
A Flexible High Throughput Multi-ASIP
Architecture for LDPC and Turbo Decoding
Purushotham MURUGAPPA, Rachid AL-KHAYAT, Amer BAGHDADI and Michel JEZEQUEL

E-mail: {Firstname.surname}@telecom-bretagne.eu
Electronics Department, Telecom Bretagne, Technople Brest Iroise 29238 Brest France

Abstract—In order to address the large variety of channel
coding options specified in existing and future digital com-
munication standards, there is an increasing need for flexible
solutions. This paper presents a multi-core architecture which
supports convolutional codes, binary/duo-binary turbo codes, and
LDPC codes. The proposed architecture is based on Application
Specific Instruction-set Processors (ASIP) and avoids the use of
dedicated interleave/deinterleave address lookup memories. Each
ASIP consists of two datapaths one optimized for turbo and
the other for LDPC mode, while efficiently sharing memories
and communication resources. The logic synthesis results yields
an overall area of 2.6mm2 using 90nm technology. Payload
throughputs of up to 312Mbps in LDPC mode and of 173Mbps
in Turbo mode are possible at 520MHz, fairing better than
existing solutions.

Index Terms—ASIP,LDPC,Turbo decoding.

I. INTRODUCTION

The current and emerging digital communication standards
target different sectors, namely, LTE and WiMAX covering
metropolitan area for voice and data applications with lim-
ited video, the DVB series targeting video broadcasting for
metropolitan area and Wi-Fi covering the very limited area
range to support high bandwidth for gaming, networking,
video and data applications. A select list of current standards
and their throughput requirements are given in table.I. The
user demands on the other hand, require these applications to
be supported on a single portable device which calls for future
wireless devices to be multi-standard. Numerous research
groups have come up with different architectures that aim to
solve these issues by providing enough reconfigurability to
support multiple standards on a single device. A majority of
these works target channel decoding, as it is computationally
intensive and have complex non standardized signal processing
arithmetic done on varying frame lengths and require high
memory bandwidth. The types of channel coding to support
usually are convolutional (CC), turbo or LDPC codes. The
supported types in turbo are usually Single Binary and/ Double
Binary Turbo Codes (SBTC and DBTC). The ASIC based
flexible architecture presented in [2] can support multiple
standards (HSDPA, WiMAX, Wi-Fi, DVB-H) with LDPC
and turbo coding options. However, it occupies a large area
of 0.9mm2 in 45nm technology (3.6mm2 in 90nm). In
[1], a flexible architecture is presented that support Viterbi
(for CC decoding), LDPC and turbo decoding (SBTC and

DBTC). A high throughput of 257Mbps is achieved for LDPC
mode while a limited throughput of 37.2Mbps in DBTC and
18.6Mbps in SBTC modes are achieved at 400MHz. Yang
et.al in [6] achieve 600Mbps in LDPC and 450Mbps in SBTC
mode occupying an area of 3.2mm2 in 90nm technology. In
spite of good throughput achieved, this architecture does not
support DBTC. In this work, we present a novel architecture
that achieves fair compromise in area and speed to support
LDPC and turbo decoding for an array of standards (WiMAX,
LTE, Wi-Fi, DVB-RCS) by sharing memories and network
resources. The rest of the article is organized as follows:
Section II discusses the decoding algorithms for turbo and
LDPC used in the proposed architecture. Section III gives
the system overview followed by functional description of the
ASIP in turbo and LDPC modes. The synthesis results and
comparisons w.r.t. the state of the art is given in section IV
and finally the paper concludes with section V giving some
future perspectives.

II. DECODING ALGORITHMS

A. Turbo decoding

The typical system diagram for the turbo decoding is shown
in Fig.1a. It consists of two component decoders exchanging
extrinsic information via an interleave (Π) and deinterleave
(Π−1) processes. The component decoder0 recieves Log-
likelihood ratio Λk (1) for each bit k of a frame length N
in the natural order while component decoder1 is initialized
in interleaved order.

Λk = log
Pr{dk=0|y0..N−1}
Pr{dk=1|y0..N−1} (1)

For efficient hardware implementation Max-Log MAP algo-
rithm is used, as described in [4]. For DBTC, the three
Log-Likelihood Ratios(LLR) are defined by (2) where i ∈
(01, 10, 11) of the kth symbol , s′ and s are the previous and
current trellis state and d(s′,s) is the decision respectively.

Zn.ext
k (d(s′, s) = i) = Zext

k (d(s′, s) = i) − Zext
k (d(s′, s) = 00)

(2)
The extrinsic information defined by (3) is calculated from the
aposteriori probability given by (4), wherein αk(s) and βk(s)
are the state metrics in forward (5) and backward recursion
(6) respectively and γk(s′, s) are the branch metrics (7). The
γsys

k (s′, s) and γpar
k (s′, s) are the systematic and parity symbol

LLRs. Finally, when the required number of iterations Niter

978-3-9810801-7-9/DATE11/ c©2011 EDAA

are completed the hard decision is calculated as given by (9).

Zext
k (d(s′, s) = i) = Zapos

k (d(s′, s) = i) − γint
k (s′, s) (3)

Zapos
k (d(s′, s) = i) = max

(s′,s)/d(s′,s)=i
(αk−1(s)+

γn.ext
k (s

′
, s) + βk(s)), i ∈ {00, 01, 10, 11}

(4)

αk(s) = maxs
′
,s(αk−1(s) + γk(s

′
, s)) (5)

βk(s) = maxs
′
,s(βk+1(s) + γk+1(s

′
, s)) (6)

γk(s′, s) = γint
k (s′, s) + γn.ext

k (s′, s) (7)

γint
k (s′, s) = γsys

k (s′, s) + γpar
k (s′, s) (8)

ZHard.dec
k = sign(Zapos

k) (9)

For SBTC, the trellis length can be reduced by half through
applying the one-level look-ahead recursion [6]. The modified
α and β state metrics for this Radix-4 optimization are given
by (10) and (11) where γk(s

′′
, s)is the new branch metric for

the combined two-bit symbol (uk−1, uk) connecting state s
′′

and s.
αk(s) = maxs

′′
,s{αk−2(s

′′
) + γk(s

′′
, s)} (10)

βk(s) = maxs
′′

,s{βk+2(s
′′
) + γk(s

′′
, s)} (11)

γk(s
′′
, s) = γk−1(s

′′
, s

′
) + γk(s

′
, s) (12)

The extrinsic information for uk−1 and uk are computed as:

Zn.ext
k−1 = max(Zext

10 , Zext
11) − max(Zext

00 , Zext
01) (13)

Zn.ext
k = max(Zext

01 , Zext
11) − max(Zext

00 , Zext
10) (14)

Standard Codes Rates States Block
size

Channel
Throughput

IEEE-802.11 CC 1/2 - 3/4 64 1 -4095 6 - 54 Mbps
(Wi-Fi) CC 2/3 256 .. 1944 .. 450Mbps

LDPC 1/2 - 5/6 - .. 1944 .. 450Mbps
IEEE802.16 CC 1/2 - 7/8 64 .. 2040 .. 54 Mbps

(WiMax) DBTC 1/2 - 3/4 8 .. 648 .. 54 Mbps
LDPC 1/2 - 3/4 - .. 2304 ≥100 Mbps

DVB-S2 LDPC 1/4 - 9/10 - .. 64000 .. 255 Mbps
DVB-RCS DBTC 1/3 - 6/7 - .. 1728 .. 255 Mbps
3GPP-LTE SBTC 1/3 - .. 6144 .. 150 Mbps

TABLE I: Selection of standards and channel codes

B. LDPC decoding
The Fig.1c shows the typical format of the Hbase specified

to define LDPC check matrix. It consists of Nb block columns
and Mb block rows wherein, each of the non-negative values
Πx,y is replaced by a permutation matrix of size Z × Z,
where Z is the expansion factor specified by the standard. The
negative values are replaced by zero square matrix of size
Z. The LDPC check matrix is represented in a graphical form
with a tanner graph (Fig.1b). Here CNxZ ∀ x = 1..Mb groups
of check nodes of size Z connected to V NyZ ∀ y = 1..Nb

groups of Variable nodes. Each V NyZ of size Z is initialized
with channel values ∆yZ

n . The interconnecting links represent
the ones in the expanded Hbase. As with the Max-Log MAP
algorithm, the 2-min algorithm is the hardware efficient imple-
mentation [1] of the belief propagation algorithm as described
below. Let M(n) and N(m) be as defined below.

M(n) = {n|n ∈ (0..Nb ∗ Z)∀Hnm 6= 0} (15)
N(m) = {m|m ∈ (0..Mb ∗ Z)∀Hnm 6= 0} (16)

Every iteration i, consists of M sub-iterations corresponding
to the M-check node groups in the Hbase. Each sub-iteration
consists of two phases:

• CN-update: all the VN nodes send extrinsic messages
given by (17) to their corresponding check nodes.

λi
nm = ∆i−1

n − Γi−1
mn , Γ0

mn = 0 if i = 0 (17)

• VN-update: each check node in the group sends
an update message given by (18) where, sgnm =Y
n∈N(m)

sgn(λi
nm)and minn′m = min

n
′∈N(m)\n

{|λi
n

′
m
|}

Γi
mn = α × sgnnm × minn′m (18)

The overall updated VN is given by (19).

∆i
n = λi

nm + sgn(λi
nm) × Γi

mn (19)

The above is repeated for all CNxZ∀ x = 1..Mb to complete
one iteration. When the required number of iterations (Niter)
are completed or when all the parity check node conditions are
satisfied hard decision ∆Hard.dec

n is given as the sign of ∆i
n.In

this paper (17) and (18) are called as “Running vector” and
(19) as “Update cycle”.

III. MULTI-ASIP SYSTEM ARCHITECTURE

The proposed “UDec” system architecture is shown in
Fig.2. It consists of 8 ASIPs interconnected via a de-Bruijn
network [3]. Within each component decoder the ASIPs
are also connected by two 8-bit bus (named here to be
α − β bus). Each ASIP can process three CNs in parallel,
a total of 8 ASIPs are required to process the minimum Z=24
CNs(minimum paralellism level in LDPC). This number of
ASIPs is just enough in turbo mode to work in 4× 4 mode to
achieve the targeted 150Mbps throughput. Each ASIP has 3

46
8 8

Ext
Mem

Ext
Mem

ASIP1

ASIP0

Mem

Mem
Ext Ext

Mem

Ext
Mem

Ext
Mem

4

5

6

70

1

2

3
Ext

Mem

Ext

ASIP5

ASIP6

ASIP7

CV

CV

CV

COMPONENT DECODER1COMPONENT DECODER0

de − Bruijn − NOC

inLDPCmode
Ringbusformed

CV

CV

CV

CV

CV

ASIP2

α− β bus

ASIP3 ASIP4

α− β bus

3x

3x

3x

3x

x3

x3

x3

x3

x3

x3

x3

x33x

3x

3x

3x

Fig. 2: UDec System Architecture

memory banks of size 24x256 used to store the input channel
LLR values (CV memories). There are also another 3 banks
of size 30 × 256 used for storing extrinsic information. Each
ASIP is further equipped with two 40 × 32 memories which
implement buffers to store β in turbo mode and FIFO’s to
store λi

nm in LDPC mode (not shown in Fig.2).

Component
decoder0

Component
decoder1

Hard. dec

Channel
LLR

Π−1 Π

Π

Zn.ext
k

Λk

(a) Turbo decoding system

Γi
mn

Λi
nm

Nb check node groups

V N 2Z V NNbZV NZ

Mb check node groups

CNZ
CN 2Z CNMbZ

∆NbZ
n

∆Z
n ∆2

nZ

(b) Tanner graph structure

Π0,1

Πx,0

Π0,0 Π0,Nb

Π1,Nb

Πx,Nb

Π1,1

Πx,1

Π0,y

Π1,y

Πx,y

Π1,0

V N2Z V NNbZ

CNZ

CN2Z

CNxZ

V NZ

ΠMb,1 ΠMb,Nb
CNMbZΠMb,yΠMb,0

V NyZ

(c) Hbase

Fig. 1: Turbo and LDPC system overview

A. ASIP architecture: Turbo mode

A shuffled decoding schedule [4] is adopted in this mode.
Processing of large frames can be achieved by dividing the
frame into N windows each with maximum size of 64
symbols. Each ASIP can have maximum of 12 windows. The
Fig.3b shows the processing of the windows in Backward-
Forward scheme, i.e. the ASIPs calculate the β values (back-
ward recursion) first and then followed by α (forward re-
cursion). State initializations (α int(wi

(n−1)), β int(wi
(n−1)))

across ASIPs are done by message passing via the two 8-bit
α− βbus.

The Fig.3a shows the pipeline stages of the ASIP where
the numbers indicate the equations (referred in section II-A)
mapped to them. The input memories contain the channel
LLRs ∆n quantized to 6 bits each and normalized extrinsic
values γn.ext

01 , γn.ext
10 , γn.ext

11 are quantized to 8 bits.
1) Assembly Code Example: An assembly code example of

the ASIP in turbo mode is as shown in Fig.3c. First we initial-
ize the ASIP mode (SBTC, DBTC), current iteration number
(iter = 0), number of windows (N) per ASIP, length of win-
dows (L) and the length of last window (Llast). The REPEAT

instruction controls the number of iterations (ITER MAX =

6). For the first iteration (i=0) the ASIPs start with zero as
the initial state metric (α int(wi=0

n) = β int(wi=0
n) = 0). If

the executed window was the last window of the ASIP then
the EXCHANGE instructions is fetched to exchange 8 state
metrics otherwise ZOLB is fetched. The ZOLB instruction
controls the instructions @30-31 and @35-36 to execute L
(or Llast in case of last window) number of times. The
DATA LEFT instruction executes the backward recursion
calculating the β metric. The EX BETA ALPHA instruction
saves the last calculated β int(wn

i) state metric and loads
the α int(wi

(n−1)) metric from the previous window. The
DATA RIGHT instruction executes the forward recursion
calculating α metric and EXTCALC calculates the extrinsic
information (3) and sends them over the de-Bruijn NOC. In
case of SBTC mode, two extrinsic information is generated
one for each input LLR ((13),(14)). The EXCH WIN for-
wards the last αi

(n) values as α int(wi
(n)), initializes state

metric of the next window with βwi
(n)

of window n and
increments the current window counter (n = n + 1).

2) Interleave/Deinterleave Address generation: The gener-
ated extrinsic information packets also carry the address header
which determine the destination ASIP and the memory address
at which the data is written. The interleaving/deinterleaving

addresses required w.r.t. LTE standard QPP interleaving rule
is as described below.
Let N be the number of data couples in each block at the
encoder input.For j = 0...N−1, I(j) = (F1∗j+F2∗j2)modN ,
where F1 and F2 are constants defined in the standard with j
being the index of the natural order. These addresses can be
recursively derived by:

I(j + 1) = (I(j) + G(j))modN (20)
G(j) = (G(j − 1) + 2F1)modN (21)

The deinterleaved address pattern required by component
decoder 1 can be generated recursively as described here. Let
the deinterleaved address sequence be D = [d0, d1, ..dN−1].
Taking a second order Modulo-N linear circular difference of
the sequence D gives step size values as given by (22) and
(23). The number of steps (Ns) depends on the block length
and can be atmost 8 different values.

D′ = [d0 − dN−1, d1 − d0, ..., dN−1 − dN−2]modN (22)
D′′ = [D′

0 − D′
N−1, D

′
1 − D′

0, ..., D
′
N−1 − D′

N−2]modN (23)

The following pseudo code illustrates the deinterleave address
generation process.

for i = 1 : N
d(i) = (d(i−1) − D′

(i−1))modN ;

D′
i = (D′

(i−1) + D′′((i − 1)mod(Ns)))modN ;

end
Similar sequences can be generated for ARP interleaver,
wherein the number of steps obtained is maximum of four.

B. ASIP architecture: LDPC mode

In the LDPC mode, the de-Bruijn NOC is reconfigured to
form unidirectional interconnect of 46 bits wide as shown in
the Fig.2. Each variable node message (λi

nm) and extrinsic
check node message (Γi

mn) are quantized to 7 and 5 bits
respectively. The entire input frame is partitioned into 8 sub-
frames corresponding to 8 ASIPs and each sub-frame is
divided further to 3 “fragments” of size equal to expansion
factor Z. As shown in Fig.4a each channel value (CV) memory
holds a fragment. Each location of CV memory holds two
(λi

nm) messages. As the maximum value of Z = 96 (for
WiMAX mode), the number of valid locations in CV memory
is 48. Similarly there are 3 Extrinsic memory (Ext) banks per
ASIP that store Γi

mn values. Since the VN degree is atmost
12 (for 802.11n standard) there can be at most 12 check node
messages (Γi

mn) for each VN. These messages are stored in
extrinsic memory in 4 groups each at an offset of 48 (refer
Fig.4a). With this memory architecture an ASIP can process

atmost 3 check nodes, each associated with 3 edges with 2
consecutive accesses to memories. Thus, with 8 ASIPs it is
possible to process 8× 3 = 24 check nodes edges in 2 clock
cycles.

1) LDPC scheduling: A sub-iteration in the decoding pro-
cess consists of Running vector and Update cycles carried
over each group of Check nodes first on CNZ , followed by
CN2Z ...CNMbZ . An iteration is complete when all the groups
have been processed. The Fig.4b shows the first two states in
the LDPC decoding.

1) Running vector: at state=1, the ASIP0 process the check
nodes CNZ

1,2,3, while ASIP1 process the check nodes
CNZ

4,5,6 and so on. Each ASIP fetches the ∆n and
Γmn from CV and Ext memories respectively and also
calculates λi

nm, quantizes them to 7 bits and stores them
in the FIFO. It also generates three 14-bits “RVector”
messages, each corresponding to a CN processed to be
passed on to the adjacent ASIP via the de-Bruijn NOC.
Each message contains:
• The 2 least minimums (i.e. min0, min1) of |λi

nm|
each quantized to 4 bits.

• The ASIP ID (3 bits)
• Bank number (2 bits) that contains the min0.
• Asign = sgnnm (1 bit) corresponding to the check

node m under processing.
At state=2, ASIP0 processes check nodes 22..24 while
ASIP1 processes check nodes 1..3 and so on. The ASIPs
do the same task as above except that the two least
minimums found are of |λi

nm| and (min0, min1) received
from the previous ASIP. The new Asign bit is the
XOR of Asignreceived and the Asigncalculated. This
process is repeated until all the variable nodes connected
to check nodes 1..24 are covered, thus processing one
complete block row of 24 check nodes in the expanded
Hbase matrix.

2) Update vector: when all the check nodes 1..24 are
covered, RVector messages at the input of ASIP
contain the min0, min1 of all the edges connected
to the CNs under consideration (i.e. CN=1..3 for
ASIP0, CN=4..6 for ASIP1, etc). These messages are
now called the “UVector”. The ASIPs calculate the
update values Γi

mn according to (18) and save them
to the extrinsic memories. Each ASIP calculates ∆i

n

which according to (19) is the sum of Γi
mn and the

λi
nm (fetched from the FIFO) and updates the CV

memories. The “UVector” is forwarded to the next ASIP.

If the number of check nodes remaining in the group is
greater than 24, for example if the sub matrix size Z = 96,
then the update cycles (UPDT) for CNZ

1..24 can take place
at the same time of running vector cycles (RV) of CNZ

25..48.
Thus “UVector” and current “RVector” can be passed over
the NOC every alternate clock cycles.But if number of check
nodes remaining is less than 24, say for Z = 27, then
“UVector” is passed every alternate cycles while ”RVector”

is calculated for check nodes 25..27. During the first fetch of
RunVecWithUpt(0,1) only ASIP0 executes (RV+UPDT) and
ASIPs(1-7) execute only UPDT cycle. During the second fetch
ASIP1 executes (RV+UPDT) while ASIPs(0,2-7) execute only
UPDT cycle and so on.

2) CV and Ext memory address generation: The check
nodes are processed based on the start address given by an
internal LDPC address generator. If the number of ASIPs
NA = 8, the address pattern to be generated is given by the
following pseudocode:

for(p = 0; p < d(Z/(3 ∗ NA))e; p + +){
for(state = 0; state < 8; state + +)

address = mod(Πx,y + p ∗ (3 ∗NA) + 3 ∗ (NA − state), Z)
}

The Fig.4a shows the pipeline stages in the LDPC mode,
with the numbers in the figure indicating the equations (from
section II-B) mapped on to the hardware. The Fig.4c shows
an example code for LDPC decoding for Z = 27. The
ASIP is first initialized with processing size, sub-matrix size,
three block columns of offset values from Hbase. As the
channel data is stored in couples, two clock cycles are
needed to Read/Write the channel data associated with three
check nodes. A read operation to CV and EXT memories
is accomplished by RUNVEC and RUNVEC1 instructions.
The write operation is accomplished by UPDATEVEC and
UPDATEVEC1 instructions. RUNVEC1 also generates the
“RVector” message to the next ASIP. Similarly, UPDATEVEC
forwards the “UVector” to the next ASIP. RUNVECWITH-
UPDT reads the CV and EXT memories for check nodes
24..27, writes locations associated with check nodes 1..3
and then forwards this “UVector” packet to the next ASIP.
RUNVECWITHUPDT1 does the second phase read from the
CV and EXT memories and also calculates “RVector” message
before forwarding it to the next ASIP.

IV. SYNTHESIS RESULTS

The ASIP was modeled in LISA language using CoWare’s
processor designer. The synthesis was done with 90nm CMOS
technology that gave 0.155mm2 per ASIP with maximum
clock frequency Fclk = 520MHz. The de-Bruijn network
with 8 nodes has an area of 0.16mm2 as each router port
is 42 + 4 bits priority = 46. Thus the proposed UDec
architecture with 8 ASIPs and interconnecting de-Bruijn net-
work is 1.4mm2 with total memory area of 1.2 mm2. The
throughput estimate for LDPC mode is given by (24). The
best throughput achieved is 312Mbps for WiMAX code
rate (Crate) = 5/6, Z = 96, Mb = 4, Nb = 24 and
Niter = 10 iterations. The architecture has NA = 8 ASIPs each
processing CNA = 3 check nodes per ClkCN = 2 clocks.

Z ∗ Nb ∗ Crate ∗ Fclk

(d(Z
NA∗CNA

)e + 1) ∗ ClkCN ∗ (Nb
CNA

) ∗ Mb ∗ Niter

(24)

Similarly, equation (25) gives the throughput calculation for
turbo mode. An average Ninstr = 4 instructions are needed to
give 1 symbol which is composed of Bitssym = 2 bits (lines
29, 30, 35, 36 of the assembly code example given in Fig.3c).
Considering Niter = 6 iterations, the maximum throughput

achieved is 173Mbps.

Bitssym ∗ Fclk ∗ (NA/2)
Ninstr ∗Niter

(25)

Table II compares the obtained results of UDec architecture

Core Throughput in Mbps Fclk

area
mm2

nm LDPC
WiMAX

LDPC
WiFi

DBTC
WiMAX,
DVB-RCS

SBTC
(LTE)

in
MHz

UDec 2.6 90 312 263 173@6iter 173
@6iter

520

[6] 3.2 90 600 600 - 450
@6iter

500

[5] - 90 70 70 54 14 -
[1] 0.62 65 27.7-

237.8
34.5-
257

18.6-37.2
@5iter

18.6
@5iter

400

[2] 0.9 45 70 100 70 18 150

TABLE II: Comparison with the state of the art

with other related works. The achieved throughput is compara-
ble to [1] in LDPC Wi-Fi mode while UDec achieves 75Mbps
more in LDPC WiMAX mode. In turbo mode, the UDec
throughput is more than 5 times that achieved by [1] at cost
of twice the occupied area (after technology normalization).
[2] occupies 28% more area compared to UDec and does not
achieve the throughput requirement of LTE. On the other hand,
[6] achieves higher throughput in LDPC and SBTC modes at
the cost of 20% more area compared to UDec and does not
support DBTC.

V. CONCLUSION

In this paper, we have presented a high throughput multi-
ASIP channel decoder architecture supporting Wi-Fi, WiMAX,
LTE and DVB-RCS in turbo and LDPC modes. Major gains
in area were obtained by avoiding the need to have address
lookup memories for turbo shuffled decoding schedule and ef-
ficient memory and communication resource sharing between
turbo and LDPC modes. Future work targets to extend support
to all 3GPP standards that use block interleavers and to explore
low power decoding techniques.

VI. ACKNOWLEDGEMENT

This work has been supported in part by the UDEC project.
The authors would also like to thank Atif Raza Jafri for his
helpful advice and inputs.

REFERENCES

[1] M. Alles, T. Vogt, and N. Wehn. FlexiChaP: A reconfigurable ASIP for
convolutional, turbo, and LDPC code decoding. In 2008 5th International
Symposium on Turbo Codes and Related Topics, pages 84 –89, sep. 2008.

[2] M. R. Giuseppe Gentile and L. Fanucci. A Multi-Standard Flexible
Turbo/LDPC Decoder via ASIC Design. In 2010 6th International
Symposium on Turbo Codes and iterative information processing, sep.
2010.

[3] H. Moussa, A. Baghdadi, and M. Jézéquel. Binary de Bruijn on-chip
network for a flexible multiprocessor LDPC decoder. In Proceedings of
ACM/IEEE 45th Design Automation Conference, pages 429–434, 2008.

[4] O. Muller, A. Baghdadi, and M. Jezequel. From parallelism levels to a
multi-asip architecture for turbo decoding. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 17(1):92 –102, jan. 2009.

[5] A. Niktash, H. Parizi, A. Kamalizad, and N. Bagherzadeh. RECFEC:
A Reconfigurable FEC Processor for Viterbi, Turbo, Reed-Solomon and
LDPC Coding. In Proceedings of IEEE Wireless Communications and
Networking Conference, pages 605 –610, mar. 2008.

[6] Y. Sun and J. Cavallaro. A Flexible LDPC/Turbo Decoder Architecture.
Journal of Signal Processing Systems, pages 1–16, 2010.

Program
memory

Decode

Fetch

Prefetch

16
Write Alpha/Beta

s0p0s1p1 Read Alpha/Beta

21 42

Operand fetch

BranchMetric1

BranchMetric2

State probs

Max1

Max2

Extrinsic Exchange

6 6 6 6

256

16

CV
memory
24x256

Extrinsic
memory
30x256

State metrics
from

(FIFO in
LDPC mode)

40x32

0 256

6 8 8 8

x3

x2

3x

Zext.n
11 Zext.n

10 Zext.n
01

(13) (14)

(10) (11)

(4)

(9)(2) (3)

(8)

(7)

β − recursion

(a) Pipeline in Turbo Mode

su
bf

ra
m

e1
A

SI
P0

w
0

 w
1

time

A
SI

P4
su

bf
ra

m
e4

w
(N

−1
)

w
(N

)

β int(w1)

β recursion

α recursion

α int(w1)

α int(wN)

β int(wN)

α int(w2)

α int(w0)

(b) Windowing in Turbo mode

k instruction

1 SET CONF double
2 SET WINDOW ID 1
3 ;setnum windows
4 SET WINDOW N 3
5 ;1st n last window length
6 SET SIZE 32,8
7 ;repeat @11=41 if last window executed else
8 ;repeat @28-41, for 6*WINDOW N times
9 REPEAT until LOOP 6

times
10 NOP
11 ;exch alpha0-beta0 of state0
12 EXE REC ALPHA BETA0
13 ;exch alpha-beta state1
14 EXE REC ALPHA BETA1
: :
26 EXE REC ALPHA BETA7
27 ;repeat 30-31, and 35-36 for CurrWindowLen times
28 ZOLB RW1, CW1, LW1
29 NOP
30 DATA LEFT add m column2
31 RW1: NOP
32 ;save last beta load alpha init
33 EX BETA ALPHA
34 CW1: NOP
35 DATA RIGHT add m col-

umn2
36 LW1: EXTCALC add i line2

EXT;gen ext
37 ;save last alpha load beta init if lastwindow else
38 ;exch calculated alpha and beta
39 EXCH WIN
40 NOP
41 LOOP: NOP

Program
memory

Decode

Fetch

Prefetch

16
Write Alpha/Beta

s0p0s1p1 Read Alpha/Beta

21 42

Operand fetch

BranchMetric1

BranchMetric2

State probs

Max1

Max2

Extrinsic Exchange

6 6 6 6

256

16

CV
memory
24x256

Extrinsic
memory
30x256

State metrics
from

(FIFO in
LDPC mode)

40x32

0 256

6 8 8 8

x3

x2

3x

Zext.n
11 Zext.n

10 Zext.n
01

(13) (14)

(10) (11)

(4)

(9)(2) (3)

(8)

(7)

β − recursion

(d) Turbo assembly code

Fig. 3: Turbo pipeline and execution schedule

7 710

0

Asign bank# min0 min1ASIPID3x

1 2 2 4 4

40x32

CVaddr
and

40

40

16

4242

16x128

15 15

group0

m=0,1,2

group1
m=3,4,5

group2
m=6,7,8

group3
m=9,10,11

48

48

48

48

0 64

FIFO

CVnExtRead

Operand fetch

Decode

Fetch

Prefetch

Program
memory

ReadNoc

UpdateNoc

TwoMinBnk3

NOCout NOCinRVector / UVector

24x256

2x

30x256

3x

3x

CV3

CV1 CV0

CV2

CV95 CV94

Γm,n=0Γm,n=1

Γm,n=3
Γm,n=2

Γm,n=95

Γm,n=3 Γm,n=2

Γm,n=94

Γm,n=94Γm,n=95

Γm,n=1 Γm,n=0

Γm,n=3 Γm,n=2

Γm,n=95 Γm,n=94

Γm,n=95 Γm,n=94

Γm,n=1

Γm,n=2

Γm,n=0

Γm,n=3

Extrinsic memory

Γm,n=1 Γm,n=0

(18)

(17)

λnm

(19)

CV memory

(a) Pipeline in LDPC Mode

State=1,iteration=0

ASIP0

ASIP1

ASIP7

22−24 19−21 4−6 1 −3

ASIP6

sub matrices submatrix
boundary,Z=27

ASIP0

ASIP7 ASIP6
Rv from

ASIP1

ASIP1

ASIP7

ASIP2

ASIP0

Ch
ec

kn
od

es

sub matrices

Ch
ec

kn
od

es

1

6
5
4
3
2

19
20
21
22
23
24
25
26
27
28

324

28
27
26
25
24
23
22
21
20
19

324

6
5
4
3
2
1

State=2,iteration=1

Rv from

Rv from

Rv from

 22−24 4−6 1 −3

(b) Scheduling in LDPC mode

k instruction
1 ;8 ASIPs each processing 3 CN =24 at a time
2 LDPCsize PSize,24
1 ;submatrix size
3 LDPCZsize Zsize,27
1 ;rows,NumZerosTriplets
4 LDPCAddrRegInit1 1,7
5 ;SubRows=floor(PSize/Zsize),
6 ;num of ASIPs and RowRem=mod(Zsize,3)
7 LDPCAddrRegInit2 1,8,1
5 ;set ASIP ID
8 LDPCASIPid 0
9 ;writing the H matrix offset column 1
10 LDPCAddrConfig1 0,17
11 LDPCAddrConfig1 1,3
: :
22 ; column 2
23 LDPCAddrConfig2 0,13
24 LDPCAddrConfig2 1,13
: :
35 ; column 3
36 LDPCAddrConfig3 0,8
37 LDPCAddrConfig3 1,8
: :
48 Repeat until ITER for 20 times
49 PUSH
50 Repeat until LOOP0 for 8 times
51 ; load and initialize the address generator
49 LDPCAddrGenInit
53 RunVec
54 RunVec1
55 LOOP0: Repeat until LOOP1 for 8 times
56 LDPCAddrGenInit
57 RunVecWithUpt
58 RunVecWithUpt1
59 LOOP1: Repeat until LOOP2 for 8 times
60 LDPCAddrGenInit
61 UpdateVec
62 UpdateVec1
63 LOOP2: POP
51 ;ceil(Zsize/2)=14
64 ITER: Repeat until DEC for 14 times
65 NOP
66 HardDecision
67 DEC: NOP

Fig. 4: LDPC pipeline and execution schedule

