finally, the 3D Tier Stacker will outputs 
the best stacking order that leads to the lowest maximum temperature 
by using the algorithm described in Section III.C. 

V. EXPERIMENTAL RESULTS 
This section presents the experimental results, including (1) the 

maximum operating temperatures of a 4-tier CMP under leakage 
variations, (2) the distributions of maximum operating temperatures 
for a 1-tier (2D), 2-tier, and 4-tier CMP, and (3) the distributions of 
maximum operating temperatures after tier-restacking. All 
experiments are implemented with the settings described in Section 
IV. 

A. TRANSIENT THERMAL BEHAVIOR 
Figure 5 shows the transient profile of the maximum temperature 

for a 3D CMP under five different leakage variation maps. Note that 
the workload remains fixed for all cases.  The X axis stands for the 
simulation time and the time unit is million clock cycles. The Y axis 
represents the maximum temperature observed across all tiers, at the 
given time instant on the X axis. “Var 1” and “Var 2” represent the 
temperatures under two cases of severe variations; “Var 3”, “Var 4” 
and “Var 5” represent the temperatures under mild variations; 
“Nominal” represents the temperature without any variation. In Var 3, 
Var 4, and Var 5, the average temperatures are slightly higher than the 
nominal one, and the trends remain approximately the same.  

From Figure 5, we can make three interesting observations: (1) 
During the time interval between the 150th and 250th million cycle, a 
“sawtooth” behavior periodically occurs in all six profiles. This 
happens because one of the cores in the top tier is executing mesa, a 
benchmark with a high temperature profile and clear execution phases. 
This phenomenon shows that the pattern of the maximum temperature 
distribution in a 3D system may be determined by a single application 
executed in the top tier. Note that this result matches the observation 
in [8]. (2) Leakage variations may alter the time point when the 
maximum temperature occurs. In the Nominal case,  the maximum 
temperature occurs between the 150th to 200th million clock cycle.  
However, in Var 1, the time point of maximum temperature is shifted 
to around the 220th million cycle. (3) In both Var 1 and Var 2, an 
unexpected high thermal peak occurs at around the 45th million cycle, 
which is completely different from the thermal behavior of Nominal. 
We investigated this phenomenon, and found that the thermal peak 
originated from bzip2 application running in tier 3. The benchmark 
bzip2 has a higher thermal envelope than other benchmarks around 
the 45th million cycle. At the same time, the processing core in tier 1, 
right above the core executing bzip2, has very high  variations. 
These variations make the core in tier 1 more sensitive to temperature 
changes. Thus, the original thermal profile of this core is altered, due 
to the strong thermal behaviors of the core underneath. If the process 
variations in tier 1 are mild, the influences of tier 3 will be supressed, 
and therefore not reflected explicitly on the overall temperature curve. 
This is the reason why the thermal peak does not occur either after the 
50th million cycle or in Var3, Var 4 and Var 5. In sum, all above three 
important obervations show that the leakage variations may 
dramatically change the nature of the temperature profiles.  

It is worth mentioning that in [14], the difference of the 
maximum temperature between a 2D CMP and a 2-tier 3D CMP is 
around 10°C, wheras our results show that the difference is around 
15°C. One of the potential reasons is that we use the cycle-accurate 
power dissipation to simulate temperature profiles, while the authors 
of [14] used the steady-state values instead. Compated to the steady-
state power values, the cycle-accurate ones can reflect real operating 
conditions more accurately, and thereby capture the peak temperature 
more precisely. 

Parameters Values 
Chip size 3.2cm×3.2cm for a 1-tier CMP. 

1.6cm×3.2cm for a 2-tier CMP. 
1.6cm×1.6cm for a 4-tier CMP. 

Heat sink thermal res. 0.24, based on [30]. 
Heat spreader size Same as the Chip size. 
Sampling rate 500K clock cycles. 

Table 3: Hotspot Setup 

Var 1

Var 2

Nominal

Var 3
Var 4
Var 5

Original hottest point 

New hottest point
Temperature peak

Figure 5: The distributions of max. transient temperatures. 



 

 

 

B. MAXIMUM TEMPERATURE DISTRIBUTION 
We perform 1,000 Monte Carlo simulations with the settings 

described in Section IV. Figure 6 shows the distribution of the 
maximum temperatures of 1-tier (2D), 2-tier and 4-tier CMPs, 
respectively. The X axis represents the temperature whereas the Y 
axis stands for the count of parts in that temperature bin. Please note 
that the nominal maximum temperatures, i.e., the values without 
leakage variations of a 1-tier, 2-tier and 4-tier CMPs are 77.42˚C, 
92.26˚C and 96.75˚C, respectively. From Figure 6, the mean of the 
temperature distribution increases dramatically from 2D to 3D CMP 
implementations. As it can be seen, the distribution for the 2D 
implementation is very narrow with a standard deviation of only 
0.11˚C.  

However, in 3D CMPs, the standard deviation of the maximum 
temperature distribution is significantly larger. For a 2-tier CMP, the 
standard deviation is approximately seven times higher than that of a 
planar CMP; for a 4-tier CMP, the standard deviation dramatically 
increases to approximately 40 times higher than that of a planar CMP. 
The significant variations in the maximum temperature from one 3D 
IC to another, necessitates a statistical thermal evaluation of the 
system along with mitigation techniques. 
C. TIER STACKING IMPROVEMENTS 

Figure 7 demonstrates the results of the proposed tier stacking 
algorithm for a 4-tier CMP. For better visualization, in Figure 7, we 
overlap the results after tier-restacking with the results before 
restacking depicted in Figure 6. It is clear that the variance of the 
maximum temperature distribution is much smaller. The standard 
deviation is reduced by 54%, from 4.6˚C to 2.11˚C; the mean is also 
reduced by 3%, from 101.98˚C to 98.77˚C. These statistical 
evaluations provide useful references for designers to determine to 
what degree they need to guard band the temperature constraints. 
Note that similar results were obtained for a 2-tier CMP, but are not 
reproduced here due to the space limit. 

From the cumulative distribution function (CDF) in Figure 7, if 
the temperature constraint is set to 100˚C [31], the thermal yield for 
the 3D system after restacking is 80.1%, compared to the original 
yield 44.4%. If the temperature constraint is set to 105˚C, the 

improved yield is 98.0% compared to the original yield of 78.1%. 
This improvement in thermal yield clearly demonstrates the strength 
of our proposed techniques. 

VI. CONCLUSION 
In this paper, we propose a methodology to perform statistical 

thermal evaluation for 3D ICs. We also propose an accurate learning-
based regression model to predict the maximum steady-state 
temperature that does not rely on expensive simulations, and can be 
used in an iterative design exploration environment for improving 
thermal yield. More precisely, based on this model, we propose an 
effective algorithm to determine the best tier stacking order that 
minimizes the maximum temperature and maximizes the thermal 
yield. The proposed algorithm significantly reduces the standard 
deviation and the mean by 54% and 3%, respectively, for the 
maximum operating temperature distribution of a 3D CMP. 
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Figure 6: Maximum transient temperature distribution. 
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Figure 7: Improvement after tier restacking. 


