
Speeding Up MPSoC Virtual Platform Simulation by
Ultra Synchronization Checking Method

Abstract—Virtual platform simulation is an essential technique
for early-stage system-level design space exploration and
embedded software development. In order to explore the
hardware behavior and verify the embedded software, simulation
speed and accuracy are the two most critical factors. However,
given the increasing complexity of the Multi-Processor System-
on-Chip (MPSoC) designs, even the state-of-the-art virtual
platform simulation algorithms may suffer from the simulation
speed issue. In this paper, we proposed an Ultra Synchronization
Checking Method (USCM) for fast and robust virtual platform
simulation. We devise a data dependency table (DDT) so that the
memory access information by the hardware modules and
software programs can be predicted and checked. By reducing
the unnecessary synchronizations among simulation modules and
utilizing the asynchronous discrete event simulation technique,
we can significantly improve the virtual platform simulation
speed. Our experimental results show that the proposed USCM
can simulate a 32-processor SoC design in the speed of multi-
million instructions per second. We also demonstrate that our
method is less sensitive to the number of cores in the virtual
platform simulation.

Keywords-Virtual Platform Simulation, SoC, Synchronization.

I. INTRODUCTION
To conduct design space exploration in the early stage of

the modern System on a Chip (SoC) design flow, designers
begin to adopt virtual platform simulation. However, due to the
increasing design size and complexity, the validatation of a
design becomes time consuming. in this paper, we propose an
Ultra Synchronization Checking Method (USCM) for speeding
up the virtual platform simulation.

A SoC virtual platform is a software program that is
sequentially simulated by a software simulator. To mimic the
concurrent hardware behavior in a SoC design, the virtual
platform simulator usually employs a synchronization
mechanism to ensure proper communications in the right order
and accurate computations at the right time. In other words, the
simulation kernel needs to iteratively talk to each module on
the corresponding triggering events in order to schedule its data
computations and communications with proper delays.
Consequently, the context-switches, introduced by the
synchronization mechanism of the simulation scheduler,
usually constitute the majority of the runtime [1].

Several studies have shown that a certain portion of
synchronizations can be skipped and the simulation results can
still be accurate. Most approaches that skip synchronizations
are based on Asynchronous Discrete Event Simulation (async-

DES, see more details in Section 2). In contrast to the
traditional synchronous DES, in which the simulations of
events among different design modules have to follow the
chronological order, in async-DES, individual modules can
continue its simulation for many cycles (without performing
synchronizations) until “synchronization conditions” are met.

Result-Oriented Modeling (ROM) utilizes an optimistic
approach to predict the outcome of a simulating process when
the process starts [2]. The virtual platform simulator can then
continuously simulate this process without any synchronization
until the predicted time is up. However, if there are disturbing
influences (i.e. causality errors) that might alter simulation
results during the simulation, the simulator needs a recovery
mechanism to roll back the simulation, thus affecting the
simulation speed.

To avoid such errors, Kim [3] adopts a conservative
approach, called “virtual synchronization”, for its
synchronization mechanism in simulating the operating system
modelers. It depends on an operating system scheduling
technique to determine synchronization conditions. However,
because the timing granularity that the operating system
scheduling can support is coarse-grained, this mechanism may
not be applicable to the virtual platform simulation in which
higher simulation accuracy (e.g. cycle-approximate accuracy)
is needed.

The methods of virtual synchronization were further
improved by Wu [4] and Lin [1], respectively, to support better
simulation accuracy. Their key idea is to examine data
dependencies among different modules/programs in order to
recognize finer-grained synchronization conditions.
Specifically, Wu’s method adopts the disassembling utility to
identify the static/heap memory regions of software programs.
Wu utilizes memory information to predict where the data-
dependency issues (DD issues) occur in the program and when
the simulator needs to perform synchronization for the cycle-
based processor model. However, in a SoC virtual platform,
apart from the processor model, there are other hardware
modules whose memory access information cannot be acquired
from the disassembled program. Therefore, this method may be
restricted.

On the other hand, Lin’s method marks all memory regions
that hardware modules potentially access. Some of the memory
regions may overlap to each other, and the overlapped regions
are the only places where data dependency may occur. During
simulation, Lin [1] checks whether the current hardware
module is accessing the overlapped regions. If not, there is no

Yu-Fu Yeh +
d94943035@ntu.edu.tw

Chung-Yang (Ric) Huang +

ric@cc.ee.ntu.edu.tw
Chi-An Wu +

b91901089@ntu.edu.tw
Hsin-Cheng Lin †

r99921032@ntu.edu.tw
+ Graduate Institute of Electronics Engineering,

National Taiwan University

†Department of Electrical Engineering,
National Taiwan University

978-3-9810801-7-9/DATE11/©2011 EDAA

need to perform synchronization and thus this module can
simulate as long as it stays in its specific memory region.
Otherwise, synchronization will be evoked. Although Lin’s
method is highly applicable to various virtual platform
simulations with high accuracy, for Multi-Processor SoC
(MPSoC) designs where almost all memory accesses are in the
overlapped (shared) memory regions, their algorithm have to
take the conservative approach and perform synchronizations
in almost all cycles, reducing the performance of xxx.

In this paper, we propose an Ultra Synchronization
Checking Method (USCM) that improves previous virtual
synchronization mechanisms by monitoring the data
dependencies on hardware modules as well as on software
programs. We devise data dependency tables (DDTs) so that
the memory access information of the hardware modules and
software programs can be predicted and checked efficiently.
Implemented in a robust data dependency checking flow, our
method can greatly reduce the number of synchronization even
in the MPSoC virtual platform simulation. In addition, the
proposed approach preserves the principles of the conservative
approach so that it rarely makes casualty errors and thus avoids
simulation recovery/rerun. Our experimental results show that
the simulation speed of our simulation engine can achieve
multi-million instructions per second even for a 32-processor
virtual platform. Moreover, our method is orthogonal to a
parallel simulation mechanism that runs on a multi-
core/processor host machine [4]. Therefore, our method may
further increase the speed of virtual platform simulation in the
parallel simulation mechanism.

The rest of this paper is organized as follows. First, we
introduce the preliminary knowledge in Section 2 and then
describe the details of the proposed USCM in Section 3.
Section 4 demonstrates the experimental results and finally,
Section 5 concludes the paper and discusses future work.

II. PRELIMINARIES

In this section, we present two techniques adopted in our
work, that is, Asynchronous Discrete Event Simulation
(async-DES) for synchronization reduction, and Data-
Dependency (DD) checking for synchronization determination.

A. Asynchronous Discrete Event Simulation
The Asynchronous Discrete Event Simulation (async-DES)

is an event-driven simulation algorithm that allows the design
under verification to simulate asynchronously. In contrast to
the Synchronous Discrete Event Simulation (sync-DES) in
which the simulation kernel needs to synchronize each module
of the design in every cycle/event to make sure the simulation
is in the proper chronological order, the async-DES allows the
individual module to simulate as long as possible until the
necessary synchronization conditions causing data-dependency
issues are met.

As shown in Figure 1, async-DES has a potential advantage
in simulation speed because it can reduce the number of
context switches introduced by the synchronization process.
Nevertheless, it may produce some overheads by ensuring the
simulation accuracy. As figure 1-(a) shows, the simulation

kernel needs to spend extra efforts checking whether the
synchronization conditions are met (the synchronization
condition refers to the situation when the data dependency
among different modules occurs). For example, when one
module needs some data whose memory location is being
updated by another module, its simulation needs to be halted
until the memory location is available again. Therefore, a
simple-minded algorithm may take a conservative approach to
recognize the occurrence of data dependencies and thus
perform synchronizations more frequently than necessary,
decreasing the efficiency of the sync-DES

Another overhead in async-DES is the need to compensate
the communication delays after synchronizations. Please note
that when individual hardware modules are simulated
continuously in Figure 1-(b), some of the communication
delays (e.g. bus contention) might be ignored. For example, if
two modules are simultaneously accessing the bus, trying to
read/write multiple data from/into different memory locations,
bus contentions would take place. In the sync-DES, proper
delays will be inserted between data transactions so that the
timing accuracy of the simulation can be ensured. However,
since there is no data dependency in the async-DES, one
module will be chosen to run the simulation as long as possible,
and then the others will follow. In such case, it is difficult to
observe the bus contentions during simulation. Therefore, we
will have to apply techniques such as the trace-driven
simulation [3] to restore the accurate simulation time. In short,
with such overhead, async-DES can still achieve the same
simulation accuracy as the sync-DES.

B. Data-Dependency Checking
As mentioned in the previous subsection, efficient data-

dependency (DD) checking is the key to identifying the
minimal necessary synchronization conditions and thus to
promote the simulation speed. While data dependencies can be
checked by examining whether modules read from or write into
the same memory location, the challenge is that in async-DES,
when one module executes in hundreds to thousands of cycles
in advance of others, how we predict that it can safely continue
the simulation without the worry about the data dependency
with other lagging modules.

One solution is to define the memory access region from
each module and then to create a map to identify potential data
dependencies (cf. [1]). Note that we can construct this data
dependency map in the virtual platform initialization phase.
Therefore, during simulation, if a non-overlapped memory
region is accessed, we can guarantee that there will be no data

Figure1. sync-DES versus async-DES

Mn

One Cycle Next Cycle

Figure 1-(a) sync-DES Figure 1-(b) async-DES

Simulation Time Simulation Time

Suppose there are n modules in Target SoC

M1

KK

M2

M1

M2

K K

…

K

…
… Mn

K

M1

K

…

M1

M2

M1

M2

M1

M2 M2

K1 Local Cycles
K2 Local Cycles

K

K Means the simulation kernel

dependency and thus no synchronization is needed. In general,
for simplified SoCs, different hardware modules may have
their own memory maps and thus the abovementioned
approach seems to work. However, for modern MPSoCs, it is
common to have shared memory among different processors.
Moreover, some unexpected events (e.g. interrupt, out-of-order
execution) and the embedded software programs will further
complicate the memory access regions from different hardware
modules. As a result, the above DD checking algorithm may
conclude that the data dependencies should occur all the times
and thus failing to avoid unnecessary synchronizations in the
async-DES.

In the next section, we will present an aggressive DD
checking algorithm, called Ultra Synchronization Checking
Method (USCM), to reduce the unnecessary synchronizations
during MPSoC virtual platform simulation.

III. ULTRA SYNCHRONIZATION CHECKING METHOD
As mentioned previously, data-dependency checking (DD

checking) can be very complicated for the async-DES because
it needs to accurately predict memory access regions by the
software executing on the MPSoC hardware. To precisely
judge data dependencies requires not just memory mapping
information from the hardware but also the program/data
storage of the embedded software. Furthermore, both of them
need to be analyzed statically (i.e. at compile time) and
dynamically (i.e. during simulation). Hence, we devise a data-
dependency table (DDT) mechanism that can facilitate the
analysis of various types of memory information. In what
follows, we first present two types of DDTs, namely hardware-
based and software-based DDTs, and describe how they can be
further categorized into hardware static/dynamic DDTs and
software static/dynamic DDTs, respectively. Then we consider
the features of DDTs and propose the synchronization checking
flow to accomplish the USCM.

A. Hardware-Based Data-Dependency Table
 In virtual platform simulation, data-dependency issues

arise when there are two or more hardware modules accessing
the same memory location. In such situations, the simulator
must perform synchronizations in order to simulate the
hardware modules in a correct chronological order. The data
dependency (DD) checking technique described in Section 2.2
determines such synchronization conditions. In other words, if
the memory regions for all hardware modules can be
recognized, the DD checking mechanism should be able to
perform the proper synchronizations. However, the memory
regions that the hardware modules access may be specified in
compile time and/or changed during simulation. Therefore, we
propose two different data dependency tables, that is, Hardware
Static-DDT (HW S-DDT) and Hardware Dynamic-DDT (HW
D-DDT), for these two scenarios.

1) Hardware Static-DDT
The hardware static DDT is constructed in compile time to

record the overlapped memory regions that can be accessed by
two or more hardware modules. Without loss of generality, the
memory regions that the hardware modules will access can be
found as memory maps in the specification sections of the

header files. Therefore, our simulation engine will parse these
header files to acquire the memory information and record
them as hardware static DDT.

Note that we record only the overlapped memory regions
and sort them in an array data structure. During simulation, if
a hardware module accesses a memory location, we check
whether the corresponding memory address can be found in
this hardware static DDT. If yes, the simulator will treat it as a
synchronization condition and hand over the control to the
simulation kernel. Otherwise, the access is not in the
overlapped memory region and thus no data dependency is
possible.

2) Hardware Dynamic-DDT
Although the hardware static DDT can identify certain data

dependencies to improve the simulation speed (e.g. [1]), it is
relatively conservative. When a hardware module accesses the
overlapped memory region in the hardware static DDT, it does
not necessarily cause data dependencies ⎯ the other modules
may access this location at some other time.

A brute-force solution to this problem is to monitor the
memory accesses of the hardware modules from time to time.
However, this causes a big overhead, thus deteriorating the
simulation speed. Therefore, we adopt a semi-automatic
method in which certain “memory acquiring functions” (MA
Functions) are manually embedded in the hardware modules.
These MA functions denote the “authorized” memory regions
that the modules can access with exclusive privileges. During
simulation, these authorized memory regions will be
automatically added to and later be removed from the
hardware dynamic DDT when the corresponding MA
functions are evoked. Consequently, when a memory access
region is in the recorded regions of the hardware dynamic
DDT, no data dependency can happen.

The example in Figure 2 illustrates our idea. The Direct
Memory Access (DMA) controller is a common hardware
module in SoCs to move mass data from the source to the

void pSync::HW_MAF_ADD (unsigned intMemBegin, unsigned int MemEnd) {
HW_DDDT.push_back(new pair(MemBegin, MemEnd));

}
void pSync::HW_MAF_DEL (unsigned int MemBegin, unsigned int MemEnd) {
itrHWDDDT = HW_DDDT.find(uPair(MemBegin, MemEnd))
HW_DDDT.erase(itrModDDDT);

}

void pvt_dma::dmaOperation() {
// Set The memory regions that � dma accesses�
// Embed HW_MAF_ADD func to acquire memory information
pSync‐>HW_MAF_ADD(SourceAddr, SourceAddr+M_Size); // add a memory region
pSync‐>HW_MAF_ADD(DistAddr, DistAddr+M_Size); // add a memory region
cout << "DMA begin to move data\n";
for(unsigned int i = 0; i < M_Size; i++){
ReadMemory(SourceAddr, 4);
WriteMemory(DistAddr, 4, m_resp_data);
SourceAddr += 4; DistAddr += 4;

}
cout << "DMA Finish move data \n";
// Embed HW_MAF_DEL Func to delete the useless memory information;
pSync‐>HW_MAF_DEL(SouceAddr‐M_Size, SourceAddr); // Delete a memory region
pSync‐>HW_MAF_DEL(DistAddr‐M_Size, DistAddr); // Delete a memory region

}

Figure2. An example of MA Function for HW D-DDT

destination memory locations. In the source code, we embed
MA Functions, HW_DDDT_ADD() and HW_DDDT_DEL()
to acquire the dynamic memory information. That is, when
they are evoked during simulation, DMA will be exclusively
authorized to access this memory region. Therefore, no data
dependency will be possible and thus the async-DES can
continue until memory access in other regions takes place.

B. Software-Based Data-Dependency Table
When performing MPSoC virtual platform simulation,

there are not just hardware modules to consider; there are also
multiple embedded software programs running on multiple
processor models. Failing to consider the effects of software
programs in data dependency checking may lead to a
conservative synchronization mechanism, slowing down the
simulation. For example, most of the processor models can
access all the shared memory regions. Therefore, when only
referring to HW-Based DDTs, we will end up checking
synchronizations in almost every cycle.

Next, we will present two software-based DDTs, namely
the Software Static-DDT (SW S-DDT) and Software Dynamic-
DDT (SW D-DDT). With them, we can further improve the
data dependency checking by considering the software effects.

1) Software Static-DDT
 As mentioned in [4], only when the software program

possesses data-exchanging behavior (e.g. mutex, semaphore)
in the shared memory should we consider its data-dependency
issues. In other words, if a function of a software program
contains only computations within the processor model, the
corresponding hardware simulations will not result in data
dependencies with other processor models. Therefore, to
characterize the impact of the software programs on the
synchronization mechanism, we should distinguish the
software functions that perform data exchanges with other
modules (i.e. the communication functions), with those
computation functions. In our proposed USCM, we store the
program memory information of the communication functions
in the software static-DDT. During simulation, if the current
program counter address does not match the memory
information recorded in the software static-DDT, we can
conclude that the current simulating function is a computation
function and thus no data dependencies take place.

In general, it is possible to automatically identify the
communication functions in a program (e.g. [6][7]). To prove
the concept of the proposed USCM, we utilize interactive
debuggers [8] and disassembly utilities [9] to extract the
program memory information of the communication functions.
We conduct this extraction before simulation and store it in the
software static-DDT.

2) Software Dynamic-DDT
 In most cases, the communication functions perform not

only data-exchanging operations but also non-data-exchanging
ones (i.e: buffering). The non-data-exchanging operations only
interact with the local variables and thus will not induce data-

dependency issues. Therefore, we can further reduce the
number of synchronizations by identifying these local variable
operations and record their memory information in the
software dynamic-DDT. In other words, during simulation, if
the current memory access matches the stored information in
software dynamic-DDT, we can assure that there is no data
dependency issue and the simulation can continue without
synchronization.

However, the challenge is how the memory information of
the local variables can be recorded during the at-speed
simulation. There are two issues: (1) How to identify the local
variables, and (2) How to obtain the memory information. For
(1), we assume that the identification of the local variables is
given. Therefore, we can embed a “memory catching function
(MCF)” for each local variable in order to retrieve its memory
information (for (2)).

Figure 3 can further illustrate this idea. Please note that we
need a medium to collect all local variable information and
communicate with the simulation engine. Therefore, we create
a specific hardware module, called the data-dependency
shadow controller (DDSC), as the medium. Through the
DDSC, the simulator can receive the memory information
from the communication functions. In the end, MCF will send
a confirmation code (i.e. 0x1234567 in this example) to the
simulator and then transfer the receiving memory information
to the software dynamic-DDT. Similar to the life span of the
local variables in a software program, the content of the
software dynamic-DDT will also be cleaned up when exiting
the current communication function.

C. Ultra Synchronization Checking Flow
As mentioned above, in order to reduce the number of

unnecessary synchronizations in virtual platform simulation,
we analyze the memory information and categorize the data
dependencies into four data dependency tables: hardware static
and dynamic, and software static and dynamic DDTs.
Intuitively, detections of these data dependencies may
correspond to the causality and different runtime complexities.
Then the data dependencies lead to different reduction power in
the number of synchronizations. Therefore, we should apply

Figure3. An example of MCF for SW D-DDT

void MCF(int StartAddr, int Size, int DataTypeSize) {
unsigned int Range = StartAddr + Size*(DataTypeSize/sizeof(int))
// send memory information to DDSC
*((volatile unsigned int *)DDSC_StartAddr) = StartAddr;
*((volatile unsigned int *)DDSC_Private_EndAddr) = StartAddr + Range;
*((volatile unsigned int *)DDSC_Private_Confirm) = 0x1234567;

}

void Comm_Task_1(unsigned int& BufferSize) {
int* Buffer = new int[BufferSize]; // Buffer is the local variable for example
// Embed MCF function
MCF(Buffer, BufferSize, sizeof(int)); // Pass the memory information
for (unsigned int ii=0; ii<BufferSize; ++ii) {
buffer[ii] = GetData(); // GetData() refers to mutex_related function
..
PutData(Buffer[ii*3+ii]); // PutData() referes to mutex_related function

}
…………

}

Table.1 The number of synchronizations versus different numbers of processors for the JPEG-Enc and SMM

JPEG Enc Simulation on Target MPSoC

Num-CPU Total
Instructions

Target Time
(Unit = 10ns)

CSSM
Num-Sync

DAVSM
Num-Sync

USCM
Num-Sync

1 1,025,182,277 1,215,643,107 2,431,286,214 46,134 6,280

2 732,605,477 825,540,481 2,476,621,443 525,371,208 8,380

4 620,999,273 676,731,757 3,383,658,785 525,381,021 12,480

8 569,808,025 608,475,867 5,476,282,803 525,400,626 21,080

16 540,592,595 569,520,124 9,681,842,108 525,439,957 36,680

32 523,610,016 546,873,007 18,046,809,231 525,518,635 71,380

SMM Simulation on Target MPSoC

Num-CPU Total
Instructions

Target Time
(Unit = 10ns)

CSSM
Num-Sync

DAVSM
Num-Sync

USCM
Num-Sync

1 152,601,421 179,173,896 358,347,792 5,267 743

2 111,568,180 124,107,486 372,322,458 87,154,494 998

4 97,557,868 104,716,214 523,581,070 90,443,686 1,508

8 95,378,082 100,388,132 903,493,188 97,022,041 2,528

16 103,032,854 107,751,048 1,831,767,816 110,178,867 4,568

32 124,429,306 130,592,746 4,309,560,618 136,492,548 8,648

DD checking wisely in order to achieve the best improvement
in simulation.

Figure 4 shows the USCM flow. In short, our criteria is to
first check the types of data dependencies with two principles:
(1) When proven no data dependency issues in the
corresponding category, can assure that no data dependency is
possible for other categories either. (2) The chosen type of data
dependency checks should be of low computation complexity.

The first analyzed DDT is SW S-DDT. Remember that the
contents of SW S-DDT can be constructed and sorted in
compile time. Furthermore, no matter what the instructions of
the software function are simulated, the program counter of the
simulating processor model refers to the same program
memory region of the software function. Since the memory
regions in SW S-DDT are sorted, we can use binary search to
check whether the current program counter belongs to the
communication functions in the SW S-DDT. Therefore, the
time complexity is O(log(N)), where N is the number of
distinct ranges in SW S-DDT. However, when simulating the
following instructions in the same function, the time to check
whether the simulating function is a communication function or
not is only constant time due to the caching effect.

The next step is to analyze the HW S-DDT. Similarly, the
memory information gathered in HW S-DDT can be
constructed in compile time. Therefore, the searching for data
dependency in this category takes O(log(M)) time, where M is
the number of hardware memory map regions. This type of
checking is also very fast and thus should be applied with the
higher priority against SW D-DDT.

Finally, we perform the HW D-DDT and SW D-DDT
checks. Because the contents of dynamic DDTs cannot be
obtained in compile time and they are not stored in any
particular order, we need to conduct linear search in order to
determine whether the corresponding data dependencies may
occur. Note that we choose to run HW D-DDT before SW D-

DDT in our flow because the number of local variables in a
function is usually larger than the number of memory regions
in the HW D-DDT.

IV. EXPERIMENT RESULTS
To evaluate the effectiveness and robustness of USCM, we

conduct several experiments with the original synchronization
mechanism (Clock-Step Simulation Method, CSSM) in
SystemC and the Data-dependency Virtual Synchronization
Method (DAVSM) as in [1]. We compare the number of
synchronizations (Num-Sync) and the simulation speed on a
MPSoC virtual platform with various numbers of processors.

The experimental settings are as follows. First, we build a
virtual MPSoC prototype by SystemC[10] and TLM[5], and
modify public programs (i.e: JPEG Encode in [11], and Sparse
Matrix Multiplication in [12]) as the parallel programs for the
target MPSoC. We then modularize the synchronization
mechanism in the target MPSoC, so that the synchronization
mechanism becomes replaceable while keeping the original
functionalities of hardware modules intact. Furthermore, we
build the target MPSoC with two memory systems commonly
utilized in MPSoC: the distributed shared memory system and
the uniform shared memory system. Then various types of
synchronization conditions are examined in the target MPSoC.
Finally, our ARM v5Te processor model with ISA and other
hardware modules in the target MPSoC are required to be cycle
accurate. Such arrangements ensure the virtual platform
simulation in high simulation accuracy.

These experiments were conducted on a Linux workstation
with Intel Xeon 2.2 GHz and 16 GB RAM.

A. Experimental results on the number of synchronization

Table 1 demonstrates the experimental results on the
comparison of the number of synchronizations. We compare
three different synchronization mechanisms (CSSM, DAVSM
and USCM) on two parallel software programs (JPEG
encoding and Sparse Matrix Multiplication) with numbers of
CPUs from 1 to 32. The number of the total simulated
instructions and the target time (i.e. the time in the target
MPSoC) are presented in the second and third columns. Please
note that we implement the DAVSM and USCM with cycle
accuracy. Therefore, their instruction counts and target time are
the same as those of CCSM.

Columns 4, 5, and 6 in Table 1 show the number of
synchronizations for CSSM, DAVSM, and USCM,

Figure4. The Ultra Synchronization Checking

Induce DD issue ?
Look up SW S-DDT

Simulate a hardware module &
Check DD issue

Execute Synchronization

Yes

Yes

Yes

Yes

NoNo

No No

Induce DD issue ?
Look up HW D-DDT

Induce DD issue ?
Look up HW S-DDT

Induce DD issue ?
Look up SW D-DDT

)1(,,
(sec)

1

niprocessorthiThePprocessorsofnumberThen
TimeSimulation

PbyperformednsinstructioofnumberThe
SpeedSimulation

i

n

i
i

≤≤−==

=
∑
=

respectively. The number of synchronizations increases with
the increasing number of CPUs, no matter which
synchronization mechanism is adopted. However, the number
of synchronizations in our USCM algorithm is usually 5 to 6
orders less than that of CSSM and DAVSM. This indicates that
our USCM greatly outperforms other mechanisms in reducing
the number of synchronizations.

We further compare the growth in the number of
synchronizations with respect to the increase in the number of
CPUs. The result shows that DAVSM grows much faster than
USCM. This means that the USCM algorithm is more robust
towards multi-core virtual platform simulations.

B. The improvement of simulation speed
Table 2 compares the simulation time among different

synchronization mechanisms. As can be seen, USCM
outperforms the other two in all cases. Another measurement
compares the simulation speed as the number of instructions
executed per second. We use the following formula to compute
the simulation speed:

Following the above definition, we plot the impact of the
number of CPUs on the simulation speed in Figure 5 　 the
vertical axis is the simulation speed in million instructions per

second (MIPs), and the horizontal axis is the number of CPUs.
It is clear that both DAVSM and USCM greatly outperform the
traditional CSSM approach. This is due to the effects in the
synchronization reductions. Nevertheless, UCSM is more
robust for MPSoC virtual platform simulation as it is less
sensitive to the increase in the number of CPUs. Specifically,
for a single-CPU platform, USCM has similar performance
with DAVSM. However, for the 32-processor MPSoC virtual
platform, the improvement in simulation speed by USCM is as
high as 2X and 30X, respectively. In short, USCM can simulate
a 32-processor SoC design in the speed of multi-million
instructions per second with cycle accuracy.

V. CONCLUSION
In this paper, we propose a novel Ultra Synchronization

Checking Method (USCM) for MPSoC virtual platform
simulation. By analyzing various types of memory information
and categorizing the data dependencies among modules into

hardware/software static/dynamic Data-Dependency Tables
(DDTs), we can greatly reduce the number of synchronizations
in simulation scheduling and still maintain reasonably good
cycle accuracy. Our experimental results demonstrate that our
method can not only improve the simulation speed by several
orders, when compared to the conventional clock-step
simulation scheme, but also outperform the other async-DES
based approaches, especially for the multi-core designs.

REFERENCES
[1] KH Lin, S.J. Cai and Ric. Huang, “Speeding Up SoC Virtual

Platform Simulation by Data-dependency Aware Virtual
Synchronization”, in Proc. ASP-DAC, Taipei, Taiwan, Jan. 2010.

[2] G. Schirner and R. Dömer, “Fast and accurate transaction level
models using result oriented modeling,” in Proc. ICCAD, San
Jose, CA, Nov. 2006, pp. 363–368.

[3] Y. Yi, “Fast and Accurate Cosimulation of MPSoC Using Trace-
Driven Virtual Synchronization”, in Proc. IEEE Transaction on
Computer-Aided Design of Integrated Circuit and Systems, Dec.
2007, pp. 2186-2200.

[4] MH Wu, “An effective synchronization approach for fast and
accurate multi-core instruction-set simulation”, in Proc. 5th
EmSoft, Nov. 2009, pp. 197-204.

[5] Cai et al, “Transaction Level Modeling: An Overview”, in Proc.
1st IEEE Intl. Conf. on Hardware/Software Co-design & System
Synthesis, October 2003, pp. 19-24.

[6] M. Girkar, C.D. Polychronopoulos, “Automatic extraction of
functional parallelism from ordinary programs”, IEEE Trans on
Parallel and Distributed System (PDS), Mar, 1992.

[7] S. Gupta et al., “SPARK: A High-Level Synthesis Framework
for Applying Parallelizing Compiler Transformations,” in Proc.
16th Int’l Conf. VLSI Design, IEEE Press, 2003, pp. 461-466.

[8] http://sourceware.org/gdb/current/onlinedocs/gdb/, The GDB
User Manual, chapter 9, 2010, pp. 96-98.

[9] B. Schwarz, S. Debray, and G. Andrews, "Disassembly of
Executable Code Revisited", Proc. of 9th Working Conference
on Reverse Engineering (WCRE), 2002, pp. 45–54.

[10] <http://www.systemc.org/downloads/standards/>
[11] <http://www.ijg.org/files/>
[12] <http://www.cise.ufl.edu/research/sparse/SuiteSparse/>.

Table2. The simulation time (sec) of the experiments

Num-CPU JPEG Enc SMM JPEG Enc SMM JPEG Enc SMM
1 3734.15 546.62 173.22 28.87 179.45 29.34

2 2818.85 414.37 441.01 74.83 191.22 31.28

4 2545.14 380.21 453.54 79.58 198.43 35.31

8 2667.44 436.73 494.44 92.05 209.06 38.37

16 3280.79 611.1 539.45 115.83 225.96 46.94

32 4667.14 1161.97 635.17 165.8 263.44 66.57

CSSM DAVSM USCM

Figure5. The simulation speed versus the different
number of processor for JPEG End and SMM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 450
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 450
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1800
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [612.000 792.000]
>> setpagedevice

