
STABLE: A new QF-BV SMT Solver for hard Verification Problems

combining Boolean Reasoning with Computer Algebra

Evgeny Pavlenko, Markus Wedler, Dominik Stoffel, Wolfgang Kunz

Dept. of Electrical and Computer Eng., University of Kaiserslautern, Germany {pavlenko, wedler, stoffel, kunz}@eit.uni-kl.de

Alexander Dreyer

Dept. of System Analysis, Prognosis and Control

Fraunhofer ITWM, Kaiserslautern, Germany

alexander.dreyer@itwm.fraunhofer.de

Frank Seelisch, Gert-Martin Greuel

Dept. of Mathematics,

University of Kaiserslautern, Germany

{seelisch,greuel}@mathematik.uni-kl.de

Abstract—This paper presents a new SMT solver, STABLE, for
formulas of the quantifier-free logic over fixed-sized bit vectors
(QF-BV). The heart of STABLE is a computer-algebra-based
engine which provides algorithms for simplifying arithmetic
problems of an SMT instance prior to bit-blasting.

As the primary application domain for STABLE we target an
SMT-based property checking flow for System-on-Chip (SoC) de-
signs. When verifying industrial data path modules we frequently
encounter custom-designed arithmetic components specified at
the logic level of the hardware description language being used.
This results in SMT problems where arithmetic parts may include
non-arithmetic constraints. STABLE includes a new technique
for extracting arithmetic bit-level information for these non-
arithmetic constraints. Thus, our algebraic engine can solve sub-
problems related to the entire arithmetic design component.

STABLE was successfully evaluated in comparison with other
state-of-the-art SMT solvers on a large collection of SMT
formulas describing verification problems of industrial data path
designs that include multiplication. In contrast to the other
solvers STABLE was able to solve instances with bit-widths of
up to 64 bits.

I. INTRODUCTION

Today’s IP-based design styles for Systems-on-Chip (SoC)

have become one of the main drivers for innovative verifica-

tion methodologies. When verifying the functionality of the

overall system a correctness by integration strategy is often

pursued. This, however, requires modules of extremely high

design quality that can only be achieved with formal methods.

Property checking techniques based on Satisfiability solving

(SAT) and SAT modulo theory solving (SMT) [1], [2], [3], [4]

have proved quite successful in capturing the relevant aspects

of design behavior and therefore have gained more and more

significance in modern System-on-Chip (SoC) design flows.

SAT solving has been an intensive research area for several

decades and plays a major role in almost all modern veri-

fication tools. BerkMin [5], MiniSat [6], PrecoSAT [7] are

only some examples of efficient SAT solvers. For control-

intensive modules of SoC designs SAT solvers have shown to

be adequate proof engines when verifying their correctness.

However, data paths including complex arithmetic blocks

such as multiplication still remain a bottleneck for SAT-

based property checkers. In industrial practice, simulation-

based techniques usually prevail over SAT or other formal

approaches as soon as arithmetic circuits are under verification.

978-3-9810801-7-9/DATE11/2011 c©EDAA

SMT [8] has recently gained a lot of attention since it

promises to extend SAT-style property checking to a wider

range of applications. The SMT languages [9] (version 1.2)

and [10] (version 2.0) are more expressive than plain proposi-

tional logic. An SMT problem is usually described as a logic

formula in combination with expressions from a first-order

background-theory. As a result, an SMT instance can preserve

a lot of information available only at a high level of abstraction

which is lost as soon as a conversion into a CNF-based SAT-

problem is applied (”bit-blasting”). Therefore, SMT solvers

can handle many verification problems which are impossible

to solve by standard SAT methods alone.

The SMT community has defined numerous theories that

may be of interest for certain applications. For proving

functional correctness of arithmetic data paths the theory of

fixed-sized bit vectors (BV) becomes a natural choice. In the

remainder of this paper we always consider the quantifier

free logic with fixed-sized bit vectors (QF-BV) when referring

to SMT-instances. Recently, different research groups devel-

oped SMT solvers for the QF-BV category, e. g., Yices [11],

Z3 [12], Spear [13], Boolector [14], MathSAT [15], simpli-

fyingSTP [16], [17]. These tools demonstrated significantly

better performance in comparison to pure SAT. However, they

still lack capacity to solve unsatisfiable formulas as they are

derived from arithmetic data path verification in industry.

At higher levels of abstraction, techniques from symbolic

computer algebra [18] have proven to be an attractive al-

ternative when verifying arithmetic data-path designs. The

approach in [18] requires, however, that both implementation

and specification can be modeled with a single multivariate

polynomial. Unfortunately, in SMT instances derived from

high performance data paths this is usually not the case.

In this paper, we present our new SMT solver STABLE for

QF-BV instances. It integrates two recently developed tech-

niques for solving hard arithmetic problems [19], [20]. When

an arithmetic sub-problem of an SMT-instance is described

at the arithmetic bit- or word-level we can directly apply the

theory of Gröbner bases over finite rings. First, we convert

the arithmetic parts of the decision problem to equivalent

variety subset problems and then compute normal forms to

solve them. If the normal form is a vanishing polynomial the

corresponding proof goal is valid. In [20] it was suggested

that the techniques of [18] could be applied for this check.

Contrary to [20] we now perform our computations in the

quotient ring Q := Z/2N [X]/〈x2 − x : x ∈ X〉. We

prove, that this allows us to omit an otherwise necessary and

expensive zero function test for the normal form. This is one

of the main contributions of this paper.

In STABLE we also employ the technique of [19]. It ad-

dresses instances where arithmetic sub-problems are specified

using the complete set of bit-vector constraints including non-

arithmetic Boolean constraints. Such instances are frequently

derived from property checking of data paths with highly

optimized custom-designed components. In order to apply

the algebraic Gröbner approach we extract their arithmetic

information.

This paper is organized as follows: Section II shows how

arithmetic sub-problems of an SMT instance can be solved

using computer algebra techniques. In this section, we assume

the arithmetic problem parts to be specified at the arithmetic

bit-level (ABL) or word-level. For cases where problem parts

are specified below ABL we include an extraction technique

described in Section III. Section IV illustrates our strategy for

integrating the proposed techniques into STABLE. The paper

ends with experimental results summarized in Section V and

the conclusion in Section VI.

II. USING COMPUTER ALGEBRA TO SOLVE ARITHMETIC

SUBPROBLEMS OF SMT INSTANCES

This section recalls the mathematical models required to

solve arithmetic problem parts of an SMT decision problem

in QF-BV with the algebraic techniques introduced in [20].

A. Mathematical background

In the following, we summarize some basic facts about

Gröbner basis theory of polynomials over a finite ring Z/〈2n〉,
cf. [21], [22]. We need a global monomial ordering <, i. e., a

well ordering on the set of monomials such that multiplication

with a monomial respects the ordering. Here, a monomial is

a power product of variables, and a term is the product of

a monomial with a coefficient, i. e., an element of the ring

Z/〈2n〉. We can write any polynomial f 6= 0 as a finite

sum of terms, f = c1m1 + · · · + crmr with coefficients

ci 6= 0 and monomials m1 > m2 > · · · > mr. The largest

term c1m1 plays a special role: we call LM(f) := m1 the

leading monomial, LC(f) := c1 the leading coefficient and

LT (f) := c1m1 the leading term of f .

Let X be a finite set of variables, G ⊂ Z/〈2n〉[X] a

finite polynomial set and f ∈ Z/〈2n〉[X]. If LM(f) is a

linear combination of leading terms of elements of G, i. e. ,

LM(f) =
∑

g∈G pg · LM(g) for monomials pg , then f is

reducible to f ′ := f−
∑

g∈G pg ·g and hence we write f −→
G

f ′.

The transitive closure of the relation −→
G

is denoted by
∗
−→
G

. If

f
∗
−→
G

g and if g is not reducible by G we call g a normal

form of f with respect to G. There are effective algorithms

for computing normal forms in polynomial rings of the form

Z/〈2n〉[X], cf. [21], [23].

The notion of a normal form is only useful if G is a Gröbner

basis. Any finite set G of polynomials generates an ideal I =
〈G〉 := {

∑

g∈G fgg | fg ∈ Z/〈2n〉[X]}. Such a set G is called

a Gröbner basis of I , if for each f ∈ Z/〈2n〉[X], f
∗
−→
G

0 if

and only if f ∈ I .

With this basic knowledge of Gröbner basis theory we can

now study how to model arithmetic problem parts of an SMT

instance by polynomials over a finite ring Z/〈2n〉.

B. Algebraic modeling of arithmetic decision problems

We may assume that the SMT decision problem is rep-

resented as an acyclic netlist of bit vector functions. The

arithmetic components Gj of this netlist may have multiple

output bit-widths that are denoted by nj in the sequel. In [20]

each of these components is modeled by nj polynomials over

the ring R = Z/2N with appropriate N . Initially the size N
of the ring is chosen heuristically to be

N := n+max{nj | j = 1, . . . ,m}

where n is the bit-width of the comparison constraint in the

proof goal, m the component number in the netlist and nj the

bit-width of the j-th component. However, this initial value for

N is just a heuristic choice that turned out to be sufficient for

many practical problem instances. During computations our

current implementation detects cases where a larger ring is

required and automatically moves to a sufficiently larger ring

with size N ′ > N .

For each arithmetic component in the cone of influence of

a proof goal we generate nj polynomials of the form

G̃
(t)
j :=

t−1
∑

i=0

2ir
(j)
i − f

(t)
j (a

(j)
1 , a

(j)
2 , . . . , a(j)mj

)− 2ts
(j)
t , (1)

with t = 1, . . . , nj . The variables a
(j)
i correspond to the

inputs and the variables r
(j)
i correspond to the outputs of

the j-th component. The so called slack variables s
(j)
t are

newly introduced artificial variables that are used to model the

modulo semantics of the arithmetic components in bit-vector

netlists. The polynomials f
(t)
j are defined as the polynomials

with minimal coefficients representing the polynomial function

(Z/2t)mj → Z/2t that specifies the lower most output

bits r
(j)
i , i = 0, . . . , t− 1 of the arithmetic component Gj .

Since the netlist is acyclic we have r
(j)
i 6= a

(l)
k . We

illustrate this model with an unsigned k-bit adder with input

variables a = (ai | 0 ≤ i < k) and b = (bi | 0 ≤ i < k) and

result r = (ri | 0 ≤ i < k). This adder can be modeled by k

polynomials G̃
(t)
+ , t = 1, . . . , k of Equation (2).

G̃
(t)
+ :

t−1
∑

i=0

2iri −
t−1
∑

i=0

2i(ai + bi)− 2tst. (2)

Such polynomials are sufficient to model word-level arith-

metic components like signed-/unsigned multipliers or adders.

Likewise bit-level arithmetic components such as full-adders,

half-adders and bit-wise products can be modeled in the same

formalism. A full-adder with inputs x0, x1, x2 and outputs c, s
for carry and sum can, e. g., be modeled by the polynomials

G̃
(2)
fa : 2c+ s− (x0 + x1 + x2) + 4s2

G̃
(1)
fa : s− (x0 + x1 + x2) + 2s1.

(3)

In the polynomials G̃
(t)
j some of the slack variables s

(j)
t can

be omitted if we know that 0 ≤ f
(t)
j ≤ 2t−1 holds over Z. For

example the slack variable s2 in Equation 3 can be omitted.

As illustrated, the above algebraic model utilizes word-level

information where available and is able to handle bit-level

arithmetic information where necessary as well.

In order to analyze proof goals with algebraic methods we

need the notion of a variety. The variety V (F) of a polynomial

set F ⊂ R[x1, . . . , xn], R a commutative ring with 1, is the set

of tuples (r1, . . . , rn) ∈ Rn where all f ∈ F simultaneously

vanish.

Let X be the set of non slack variables in {G̃
(t)
j }. A proof

goal is modeled by a polynomial g in {a1, . . . , at} ⊂ X . It

vanishes if and only if the proof goal is fulfilled, i. e.,

g(a1, . . . , at) = 0 mod 2n

holds for all tuples in the variety V ({G̃j}). Note that n
used for the modulo in the above equation depends on the

bit width of the comparison constraint in the underlying

problem instance. For example, an n-bit equality comparison

of operands a and b is modeled by polynomial (4).

g =
n−1
∑

i=0

2i(ai − bi) . (4)

We prove that this vanishes modulo 2n for all tuples in the

variety V ({G̃j}). This leads to the variety subset problem:

V ({G̃j}) ⊂ V (2N−ng) . (5)

Following, we solve this for R = Z/2N ; it replaces the well-

known ideal membership problem of the field case.

C. Solving arithmetic decision problems by normal form com-

putation

We recall how to solve the variety subset problem [20],

[23]. The set G = {G̃j} is a Gröbner basis for such global

monomial orderings, where r
(j)
i is larger than every monomial

in a
(j)
k , s

(j)
t , r

(j)
l for all i, k, t, j and l < i. We solve our

problem by computing a normal form h = NF (2N−ng,G)
of our proof goal [24]. It holds if and only if h defines the

zero function, since we may assume that h depends on inputs

only.

In general, zero function tests over Z/2N [X] are expen-

sive [18]. To avoid them we reformulate the polynomials of

Equation 1 using bit-valued variables in the quotient ring Q :=
Z/2N [X]/〈x2 −x : x ∈ X〉. Lemma 1 ensures that only the

zero polynomial in Q defines the zero function on Q|X| and

renders the zero function test superfluous here.

Lemma 1: Let m,n ≥ 1 be natural numbers and

Q := Z/〈m〉[X]/〈x2 − x : x ∈ X〉 with X =

{x1, . . . , xn} be a polynomial quotient ring. Denote by T :=
{(t1, t2, . . . , tn) | ti ∈ {0, 1}, 1 ≤ i ≤ n} the set of all bit-

valued inputs for polynomials in Q. If f ∈ Q vanishes for all

t ∈ T , then f is the zero polynomial.

Proof: We fix some f ∈ Q which vanishes for all t ∈ T ,

and assume f 6≡ 0 for a contradiction. Due to special structure

of Q all terms of f are of the form c ·xi1 · · ·xik with mutually

distinct indices ij in {1, 2, . . . , n}. We pick a term s of f
with k least, i. e. with the least number of variables. Now

consider the tuple t = (t1, t2, . . . , tn) ∈ T with tj = 1 if

xj appears in s, and tj = 0 otherwise. We claim f(t) 6= 0,

yielding the desired contradiction.

Let s′ denote any other term of f , i. e., any term of f − s. By

construction, it is clear that s′ mentions at least one variable

which is not present in s. But then s′(t) = 0, hence f(t) =
s(t) + (f − s)(t) = s(t) = LC(s) 6= 0. �

Note that for computations in Q, efficient DAG-based data

structures are available.

III. EXTRACTING ARITHMETIC BIT-LEVEL INFORMATION

In this section we adopt an extraction technique developed

in [19]. It derives compact polynomial representations for

those parts of the algebraic proof goals that are defined using

Boolean constraints of the bit-vector logic. In the sequel, we

consider a connected sub-netlist of the global bit-vector netlist

for the entire SMT instance. We assume that the considered

sub-netlist is described by non-arithmetic bit-vector functions,

i. e. in terms of simple Boolean constraints. By a topological

analysis we may identify the variables used as inputs and

variables ri used as outputs of this sub-netlist.

This extraction technique consists of two phases:

• Derive a set of polynomials P based on the arithmetic

transform for each Boolean constraint.

• Pre-normalize the polynomials with respect to the input

variables of the considered sub-netlist.

We illustrate the extraction process using a custom-designed

circuit component that implements a two-bit adder as our

running example. The corresponding gate netlist is presented

in Figure 1.

!
!

"

#

$

%

!
&

"
&

#
&

!
'

"
!

"
'

Fig. 1. Gate netlist of a two bit adder

A front-end of a standard property checker usually performs

a one-to-one compilation of such a circuit structure into a

collection of Boolean bit-level constraints of the bit vector

logic.

The first step of the extraction yields the polynomials

illustrated in Equation 6 for our running example.

g1 = r0 − (a0 + b0 − 2a0b0)
g2 = c− (a0b0)
g3 = d− (a1 + b1 − 2a1b1)
g4 = r1 − (c+ d− 2cd)
g5 = f − (cd)
g6 = e− (a1b1)
g7 = r2 − (e+ f − ef)

(6)

In theory these polynomials may immediately be used in

our algebraic model generated in Section II-B. However, it

is already apparent from the example that this fine grained

modeling of the non-arithmetic constraints in the cone of

influence of an algebraic proof goal will lead to fairly large

problem instances if many such problem parts exist. For

example, the two-bit adder of Figure 1 may be instantiated

within a large multiplier several times. This unnecessary blow-

up, both in terms of the numbers of variables as well as

in the number of polynomials can considerably slow down

the normal form computation. Fortunately, frequently custom-

designed components used within such designs have a more

compact polynomial representation that can be identified

by our proposed extraction technique. It relies on a pre-

normalization step that will be described in the remainder of

this section.

We start with the polynomial set P derived in the first phase

of the extraction process. We consider the subset O ⊂ P of

polynomials that depend on the output variables ri. Due to

the monomial ordering being compatible with the topological

ordering of the netlist this is easily determined by checking

whether the leading term is one of the ri.
For each polynomial h ∈ O we compute the reduced normal

form of h with respect to P . The polynomials g ∈ P used

during this computation for the reduction of the tails of the

polynomials h can be determined efficiently by backward

tracing in the netlist. For our running example this results in

the polynomials of Equation 7.

g′1 = r0 − a0 − b0 + 2a0b0
g′4 = r1 − (a1 + b1 + a0b0 − 2a1b1−

2a0a1b0 − 2a0b0b1 + 4a0a1b0b1)
g′7 = r2 − a1b1 − a0a1b0 − a0b0b1 + 2a0a1b0b1

(7)

To conclude this section it should be noted that the weighted

addition 4g′7 + 2g′4 + g′1 of the above polynomials yields the

compact polynomial of Equation 8.

4r2 + 2r1 + r0 − 2(a1 + b1)− (a0 + b0) (8)

IV. STABLE: A NEW SMT SOLVER FOR QF-BV

The new QF-BV SMT solver STABLE integrates the tech-

niques presented in Section II and Section III with a standard

SAT-solver as backend. The basic flow of STABLE is illus-

trated in Figure 2.

The dashed boxes indicate the interface between the com-

puter algebra library (GBABL), the extraction library (ABL

extractor) and the solver infrastructure. The solver performs

certain preprocessing steps after parsing the SMT instance. We

represent the instance internally as a netlist of predefined bit-

vector functions. For the SMT-LIB format [9], [10] this netlist

needs to be generated from a collection of constraints that are

implicitly conjoined by the use of common variables. Data

path verification instances often have an implicative structure

a → c. The assumption a may cause a lot of propagations

that further simplify the instance during preprocessing. For

example, the assumption of a property frequently considers

a specific scenario in which only a reasonable number of

configurations for the data path need to be investigated.

Propagation of the assumption drastically reduces the number

of iterations in the main loop of the solver that analyzes

individual configurations.

Before entering this loop we determine a set of Boolean

branching variables V that influence arithmetic sub-problems

in c. As branching variables we consider the select inputs s
used as condition in if-then-else constraints in the cone of

influence of c. For branching variables V we enumerate each

possible assignment val(V). Note that in case of an empty set

V the loop is entered exactly once. After constant propagation

of the assignment val(V) we analyze the arithmetic proof goal

f relevant under the respective configuration of the data path

with a normal form computation. Note that an instance with

several arithmetic proof goals may require an iteration of these

two steps for each goal. For brevity, we omitted this extra loop

in the flow of Figure 2.

In order to analyze a proof goal f STABLE generates a set

G of polynomials G ⊂ Q = Z/2N [X]/〈x2 − x : x ∈ X〉
modeling the arithmetic constraints in the cone of influence of

f . Next the GBABL engine computes the normal form (NF) of

f with respect to G. If this normal form is the zero polynomial

we learn the validity of the proof goal f under the current data

path configuration val(V) and proceed with the next iteration

of the main loop.

However, we also need to consider the case where the

normal form of the proof goal is a non-zero polynomial.

This may have several reasons. The proof goal may indeed

be invalid, it may be necessary to extract certain portions of

the arithmetic problem by the techniques of Section III, or

Boolean propagation may be to weak to completely eliminate

the control logic in the cone of influence of the proof goal.

We approach these issues as follows. First, we check if

some of the variables in the computed normal form NF(f)
are defined by Boolean logic in the SMT instance. If this is

the case we extract additional polynomials using the technique

of Section III.

If the extraction process cannot identify further polynomials

we conduct a resource limited SAT-check whether the normal

form vanishes under the constraints of the surrounding SMT-

instance. In the current configuration of STABLE the CPU-

time spent on each of these checks is limited by 2 minutes.

Note that the resource limitation is crucial. Some intermediate

proof goals may be extremely hard for SAT before other proof

goals have been proven by the normal form engine.

In case we succeed in proving that the normal form is zero

!"#$%&'()*+

,'-.'&/-001234

5 01(.*16 1/+71&2

5 /&207+278.'&.+3+71&2

5 +00)(.71&28.'&.+3+71&20

9:-2716;88<+'1+=*-0

&'8='+2/>1238

?!@

"#$%&%'(")

%%$+(,"(&''-./!0' &1

-*2$*3."%'$('!

.'&.+3+7-8<+*?A@

B'-+7-8.&*;2&(1+*084

6&'8+'17>C8/&207'+127088

128/&2-8&6 8126 *)-2/-

&6 88-+/>8.'&&6 83&+*8?5@

B&(.)7-82&'(+*86&'(

67/5840 &6 8.&*;2&(1+*85

-2/&:1238.'&&683&+*

D17>8'-0.-/787&84

E-0
FG7'+/786)'7>-'8

.&*;2&(1+*084H

I-+'28-*.?!@à5'

!&*<-8=17$=*+07-:8

1207+2/-8D17>8!J#

67/5840'9':

;<='>21-"

67/5840'9':

4HK

L& E-0

E-0

E-0

L&

L&

L&

!"#$%$&'!"#

4?<?@

<?@'A#&2*B&12

4M4 4H

Fig. 2. Flow of STABLE with GBABL (Gröbner basis-based ABL) engine and ABL extractor

we may learn the constraint val(V) → f . In the frequent

special case that V is empty, i. e., we only need to consider

a single configuration of the data path, this implication only

consists of the unit clause f . This results in additional propa-

gation steps that may considerably simplify other proof goals

as well.

When all configurations of the data path that are consistent

with the assumptions of the overall SMT instance have been

analyzed, i. e., all valuations of V have been enumerated,

we newly bit-blast the entire instance including the learned

constraints and the corresponding propagation results. A final

SAT-check is then conducted to prove non-arithmetic proof

goals as well as those where our resource limited checks inside

the main loop have been aborted. As a result of this SAT-

check we obtain a satisfying assignment or the formula is

proven to be unsatisfiable. In our current implementation we

use PrecoSAT [7] as backend Solver.

V. EXPERIMENTS

In this section, we evaluate STABLE (ST) and compare

its performance against four state-of-the-art solvers, Spear-

2-7(Sp), Boolector 1.4(Bo), MathSat v. 4.3-smtcomp(MS)

and simplifyingSTP(s.STP). These or their predecessors have

proven to be highly effective for the logic QV-BV, and have

been winners of the SMT competitions 2007-2010 in this

category.

All experiments were carried out on an Intel Xeon CPU

E5420 2,5 Ghz 32 GB RAM running Linux with a time-out

limit of 1000 sec. and a memory limit of 8 GB per instance.

We conducted experiments with four large benchmark sets:

• The benchmarks of the 2009 SMT competition [25].

• Formal verification instances of multipliers from a com-

mercial module generator. They include custom-designed

components for Booth-encoded partial products and parts

of the addition network. The bit-width for each of the

inputs is individually scaled from 4 up to 64 bits, i. e., it

ranges from 4× 4 up to 64× 64 bits.

• Formal verification problems for Infineon’s TriCore Pro-

cessor. Each instance proves that a specific instruction

variant with multiplication is properly executed by the

data-path.

• Satisfiable instances from formal data-path verification,

where typical bugs such as missing or wrong connections,

wrong operators etc. have been introduced into the design.

We provide tables that report the quota of solved bench-

marks for each of the above suites and solvers within various

CPU-time limits and a memory limit of 8 GB. Moreover, we

report the quota of instances that were aborted due to the

time-out limit (T), the memory limit (M) or where the solver

aborted with an unknown result(U).

CPU time
sec.

Sp. Bo. MS s.STP ST.

< 10 82,3% 91,4% 97% 88,9% 83,9%

< 100 89,4% 97,5% 98,5% 97% 95%

< 250 89,9% 98,5% 99% 98,5% 96,5%

< 500 90,4% 98,5% 99% 98,5% 96,5%

< 1000 90,9% 98,5% 99% 99% 97%

T/M/U 9,1% 1,5% 1% 1% 3%

TABLE I
QUOTA FOR SMT-COMP09 INSTANCES

As expected STABLE is slightly outperformed on the com-

petition benchmarks of 2009 since almost none of these in-

stances includes hard arithmetic problems with multiplication.

For the module generator instances STABLE’s competitors

only solved instances with input bit-widths of less than 11

CPU time
sec.

Sp. Bo. MS s.STP ST.

< 10 10,8% 13,7% 14,4% 13,4% 72,7%

< 100 19,9% 25,1% 25,9% 21,6% 98,4%

< 250 23,6% 29,3% 29,5% 23,8% 98,4%

< 500 24,3% 32,1% 32,3% 26,5% 99%

< 1000 25,3% 33,2% 36,4% 29,5% 100%

T/M/U 74,7% 66,8% 63,6% 70,5% 0%

TABLE II
QUOTA FOR MODULE GENERATOR INSTANCES

CPU time
sec.

Sp. Bo. MS s.STP ST.

< 10 0,5% 12% 0,3% 0% 18,4%

< 100 0,5% 12% 0,5% 0% 96,4%

< 250 0,5% 15,8% 0,5% 0% 100%

< 500 0,5% 17,4% 0,5% 0% 100%

< 1000 0,5% 17,7% 0,5% 0% 100%

T/M/U 99,5% 82,3% 99,5% 100% 0%

TABLE III
QUOTA FOR TRICORE INSTANCES

CPU time
sec.

Sp. Bo. MS. s.STP ST.

< 10 66,7% 88,5% 71,8% 53,9% 84%

< 100 71,2% 100% 84% 76,3% 98,8%

< 250 71,2% 100% 86,5% 96,8% 99,4%

< 500 71,2% 100% 88,5% 96,8% 99,4%

< 1000 71,2% 100% 88,5% 96,8% 100%

T/M/U 28,8% 0% 11,5% 3,2% 0%

TABLE IV
QUOTA FOR SATISFIABLE INSTANCES

bits. Surprisingly, Boolector solved a few instances from the

TriCore suite. It turns out that these instances form instructions

where one factor is constant. In this case the multiplier

degenerates to a cascade of adders that Boolector can handle.

However, for proper multiplication our competitors give up.

We conclude with satisfiable instances. The results confirm our

intuition that most satisfiable instances in data-path verification

are easy to solve for SAT/SMT-solvers. Consequently, for such

examples the overhead of our techniques may not pay off.

VI. CONCLUSION

We introduced the new QF-BV SMT solver STABLE fea-

turing a computer algebra library for arithmetic decision

problems. As a result, hard industrial verification problems

for data path designs become tractable. Experimental results

prove the superiority of STABLE in this domain over other

generic state-of-the-art QF-BV SMT solvers.

ACKNOWLEDGMENT

The Deutsche Forschungsgemeinschaft and the Stiftung

Rheinland-Pfalz für Innovation supported part of this work.

REFERENCES

[1] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic
model checking using SAT procedures instead of BDDs,” in Proc.

International Design Automation Conference (DAC), June 1999, pp.
317–320.

[2] H. Jain, D. Kroening, N. Sharygina, and E. M. Clarke, “Word-level
predicate-abstraction and refinement techniques for verifying RTL Ver-
ilog,” IEEE Transactions on Computer-Aided Design, vol. 27, no. 2, pp.
366–379, 2008.

[3] Onespin Solutions GmbH, Germany. OneSpin 360MV. [Online].
Available: www.onespin-solutions.com

[4] R. Sebastiani, E. Singerman, S. Tonetta, and M. Y. Vardi, “GSTE
is partitioned model checking.” in Proc. International Conference on

Computer-Aided Verification (CAV), 2004.
[5] E. Goldberg and Y. Novikov, “Berkmin: A fast and robust SAT solver,”

in Proc. International Conference on Design, Automation and Test in

Europe (DATE), 2002, pp. 142–149.
[6] N. Een and N. Soerensson, “An extensible SAT-solver,” in Proc. Inter-

national Conference on Theory and Applications of Satisfiability Testing

(SAT), May 2003.
[7] “PrecoSAT 236,” http://fmv.jku.at/precosat/. [Online]. Available:

http://fmv.jku.at/precosat/
[8] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, Satisfiability Modulo

Theories, ser. Frontiers in Artificial Intelligence and Applications. IOS
Press, February 2009, vol. 185, ch. 26, pp. 825–885.

[9] S. Ranise and C. Tinelli, “The Satisfiability Modulo Theories Library
(SMT-LIB),” www.SMT-LIB.org, 2006.

[10] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version
2.0,” in Proceedings of the 8th International Workshop on Satisfiability

Modulo Theories (Edinburgh, England), A. Gupta and D. Kroening,
Eds., 2010.

[11] B. Dutertre and L. de Moura, “A Fast Linear-
Arithmetic Solver for DPLL(T),” in Proc. International

Conference Computer Aided Verification (CAV), ser. LNCS, vol.
4144. Springer-Verlag, 2006, pp. 81–94. [Online]. Available:
http://www.csl.sri.com/users/demoura/papers/CAV06/cav06.pdf

[12] L. M. de Moura and N. Bjoerner, “Efficient e-matching for smt solvers.”
in CADE, ser. Lecture Notes in Computer Science, F. Pfenning, Ed., vol.
4603. Springer, 2007, pp. 183–198.

[13] D. Babić and F. Hutter, “Spear Theorem Prover,” in Proc. of the SAT

2008 Race, 2008.
[14] R. Brummayer and A. Biere, “Boolector: An efficient SMT solver

for bit-vectors and arrays,” in Proc. Intl. Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS), 2009.
[15] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, Z. Hanna, A. Nadel,

A. Palti, and R. Sebastiani, “A lazy and layered smt({BV }) solver for
hard industrial verification problems,” in CAV, 2007, pp. 547–560.

[16] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and ar-
rays,” in In Proceedings of the Computer Aided Verification Conference.
Springer, 2007, pp. 524–536.

[17] STP, http://sites.google.com/site/stpfastprover/STP-Fast-Prover.
[18] N. Shekhar, P. Kalla, and F. Enescu, “Equivalence verification of poly-

nomial datapaths using ideal membership testing,” IEEE Transactions

on Computer-Aided Design, vol. 26, no. 7, pp. 1320–1330, July 2007.
[19] E. Pavlenko, M. Wedler, D. Stoffel, O. Wienand, E. Karibaev, and

W. Kunz:, “Modeling of custom-designed arithmetic components in
ABL normalization,” in Proc. Forum on Specification & Design Lan-

guages(FDL), Stuttgart, Germany, September 2008.
[20] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G.-M. Greuel, “An

algebraic approach for proving data correctness in arithmetic data paths,”
in Proc. International Conference Computer Aided Verification (CAV),
Princeton, NJ, USA, July 2008, pp. 473–486.

[21] W. Adams and P. Loustaunau, An introduction to Gröbner bases.
(Graduate studies in mathematics) AMS, 2003.

[22] G.-M. Greuel and G. Pfister, A SINGULAR Introduction to Commutative

Algebra, 2nd ed. Berlin, Heidelberg, New York: Springer Verlag, 2007,
705 pages.

[23] O. Wienand, “Standard bases over rings and applications,” 2010,
manuscript, Kaiserslautern.

[24] M. Brickenstein, A. Dreyer, G.-M. Greuel, M. Wedler, and O. Wienand,
“New developments in the theory of Gröbner bases and applications to
formal verification,” Journal of Pure and Applied Algebra, vol. 213, pp.
1612–1635, 2009.

[25] SMT-COMP 2009, http://www.smtcomp.org/2009/.

