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Abstract—Virtual platform simulation is an essential technique 
for early-stage system-level design space exploration and 
embedded software development. In order to explore the 
hardware behavior and verify the embedded software, simulation 
speed and accuracy are the two most critical factors. However, 
given the increasing complexity of the Multi-Processor System-
on-Chip (MPSoC) designs, even the state-of-the-art virtual 
platform simulation algorithms may suffer from the simulation 
speed issue. In this paper, we proposed an Ultra Synchronization 
Checking Method (USCM) for fast and robust virtual platform 
simulation. We devise a data dependency table (DDT) so that the 
memory access information by the hardware modules and 
software programs can be predicted and checked. By reducing 
the unnecessary synchronizations among simulation modules and 
utilizing the asynchronous discrete event simulation technique, 
we can significantly improve the virtual platform simulation 
speed. Our experimental results show that the proposed USCM 
can simulate a 32-processor SoC design in the speed of multi-
million instructions per second. We also demonstrate that our 
method is less sensitive to the number of cores in the virtual 
platform simulation. 

Keywords-Virtual Platform Simulation, SoC, Synchronization. 

I.  INTRODUCTION 
To conduct design space exploration in the early stage of 

the modern System on a Chip (SoC) design flow, designers 
begin to adopt virtual platform simulation. However, due to the 
increasing design size and complexity, the validatation of a 
design becomes time consuming. in this paper, we propose an 
Ultra Synchronization Checking Method (USCM) for speeding 
up the virtual platform simulation. 

A SoC virtual platform is a software program that is 
sequentially simulated by a software simulator. To mimic the 
concurrent hardware behavior in a SoC design, the virtual 
platform simulator usually employs a synchronization 
mechanism to ensure proper communications in the right order 
and accurate computations at the right time. In other words, the 
simulation kernel needs to iteratively talk to each module on 
the corresponding triggering events in order to schedule its data 
computations and communications with proper delays. 
Consequently, the context-switches, introduced by the 
synchronization mechanism of the simulation scheduler, 
usually constitute the majority of the runtime [1].  

Several studies have shown that a certain portion of 
synchronizations can be skipped and the simulation results can 
still be accurate. Most approaches that skip synchronizations 
are based on Asynchronous Discrete Event Simulation (async-

DES, see more details in Section 2). In contrast to the 
traditional synchronous DES, in which the simulations of 
events among different design modules have to follow the 
chronological order, in async-DES, individual modules can 
continue its simulation for many cycles (without performing 
synchronizations) until “synchronization conditions” are met.  

Result-Oriented Modeling (ROM) utilizes an optimistic 
approach to predict the outcome of a simulating process when 
the process starts [2]. The virtual platform simulator can then 
continuously simulate this process without any synchronization 
until the predicted time is up. However, if there are disturbing 
influences (i.e. causality errors) that might alter simulation 
results during the simulation, the simulator needs a recovery 
mechanism to roll back the simulation, thus affecting the 
simulation speed. 

To avoid such errors, Kim [3] adopts a conservative 
approach, called “virtual synchronization”, for its 
synchronization mechanism in simulating the operating system 
modelers. It depends on an operating system scheduling 
technique to determine synchronization conditions. However, 
because the timing granularity that the operating system 
scheduling can support is coarse-grained, this mechanism may 
not be applicable to the virtual platform simulation in which 
higher simulation accuracy (e.g.  cycle-approximate accuracy) 
is needed.  

The methods of virtual synchronization were further 
improved by Wu [4] and Lin [1], respectively, to support better 
simulation accuracy. Their key idea is to examine data 
dependencies among different modules/programs in order to 
recognize finer-grained synchronization conditions. 
Specifically, Wu’s method adopts the disassembling utility to 
identify the static/heap memory regions of software programs. 
Wu utilizes memory information to predict where the data-
dependency issues (DD issues) occur in the program and when 
the simulator needs to perform synchronization for the cycle-
based processor model. However, in a SoC virtual platform, 
apart from the processor model, there are other hardware 
modules whose memory access information cannot be acquired 
from the disassembled program. Therefore, this method may be 
restricted.  

On the other hand, Lin’s method marks all memory regions 
that hardware modules potentially access. Some of the memory 
regions may overlap to each other, and the overlapped regions 
are the only places where data dependency may occur. During 
simulation, Lin [1] checks whether the current hardware 
module is accessing the overlapped regions. If not, there is no 
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need to perform synchronization and thus this module can 
simulate as long as it stays in its specific memory region. 
Otherwise, synchronization will be evoked. Although Lin’s 
method is highly applicable to various virtual platform 
simulations with high accuracy, for Multi-Processor SoC 
(MPSoC) designs where almost all memory accesses are in the 
overlapped (shared) memory regions, their algorithm have to 
take the conservative approach and perform synchronizations 
in almost all cycles, reducing the performance of xxx. 

In this paper, we propose an Ultra Synchronization 
Checking Method (USCM) that improves previous virtual 
synchronization mechanisms by monitoring the data 
dependencies on hardware modules as well as on software 
programs. We devise data dependency tables (DDTs) so that 
the memory access information of the hardware modules and 
software programs can be predicted and checked efficiently. 
Implemented in a robust data dependency checking flow, our 
method can greatly reduce the number of synchronization even 
in the MPSoC virtual platform simulation. In addition, the 
proposed approach preserves the principles of the conservative 
approach so that it rarely makes casualty errors and thus avoids 
simulation recovery/rerun. Our experimental results show that 
the simulation speed of our simulation engine can achieve 
multi-million instructions per second even for a 32-processor 
virtual platform. Moreover, our method is orthogonal to a 
parallel simulation mechanism that runs on a multi-
core/processor host machine [4]. Therefore, our method may 
further increase the speed of virtual platform simulation in the 
parallel simulation mechanism. 

The rest of this paper is organized as follows. First, we 
introduce the preliminary knowledge in Section 2 and then 
describe the details of the proposed USCM in Section 3. 
Section 4 demonstrates the experimental results and finally, 
Section 5 concludes the paper and discusses future work. 

II. PRELIMINARIES 

In this section, we present two techniques adopted in our 
work, that is, Asynchronous Discrete Event Simulation 
(async-DES) for synchronization reduction, and Data-
Dependency (DD) checking for synchronization determination. 

A. Asynchronous Discrete Event Simulation 
The Asynchronous Discrete Event Simulation (async-DES) 

is an event-driven simulation algorithm that allows the design 
under verification to simulate asynchronously. In contrast to 
the Synchronous Discrete Event Simulation (sync-DES) in 
which the simulation kernel needs to synchronize each module 
of the design in every cycle/event to make sure the simulation 
is in the proper chronological order, the async-DES allows the 
individual module to simulate as long as possible until the 
necessary synchronization conditions causing data-dependency 
issues are met.  

As shown in Figure 1, async-DES has a potential advantage 
in simulation speed because it can reduce the number of 
context switches introduced by the synchronization process. 
Nevertheless, it may produce some overheads by ensuring the 
simulation accuracy. As figure 1-(a) shows, the simulation 

kernel needs to spend extra efforts checking whether the 
synchronization conditions are met (the synchronization 
condition refers to the situation when the data dependency 
among different modules occurs). For example, when one 
module needs some data whose memory location is being 
updated by another module, its simulation needs to be halted 
until the memory location is available again. Therefore, a 
simple-minded algorithm may take a conservative approach to 
recognize the occurrence of data dependencies and thus 
perform synchronizations more frequently than necessary, 
decreasing the efficiency of the sync-DES 

Another overhead in async-DES is the need to compensate 
the communication delays after synchronizations. Please note 
that when individual hardware modules are simulated 
continuously in Figure 1-(b), some of the communication 
delays (e.g. bus contention) might be ignored. For example, if 
two modules are simultaneously accessing the bus, trying to 
read/write multiple data from/into different memory locations, 
bus contentions would take place. In the sync-DES, proper 
delays will be inserted between data transactions so that the 
timing accuracy of the simulation can be ensured. However, 
since there is no data dependency in the async-DES, one 
module will be chosen to run the simulation as long as possible, 
and then the others will follow. In such case, it is difficult to 
observe the bus contentions during simulation. Therefore, we 
will have to apply techniques such as the trace-driven 
simulation [3] to restore the accurate simulation time. In short, 
with such overhead, async-DES can still achieve the same 
simulation accuracy as the sync-DES. 

B. Data-Dependency Checking 
As mentioned in the previous subsection, efficient data-

dependency (DD) checking is the key to identifying the 
minimal necessary synchronization conditions and thus to 
promote the simulation speed. While data dependencies can be 
checked by examining whether modules read from or write into 
the same memory location, the challenge is that in async-DES, 
when one module executes in hundreds to thousands of cycles 
in advance of others, how we predict that it can safely continue 
the simulation without the worry about the data dependency 
with other lagging modules. 

One solution is to define the memory access region from 
each module and then to create a map to identify potential data 
dependencies (cf. [1]). Note that we can construct this data 
dependency map in the virtual platform initialization phase. 
Therefore, during simulation, if a non-overlapped memory 
region is accessed, we can guarantee that there will be no data 

 

Figure1. sync-DES versus async-DES 
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dependency and thus no synchronization is needed. In general, 
for simplified SoCs, different hardware modules may have 
their own memory maps and thus the abovementioned 
approach seems to work. However, for modern MPSoCs, it is 
common to have shared memory among different processors. 
Moreover, some unexpected events (e.g. interrupt, out-of-order 
execution) and the embedded software programs will further 
complicate the memory access regions from different hardware 
modules. As a result, the above DD checking algorithm may 
conclude that the data dependencies should occur all the times 
and thus failing to avoid unnecessary synchronizations in the 
async-DES. 

In the next section, we will present an aggressive DD 
checking algorithm, called Ultra Synchronization Checking 
Method (USCM), to reduce the unnecessary synchronizations 
during MPSoC virtual platform simulation. 

III. ULTRA SYNCHRONIZATION CHECKING METHOD 
As mentioned previously, data-dependency checking (DD 

checking) can be very complicated for the async-DES because 
it needs to accurately predict memory access regions by the 
software executing on the MPSoC hardware. To precisely 
judge data dependencies requires not just memory mapping 
information from the hardware but also the program/data 
storage of the embedded software. Furthermore, both of them 
need to be analyzed statically (i.e. at compile time) and 
dynamically (i.e. during simulation). Hence, we devise a data-
dependency table (DDT) mechanism that can facilitate the 
analysis of various types of memory information. In what 
follows, we first present two types of DDTs, namely hardware-
based and software-based DDTs, and describe how they can be 
further categorized into hardware static/dynamic DDTs and 
software static/dynamic DDTs, respectively. Then we consider 
the features of DDTs and propose the synchronization checking 
flow to accomplish the USCM. 

A. Hardware-Based Data-Dependency Table 
 In virtual platform simulation, data-dependency issues 

arise when there are two or more hardware modules accessing 
the same memory location. In such situations, the simulator 
must perform synchronizations in order to simulate the 
hardware modules in a correct chronological order. The data 
dependency (DD) checking technique described in Section 2.2 
determines such synchronization conditions. In other words, if 
the memory regions for all hardware modules can be 
recognized, the DD checking mechanism should be able to 
perform the proper synchronizations. However, the memory 
regions that the hardware modules access may be specified in 
compile time and/or changed during simulation. Therefore, we 
propose two different data dependency tables, that is, Hardware 
Static-DDT (HW S-DDT) and Hardware Dynamic-DDT (HW 
D-DDT), for these two scenarios. 

1) Hardware Static-DDT 
The hardware static DDT is constructed in compile time to 

record the overlapped memory regions that can be accessed by 
two or more hardware modules. Without loss of generality, the 
memory regions that the hardware modules will access can be 
found as memory maps in the specification sections of the 

header files. Therefore, our simulation engine will parse these 
header files to acquire the memory information and record 
them as hardware static DDT. 

Note that we record only the overlapped memory regions 
and sort them in an array data structure. During simulation, if 
a hardware module accesses a memory location, we check 
whether the corresponding memory address can be found in 
this hardware static DDT. If yes, the simulator will treat it as a 
synchronization condition and hand over the control to the 
simulation kernel. Otherwise, the access is not in the 
overlapped memory region and thus no data dependency is 
possible. 

2) Hardware Dynamic-DDT 
Although the hardware static DDT can identify certain data 

dependencies to improve the simulation speed (e.g. [1]), it is 
relatively conservative. When a hardware module accesses the 
overlapped memory region in the hardware static DDT, it does 
not necessarily cause data dependencies ⎯ the other modules 
may access this location at some other time. 

A brute-force solution to this problem is to monitor the 
memory accesses of the hardware modules from time to time. 
However, this causes a big overhead, thus deteriorating the 
simulation speed. Therefore, we adopt a semi-automatic 
method in which certain “memory acquiring functions” (MA 
Functions) are manually embedded in the hardware modules. 
These MA functions denote the “authorized” memory regions 
that the modules can access with exclusive privileges. During 
simulation, these authorized memory regions will be 
automatically added to and later be removed from the 
hardware dynamic DDT when the corresponding MA 
functions are evoked. Consequently, when a memory access 
region is in the recorded regions of the hardware dynamic 
DDT, no data dependency can happen. 

The example in Figure 2 illustrates our idea. The Direct 
Memory Access (DMA) controller is a common hardware 
module in SoCs to move mass data from the source to the 

void pSync::HW_MAF_ADD (unsigned intMemBegin, unsigned int MemEnd) {
HW_DDDT.push_back(new pair(MemBegin, MemEnd)); 

}
void pSync::HW_MAF_DEL (unsigned int MemBegin, unsigned int MemEnd) {
itrHWDDDT = HW_DDDT.find(uPair(MemBegin, MemEnd))
HW_DDDT.erase(itrModDDDT); 

}

void pvt_dma::dmaOperation() {
// Set  The memory regions that � dma accesses�
// Embed HW_MAF_ADD func to acquire memory information
pSync‐>HW_MAF_ADD(SourceAddr, SourceAddr+M_Size);  //  add a memory region
pSync‐>HW_MAF_ADD(DistAddr, DistAddr+M_Size);  // add a memory region
cout << "DMA begin to move data ....\n";
for(unsigned  int i = 0; i < M_Size; i++){
ReadMemory(SourceAddr, 4);
WriteMemory(DistAddr, 4, m_resp_data);
SourceAddr += 4; DistAddr += 4;

}
cout << "DMA Finish move data  ....\n";
// Embed HW_MAF_DEL Func to delete the useless memory information; 
pSync‐>HW_MAF_DEL(SouceAddr‐M_Size, SourceAddr);  // Delete a memory region
pSync‐>HW_MAF_DEL(DistAddr‐M_Size, DistAddr); // Delete a memory region

}

Figure2. An example of MA Function for HW D-DDT 



destination memory locations. In the source code, we embed 
MA Functions, HW_DDDT_ADD() and HW_DDDT_DEL() 
to acquire the dynamic memory information. That is, when 
they are evoked during simulation, DMA will be exclusively 
authorized to access this memory region. Therefore, no data 
dependency will be possible and thus the async-DES can 
continue until memory access in other regions takes place. 

B. Software-Based Data-Dependency Table 
When performing MPSoC virtual platform simulation, 

there are not just hardware modules to consider; there are also 
multiple embedded software programs running on multiple 
processor models. Failing to consider the effects of software 
programs in data dependency checking may lead to a 
conservative synchronization mechanism, slowing down the 
simulation. For example, most of the processor models can 
access all the shared memory regions. Therefore, when only 
referring to HW-Based DDTs, we will end up checking 
synchronizations in almost every cycle. 

Next, we will present two software-based DDTs, namely 
the Software Static-DDT (SW S-DDT) and Software Dynamic-
DDT (SW D-DDT). With them, we can further improve the 
data dependency checking by considering the software effects. 

1) Software Static-DDT 
 As mentioned in [4], only when the software program 

possesses data-exchanging behavior (e.g. mutex, semaphore) 
in the shared memory should we consider its data-dependency 
issues. In other words, if a function of a software program 
contains only computations within the processor model, the 
corresponding hardware simulations will not result in data 
dependencies with other processor models. Therefore, to 
characterize the impact of the software programs on the 
synchronization mechanism, we should distinguish the 
software functions that perform data exchanges with other 
modules (i.e. the communication functions), with those 
computation functions. In our proposed USCM, we store the 
program memory information of the communication functions 
in the software static-DDT. During simulation, if the current 
program counter address does not match the memory 
information recorded in the software static-DDT, we can 
conclude that the current simulating function is a computation 
function and thus no data dependencies take place. 

In general, it is possible to automatically identify the 
communication functions in a program (e.g. [6][7]). To prove 
the concept of the proposed USCM, we utilize interactive 
debuggers [8] and disassembly utilities [9] to extract the 
program memory information of the communication functions. 
We conduct this extraction before simulation and store it in the 
software static-DDT. 

2) Software Dynamic-DDT 
 In most cases, the communication functions perform not 

only data-exchanging operations but also non-data-exchanging 
ones (i.e: buffering). The non-data-exchanging operations only 
interact with the local variables and thus will not induce data-

dependency issues. Therefore, we can further reduce the 
number of synchronizations by identifying these local variable 
operations and record their memory information in the 
software dynamic-DDT. In other words, during simulation, if 
the current memory access matches the stored information in 
software dynamic-DDT, we can assure that there is no data 
dependency issue and the simulation can continue without 
synchronization. 

However, the challenge is how the memory information of 
the local variables can be recorded during the at-speed 
simulation. There are two issues: (1) How to identify the local 
variables, and (2) How to obtain the memory information. For 
(1), we assume that the identification of the local variables is 
given. Therefore, we can embed a “memory catching function 
(MCF)” for each local variable in order to retrieve its memory 
information (for (2)). 

Figure 3 can further illustrate this idea. Please note that we 
need a medium to collect all local variable information and 
communicate with the simulation engine. Therefore, we create 
a specific hardware module, called the data-dependency 
shadow controller (DDSC), as the medium. Through the 
DDSC, the simulator can receive the memory information 
from the communication functions. In the end, MCF will send 
a confirmation code (i.e. 0x1234567 in this example) to the 
simulator and then transfer the receiving memory information 
to the software dynamic-DDT. Similar to the life span of the 
local variables in a software program, the content of the 
software dynamic-DDT will also be cleaned up when exiting 
the current communication function. 

C. Ultra Synchronization Checking Flow 
As mentioned above, in order to reduce the number of 

unnecessary synchronizations in virtual platform simulation, 
we analyze the memory information and categorize the data 
dependencies into four data dependency tables: hardware static 
and dynamic, and software static and dynamic DDTs. 
Intuitively, detections of these data dependencies may 
correspond to the causality and different runtime complexities. 
Then the data dependencies lead to different reduction power in 
the number of synchronizations. Therefore, we should apply 

Figure3. An example of MCF for SW D-DDT 

void MCF(int StartAddr, int Size, int DataTypeSize) {
unsigned int Range = StartAddr + Size*(DataTypeSize/sizeof(int))
// send memory information to DDSC
*((volatile unsigned int *)DDSC_StartAddr) = StartAddr;
*((volatile unsigned int *)DDSC_Private_EndAddr) = StartAddr + Range;
*((volatile unsigned int *)DDSC_Private_Confirm) = 0x1234567;

}

void Comm_Task_1(unsigned  int& BufferSize) {
int* Buffer = new int[BufferSize]; // Buffer is the local variable for example
// Embed MCF function
MCF(Buffer, BufferSize, sizeof(int)); // Pass the memory information
for (unsigned int ii=0; ii<BufferSize; ++ii) {
buffer[ii] = GetData(); // GetData() refers to mutex_related function
..
PutData(Buffer[ii*3+ii]); // PutData() referes to mutex_related function

}  
…………

}     



Table.1 The number of synchronizations versus different numbers of processors for the JPEG-Enc and SMM

JPEG Enc Simulation on Target MPSoC

Num-CPU Total
Instructions

Target Time
(Unit = 10ns)

CSSM
Num-Sync

DAVSM
Num-Sync

USCM
Num-Sync

1 1,025,182,277 1,215,643,107 2,431,286,214 46,134 6,280

2 732,605,477 825,540,481 2,476,621,443 525,371,208 8,380

4 620,999,273 676,731,757 3,383,658,785 525,381,021 12,480

8 569,808,025 608,475,867 5,476,282,803 525,400,626 21,080

16 540,592,595 569,520,124 9,681,842,108 525,439,957 36,680

32 523,610,016 546,873,007 18,046,809,231 525,518,635 71,380

SMM Simulation on Target MPSoC

Num-CPU Total
Instructions

Target Time
(Unit = 10ns)

CSSM 
Num-Sync

DAVSM
Num-Sync

USCM
Num-Sync

1 152,601,421 179,173,896 358,347,792 5,267 743

2 111,568,180 124,107,486 372,322,458 87,154,494 998

4 97,557,868 104,716,214 523,581,070 90,443,686 1,508

8 95,378,082 100,388,132 903,493,188 97,022,041 2,528

16 103,032,854 107,751,048 1,831,767,816 110,178,867 4,568

32 124,429,306 130,592,746 4,309,560,618 136,492,548 8,648

DD checking wisely in order to achieve the best improvement 
in simulation. 

Figure 4 shows the USCM flow. In short, our criteria is to 
first check the types of data dependencies with two principles: 
(1) When proven no data dependency issues in the 
corresponding category, can assure that no data dependency is 
possible for other categories either. (2) The chosen type of data 
dependency checks should be of low computation complexity. 

The first analyzed DDT is SW S-DDT. Remember that the 
contents of SW S-DDT can be constructed and sorted in 
compile time. Furthermore, no matter what the instructions of 
the software function are simulated, the program counter of the 
simulating processor model refers to the same program 
memory region of the software function. Since the memory 
regions in SW S-DDT are sorted, we can use binary search to 
check whether the current program counter belongs to the 
communication functions in the SW S-DDT. Therefore, the 
time complexity is O(log(N)), where N is the number of 
distinct ranges in SW S-DDT. However, when simulating the 
following instructions in the same function, the time to check 
whether the simulating function is a communication function or 
not is only constant time due to the caching effect. 

The next step is to analyze the HW S-DDT. Similarly, the 
memory information gathered in HW S-DDT can be 
constructed in compile time. Therefore, the searching for data 
dependency in this category takes O( log(M) ) time, where M is 
the number of hardware memory map regions. This type of 
checking is also very fast and thus should be applied with the 
higher priority against SW D-DDT. 

Finally, we perform the HW D-DDT and SW D-DDT 
checks. Because the contents of dynamic DDTs cannot be 
obtained in compile time and they are not stored in any 
particular order, we need to conduct linear search in order to 
determine whether the corresponding data dependencies may 
occur. Note that we choose to run HW D-DDT before SW D-

DDT in our flow because the number of local variables in a 
function is usually larger than the number of memory regions 
in the HW D-DDT. 

IV. EXPERIMENT RESULTS 
To evaluate the effectiveness and robustness of USCM, we 

conduct several experiments with the original synchronization 
mechanism (Clock-Step Simulation Method, CSSM) in 
SystemC and the Data-dependency Virtual Synchronization 
Method (DAVSM) as in [1]. We compare the number of 
synchronizations (Num-Sync) and the simulation speed on a 
MPSoC virtual platform with various numbers of processors.  

The experimental settings are as follows. First, we build a 
virtual MPSoC prototype by SystemC[10] and TLM[5], and 
modify public programs (i.e: JPEG Encode in [11], and Sparse 
Matrix Multiplication in [12]) as the parallel programs for the 
target MPSoC. We then modularize the synchronization 
mechanism in the target MPSoC, so that the synchronization 
mechanism becomes replaceable while keeping the original 
functionalities of hardware modules intact. Furthermore, we 
build the target MPSoC with two memory systems commonly 
utilized in MPSoC: the distributed shared memory system and 
the uniform shared memory system. Then various types of 
synchronization conditions are examined in the target MPSoC. 
Finally, our ARM v5Te processor model with ISA and other 
hardware modules in the target MPSoC are required to be cycle 
accurate. Such arrangements ensure the virtual platform 
simulation in high simulation accuracy.  

These experiments were conducted on a Linux workstation 
with Intel Xeon 2.2 GHz and 16 GB RAM. 

A. Experimental results on the number of synchronization 

Table 1 demonstrates the experimental results on the 
comparison of the number of synchronizations. We compare 
three different synchronization mechanisms (CSSM, DAVSM 
and USCM) on two parallel software programs (JPEG 
encoding and Sparse Matrix Multiplication) with numbers of 
CPUs from 1 to 32. The number of the total simulated 
instructions and the target time (i.e. the time in the target 
MPSoC) are presented in the second and third columns. Please 
note that we implement the DAVSM and USCM with cycle 
accuracy. Therefore, their instruction counts and target time are 
the same as those of CCSM. 

Columns 4, 5, and 6 in Table 1 show the number of 
synchronizations for CSSM, DAVSM, and USCM, 

Figure4. The Ultra Synchronization Checking 
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respectively. The number of synchronizations increases with 
the increasing number of CPUs, no matter which 
synchronization mechanism is adopted. However, the number 
of synchronizations in our USCM algorithm is usually 5 to 6 
orders less than that of CSSM and DAVSM. This indicates that 
our USCM greatly outperforms other mechanisms in reducing 
the number of synchronizations. 

We further compare the growth in the number of 
synchronizations with respect to the increase in the number of 
CPUs. The result shows that DAVSM grows much faster than 
USCM. This means that the USCM algorithm is more robust 
towards multi-core virtual platform simulations. 

B. The improvement of simulation speed 
Table 2 compares the simulation time among different 

synchronization mechanisms. As can be seen, USCM 
outperforms the other two in all cases. Another measurement 
compares the simulation speed as the number of instructions 
executed per second. We use the following formula to compute 
the simulation speed: 

Following the above definition, we plot the impact of the 
number of CPUs on the simulation speed in Figure 5 　 the 
vertical axis is the simulation speed in million instructions per 

second (MIPs), and the horizontal axis is the number of CPUs. 
It is clear that both DAVSM and USCM greatly outperform the 
traditional CSSM approach. This is due to the effects in the 
synchronization reductions. Nevertheless, UCSM is more 
robust for MPSoC virtual platform simulation as it is less 
sensitive to the increase in the number of CPUs. Specifically, 
for a single-CPU platform, USCM has similar performance 
with DAVSM. However, for the 32-processor MPSoC virtual 
platform, the improvement in simulation speed by USCM is as 
high as 2X and 30X, respectively. In short, USCM can simulate 
a 32-processor SoC design in the speed of multi-million 
instructions per second with cycle accuracy. 

V. CONCLUSION 
In this paper, we propose a novel Ultra Synchronization 

Checking Method (USCM) for MPSoC virtual platform 
simulation. By analyzing various types of memory information 
and categorizing the data dependencies among modules into 

hardware/software static/dynamic Data-Dependency Tables 
(DDTs), we can greatly reduce the number of synchronizations 
in simulation scheduling and still maintain reasonably good 
cycle accuracy. Our experimental results demonstrate that our 
method can not only improve the simulation speed by several 
orders, when compared to the conventional clock-step 
simulation scheme, but also outperform the other async-DES 
based approaches, especially for the multi-core designs.  
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Table2. The simulation time (sec) of the experiments 

Num-CPU JPEG Enc SMM JPEG Enc SMM JPEG Enc SMM
1 3734.15 546.62 173.22 28.87 179.45 29.34

2 2818.85 414.37 441.01 74.83 191.22 31.28

4 2545.14 380.21 453.54 79.58 198.43 35.31

8 2667.44 436.73 494.44 92.05 209.06 38.37

16 3280.79 611.1 539.45 115.83 225.96 46.94

32 4667.14 1161.97 635.17 165.8 263.44 66.57

CSSM DAVSM USCM

Figure5. The simulation speed versus the different 
number of processor for JPEG End and SMM 
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