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Abstract—Instance and temperature-dependent leakage power
variability is already a significant issue in contemporary em-
bedded processors, and one which is expected to increase in
importance with scaling of semiconductor technology. We mea-
sure and characterize this leakage power variability in current
microprocessors, and show that variability aware duty cycle
scheduling produces 7.1x improvement in sensing quality for a
desired lifetime. In contrast, pessimistic estimations of power
consumption leave 61% of the energy untapped, and datasheet
power specifications fail to meet required lifetimes by 14%.
Finally, we introduce a duty cycle abstraction for TinyOS that
allows applications to explicitly specify lifetime and minimum
duty cycle requirements for individual tasks, and dynamically
adjusts duty cycle rates so that overall quality of service is
maximized in the presence of power variability.

I. INTRODUCTION

A common energy management strategy in embedded sens-
ing systems is to operate in a duty-cycled fashion: the system
stays in sleep mode for most of the time, and becomes active
as a result of user interaction, incoming events, or periodic
sensing of their environment [30]. A higher duty cycle rate
typically translates into higher quality of service [37]. A
system with higher duty cycling may, for example, sample
sensors for longer intervals or at higher rates, increasing
data quality. A typical application-level goal is to maximize
quality of data through higher duty cycles, while meeting
a lifetime goal. Typical duty cycles in embedded sensing
applications range from below 1% in Car-Park management
[1] and CargoNet [22], to greater than 50% in VigilNet [14].

Maximizing duty cycling rates requires knowledge of avail-
able energy capacity and power consumption of the hardware
in its various modes of operation. Energy and power specifi-
cations are typically obtained from the datasheets. Due to the
increasing variability in power consumption [4] [16], power
specifications are heavely guard-banded [13], leaving a lot of
energy potential or sensing quality on the table.

Sources of variability include instance-dependent variations
due to scaling of physical dimensions in the semiconduc-
tor manufacturing process, environment (e.g. temperature-
dependent variation), and aging. In previous work [34],
we measured and characterized instance and temperature-
dependent power variation for the Atmel SAM3U, a contem-
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Fig. 1. Active and sleep current for the SAM3U

TABLE I
VARIATION OF CURRENT IN DIFFERENT MODES

Mode Min Max Mean Std. Dev. Datasheet
Active (22◦C) (mA) 4.1 4.4 4.3 0.1 4.8
Sleep (22◦C) (µA) 9 76 28 24 15

Sleep (22–60◦C) (µA) 9 120 44 26 -

porary embedded processor based on an ARM Cortex M3 core.
The model for temperature dependence of leakage current is
based on the analytical relationship between leakage current
and temperature as per BSIM3 [5], and thermal dynamics of
a packaged chip [15]. We extend the model to quantify the
dependence of leakage current on ambient temperature as well.

Figure 1 shows the large variation in sleep power across
ten instances of SAM3U, and over a temperature range of
22–60◦ C that is representative of the temperatures often
faced by embedded sensors deployed under unregulated and
extreme ambient conditions. While sleep power for any indi-
vidual processor is monotonic, the magnitudes of temperature
based variations differ such that relative rankings of different
processors change over temperature. Figure 1 also shows the
measured active power, but as expected for this processor,
which is in an older technology, variation is less than 10%.
Table I summarizes the variation found in the measurements.

In hardware with no power variation, duty cycle rates can
be trivially obtained from the power characteristics of the
hardware and available energy. With instance and temperature-



dependent variability, however, trivially uniform duty cycle
schedules based on “one specification fits all” datasheet power
characteristics will be unable to meet lifetime requirements
due to unforeseen increases in power consumption or, if
taking worst-case characteristics into consideration, leave sig-
nificant energy potential untapped. In this paper, we discuss
variability-aware duty cycling methods that handle instance
and temperature-dependent variability.

Variation is expected to increase with scaling of silicon
technologies, and to become more pronounced in active as well
as sleep modes [2]. In face of this variability, finding a duty
cycle schedule for a given battery capacity can be formulated
as an optimization problem in four-dimensional space: instance
characteristics, temperature, supply voltage (if unregulated),
and aging. In subsequent discussions, however, we focus only
on two aspects with the highest impact on current generation
hardware: instance and temperature-dependent variation.

Our contributions are the following: (i) proposal and analy-
sis of variability-aware duty cycle adaptation methods, and
(ii) a duty cycle adaptation framework and abstraction for
TinyOS, a popular operating system for embedded sensors.
Our analysis of duty cycle adaptation methods shows that
ignoring instance and temperature-dependent variability in low
power embedded sensing systems leads to either untapped
energy potential, or unmet lifetime requirements. We also
show how the common practice of reactively adjusting work
according to recent energy usage observations, or estimations
of remaining energy capacity, may lead to sub-optimal quality
of service across the lifetime of the system. Finally, our duty
cycle abstraction for TinyOS allows applications to explicitly
specify lifetime and minimum duty cycle requirements for
individual tasks, and dynamically adjusts duty cycle rates
according to a variability-aware scheduler so that overall
quality of service is maximized.

II. RELATED WORK
Prior work that addresses variability can be classified into

(i) statistical design approaches [25] [9] [17], (ii) post silicon
compensation and correction [12] [18] [32], and (iii) variation
avoidance [8] [3] [11]. Our work differs in that it addresses
hardware variability in the operating system layer. The closest
resemblance is with [26], which proposes adapting software
video codec configurations based on hardware signatures. In
embedded sensing context, our work is closest to [23] [10],
which propose sensor node deployment methodology based on
variability in leakage power across different nodes.

Variations in power consumption can be interpreted as
changes in resource (energy) usage (and hence availability).
Adaptation of work to resource availability is a common
theme in embedded and real-time systems. In imprecise
computation [21], each task is designed to produce usable,
approximate results whenever resource scarcity (e.g. due to
transient failures or overloads) prevents the task from pro-
ducing its desired precise result. Imprecise computation has
been explored in the context of energy-aware systems, where
tasks may be interrupted according to energy availability and
lifetime requirements [7] [35].

Similarly, several systems have explored the concept of
alternative task implementations with different resource us-
age patterns and quality of service characteristics. Whenever
resources are available, tasks with higher quality of service
are preferred to those with lower resource usage characteris-
tics. Levels is an energy-aware programming abstraction for
TinyOS based on alternative tasks [19]. With this abstraction,
programmers define task levels, which provide identical func-
tionality with different quality of service and energy usage
characteristics. The run-time system dynamically choses the
highest task levels that will meet the required lifetime.

The issue of distributing available energy resources to tasks
has also been explored in the literature. ECOSystem [38]
introduced the concept of “Currentcy” to allocate energy re-
sources to tasks. The system periodically distributes Currentcy
to tasks, which adjust their workload according to availability.
Cinder [29] is an energy-aware system for mobile computing
devices that features a Capacitor abstraction associated with
tasks. Each capacitor represents a task’s right to request energy
from the system to perform its operations. While we do not
deal with the issue of energy distribution to tasks explicitly
in this work, we could support schemes like Currentcies or
Capacitors by using our variability-aware power consumption
model as the source of available energy to these systems.

III. DUTY CYCLE SCHEDULING
A duty cycle schedule indicates the activity rate of a system

at any point in its lifetime. An optimal duty cycle schedule
maximizes the active time of the system across its desired
lifetime, given an energy constraint. If there is no variability
in power consumption, the optimal duty cycle schedule can
be uniform across the lifetime of the system. Given an energy
budget of E Joules, a lifetime of L seconds, and invariable
constants for active and sleep power consumption PA and PS
Watts, the maximum allowable allowed duty cycle DC is given
in (1). The values of PA and PS can be typically obtained from
the processor datasheet.

PA ·DC+PS · (1−DC) = E
L

DC =
E−L ·PS

L ·PA−L ·PS
(1)

A. Variable Power Consumption

When instance and temperature-dependent variation is taken
into consideration, the worst-case uniform duty cycle can
be found by applying the worst-case active and sleep power
consumption across all instances and operating temperature
range as constants PA and PS in (1).

However, with prior characterization, active and sleep power
can be expressed as functions of temperature PA(T ) and PS(T ).
If the temperature profile is known (or can be learned) for
the lifetime of the system, temperature can be expressed as
a frequency distribution. For a known operating temperature
profile and a given processor instance, the problem of finding
an optimum duty cycle can be formulated as a linear program.
Given the expected frequency distribution of (discretized) tem-
peratures across the lifetime of the application, the optimum
duty cycle at each temperature T , DCT is given by (2):



argmax
DCT

Tmax

∑
T=Tmin

DCT fT (2)

s.t.
Tmax

∑
T=Tmin

fT · (PA(T ) ·DCT +PS(T ) · (1−DCT ))≤
E
L

DCmin ≤ DCT ≤ DCmax, Tmin ≤ T ≤ Tmax

where fT is the relative frequency of temperature T across the
lifetime L, assuming discretized temperature bins. DCmin and
DCmax are the minimum and maximum duty cycles allowed
for the application. The maximum duty cycle constraint can be
used to limit duty cycles when increasing duty cycle beyond a
given rate would bring no further increase to quality of service.

B. Variability-Aware Uniform Duty Cycle

Assuming a uniform duty cycle DCT = DC∗ independent
of temperature, we can determine DC∗ that satisfies the
constraints given in (2).

DC∗ = Min

[
E−L ·∑Tmax

T=Tmin
PS(T ) · fT

L ·∑Tmax
T=Tmin

(PA(T )−PS(T )) · fT
,DCmax

]
(3)

Moreover, it can be shown that when PA(T )−PS(T ) is con-
stant across all T , DC∗ is the uniform duty cycle that optimizes
the linear program in (2). We observed this to be practically
true for the current generation microprocessors, like the Atmel
SAM3U, because (i) their sleep power consumption PS(T ) is
much less than active power consumption PA(T ), and (ii) the
PA(T ) is effectively constant as active mode leakage power
is insignificant for their fabrication technology, and switching
power variation across the temperatures is negligible.

C. Reactive Duty Cycle

Allowable duty cycle rates can also be found dynamically
through measurements or estimations of past power consump-
tion, given total energy capacity at the start of lifetime. Energy
consumption can be directly measured with dedicated moni-
tors [24], inferred from remaining battery capacity [19], or
through variability-aware models that estimate energy expen-
diture by measuring conditions that affect power consumption,
e.g. temperature and activity rates.

In a reactive model, duty cycle can be dynamically deter-
mined at time t as a ratio of duty cycle at time t−1, according
to energy spent from time t − 1 to time t, and remaining
energy in the system. Remaining energy at time t is given
by Et = E−∑

t−1
i=0 Pi, where E is the total energy capacity and

Pi is power estimated or measured at time i. An example of a
reactive duty cycle adaptation model is given in (4).

DCt =
Et ·DCt−1

(Et −Et−1) · (L− t)
(4)

The reactive model in (4) assumes that the power consump-
tion rate for the previous time period is indicative of the power
consumption for the remainder of lifetime of the system. While
more complex models could incorporate longer histories, any
reactive model will depend on accurate measurement of past
energy consumption or estimation of remaining battery energy.
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Fig. 2. System Architecture for Variability-Aware DC Scheduling in TinyOS

IV. DUTY CYCLE SCHEDULING IN TINYOS

In this section we present our design and implementation
of a duty cycle scheduling framework and abstraction for
TinyOS [20]. TinyOS differs from traditional operating system
in that it is event-based. Applications respond to events (e.g.
interrupts from hardware, incoming radio messages) with event
handlers. These handlers should typically complete within
a few hundred processor cycles. To execute long running
computations, applications post tasks, which work as deferred
function calls. Each task runs to completion on a scheduler
loop. Whenever the system has no tasks to schedule, it puts
the processor in sleep mode, waiting for the next interrupt
which will trigger new event handlers, and potentially new
tasks. The event handler / background tasks model of TinyOS
naturally lends itself to duty cycled systems: event handlers
and tasks represent active periods, empty scheduler queues
lead to inactive periods. Nevertheless, there’s no explicit
support for discovering and adapting duty cycle in TinyOS.

We introduce a new Duty Cycle Scheduler to TinyOS.
Figure 2 shows our system architecture. A hardware signature
inference module provides power vs. temperature curves for
each processor instance. While in our work we assume that
these curves are pre-characterized, extensions to this module
could feature online learning through dedicated power meters,
and take other variability vectors such as aging into account.

The scheduler determines allowable duty cycle based on:
(i) sleep and active power vs. temperature curves provided
by the hardware signature inference module, (ii) temperature
profile for the application, which can be pre-characterized or
learned dynamically, (iii) lifetime requirement specified by the
application, (iv) battery capacity, and (v) one of the scheduling
methods presented in section III.

To maintain compatibility with existing TinyOS tasks, we
introduce Adaptable Tasks. These tasks respond to events from
the Duty Cycle scheduler that inform them of their current
and allowable duty cycle. However, the system does not
enforce adaptation of these tasks. These are assumed to adapt
according to the duty cycle change event from the scheduler.

Adaptable tasks are designed for flexibility. A module using
adaptable tasks may, for example, use an alternative function
mechanism, e.g. [19]. For standard applications, we provide
two additional classes of tasks which implement two common
adaptation scenarios: tasks with variable iterations and tasks
with variable period. For the first class, the programmer



provides a function that can be invoked repeatedly a bounded
number of times within each fixed period. For the second
class of tasks, the application programmer provides a function
representing task functionality that is invoked once within each
variable but bounded period of time. Internally, each of these
tasks use an adaptable task and unique identifier. The system
adjusts the number of iterations or period of the task based on
the allowable DC.

V. EVALUATION
A. Evaluation Scenario

To evaluate the duty cycle optimization methods, we make
use of a common scenario in embedded sensing: a long
running duty cycled application with a limited energy source
(battery), which periodically becomes active to perform sens-
ing/processing tasks, and subsequently returns to a low-power
sleep mode until the next period.

We assume an application which, when active, uses only the
main processor running at 4MHz, and when in sleep mode,
disables all peripherals except for a low-power wake-up timer.
Active and sleep power are obtained from the characterization
model and measurements from [34] presented in Sec. I.

For temperature profile, we use hourly temperature data
from the National Climactic Data Center for a full year in
a fixed location [33], fitted as a triangular distribution. We
assume a lifetime requirement of one year for all tests.

B. Comparison of Duty Cycle Scheduling Methods
In this section, we compare duty cycle schedules resulting

from the methods discussed in Section III with an energy
supply of approximately 850 mAh from AAA batteries. Figure
3 shows the DC schedules across the lifetime of an appli-
cation for a single instance. It shows that the variability-
unaware schedule resulting from the reactive and variability-
aware schemes (optimum and uniform) show considerable
improvement over the worst-case duty cycle due to untapped
energy potential in the latter. The duty cycle resulting from
from datasheet power specifications does not meet the re-
quired lifetime, as the specification is not guardbanded against
temperature-dependent power variation. Having completely
pessimistic sleep power specification is very difficult since
leakage distribution has a long tail. Table II summarizes the re-
sults from the various regimes for all instances. On average, we
found a 7.1x improvement in active time with the variability-
aware DC over the worst-case DC, 61% of energy potential
left untapped by the worst-case DC, and 14% reduction in
lifetime with DC based on datasheet specifications.

From the models discussed in Section III, we can observe
that the shape of an optimum duty cycle schedule across the
lifetime of different processor instances depends on the slope
of their respective switching power vs. temperature curves.
Since our measurements show no temperature-dependent vari-
ation in switching power, the optimum duty cycle schedule is
equivalent to the uniform variability-aware schedule in Figure
3. If there were variations in switching power, the optimum
DC would no longer be uniform, but instead would have higher
duty cycles when switching power is smaller.
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TABLE II
RESULTS FROM THE VARIOUS DC REGIMES ACROSS ALL INSTANCES

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Avg.
Improvement of variability-aware DC over worst-case DC (x)

8.9 9.1 2.1 6.8 7.4 8 7.3 8.8 3 9.4 7.1
Energy left untapped by worst-case DC (%)

77 81 11 59 64 70 64 78 20 82 61
Lifetime reduction with DC based on datasheet specification (%)

2 0 42 19 15 9 16 2 38 0 14

C. Impact of Duty Cycling on Application Performance

Higher duty cycle with a variability-aware optimal algo-
rithm allows the sensors to stay “on” for a longer time and
capture more data during deployment. This typically increases
accuracy and shortens response times in high fidelity real-time
sensing tasks such as object localization and tracking.Figure 4
quantifies the effect of different duty cycles on the efficiency
of sound source localization with a network of 20 acoustic
(e.g. microphone) sensor arrays using Maximum Likelihood
Estimation (MLE). It shows that the algorithm generates esti-
mates of target location with a lower mean error in presence of
variability-aware optimal schemes as compared to worst-case
schedules for the same battery capacity and target lifetime.
For further details on this application, see [37].
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D. Errors in modeling and energy estimation
Adaptation of work based on estimation of remaining energy

is a common strategy of the lifetime-aware systems, e.g.
[19], [35], [38]. While a reactive duty cycle schedule seems
at first glance to eliminate the need for pre-characterization
of power vs. temperature curves, practical implementations
of such a scheme suffer from limitations in the ability to
accurately estimate remaining usable battery capacity. Prior
efforts have mainly focused on estimating the state of charge



of rechargeable batteries to help users operate their devices
judiciously till the next recharge opportunity [6], [28]. Many
“smart” batteries use state-of-art “Coulomb-meters” [36] to
provide this estimate with an error of 2-5% [28], [36].

Figure 5 shows the effect of errors in the estimation of
remaining battery capacity to average lifetime across processor
instances, using the same application scenario as Figure 3. In
this figure, each time the reactive scheme adapts duty cycle,
there’s a uniform random error in the estimation of remaining
battery capacity, e.g. an actual remaining capacity of 90%
with an error of 1% is estimated between 89.1 and 90.9. In
target systems with long lifetimes (e.g. greater than a year),
where the energy consumed in an hour may be less than
0.01% of total capacity, even small estimation errors make
short term adaptation problematic. Figure 5 also shows the
effect of errors in modeling of power vs. temperature curves to
lifetime. In this graph, errors are modeled as uniform random
offsets from the modeled to the actual power vs. temperature
curves. This plot shows that errors in modeling of power vs.
temperature result in more graceful degradation than errors in
reactive adaptation based on remaining capacity, with lifetime
reduction proportional to the error in the model.
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Furthermore, with power variability, previous power con-
sumption may not be a good indicative of future power
consumption. This contradicts the assumption stated in Section
III-C that forms the basis of Equation 4. Hence, a reactive
scheme may be overly optimistic or pessimistic in its assess-
ment of duty cycling rates, resulting in unmet lifetime re-
quirements or untapped energy resources. Finally, if switching
power variation is also present, a reactive duty cycling scheme
may fail to maximize total active time, as switching power may
be lower when total power is higher. Therefore, we believe a
priori characterization of power is valuable and may be the
option of choice for low cost sensors.

E. Battery Capacity
Figure 6 shows the average percentile improvement of

a variability-aware duty cycle schedule (3) over the worst-
case duty cycle for different battery capacities. This plot
shows that the variability-aware duty cycling regime is more
advantageous for applications with smaller duty cycles. For
“small” batteries (up to 1100 mAh, corresponding to worst-
case duty cycles of up to 1%), improvement is more than
100%. The improvement for “large” batteries (greater than
6600 mAh, corresponding to worst-case duty cycles of more
than 14%), improvement is less than 10%.
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Fluctuations in battery capacity due to temperature vari-
ation, as well as deviations from the expected temperature
profile, may result in reductions of lifetime. In future work,
we intend to address this by providing lifetime guarantees with
confidence intervals.

F. Active to Sleep Power Ratio and Temperature Range

Figure 7 shows the effect of temperature range and active to
sleep power ratio on variability-aware DC (3), when compared
to a worst-case duty cycle schedule. To study the effects of
increased temperature ranges on duty cycle optimization, we
scale the maximum temperature in our temperature distribution
by a variable factor, without altering minimum and mode of
temperature. Likewise, we scale sleep power by a variable
factor to study the effects of different active to sleep power
ratios. For each test point in Figure 7, we give each board
an energy supply sufficient to achieve a worst-case DC of
10%, and show average improvement across 10 boards with
variability-aware DC schedule using the same energy supply.
As technology progresses and the ratio between active and
sleep power decreases [27], variability-aware duty cycling
regime shows considerable benefits even for higher duty cycles
over wider temperature ranges.
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G. Runtime Overheads
To analyze the overhead of our duty cycle scheduler im-

plementation, we compiled it for the Mica2 mote, which
represents the lower end of platforms supported by TinyOS,
and profiled it with Avrora, a cycle accurate simulator [31].
Compared to the base TinyOS scheduler, our implementa-
tion requires an additional 20 bytes of RAM memory. Each



adaptable task instance uses 5 bytes of memory, and the
TaskVariablePeriod and TaskVariableIterations abstractions re-
quire additional 4 bytes per task. This overhead is well within
the capacity of low-end sensor nodes (typically > 4KB RAM).

Compared to basic TinyOS tasks, each adaptable task ac-
tivation has an overhead of 28µs. As a point of comparison,
the reported overhead for each activation in Levels [19] for
the same platform, profiled with the same simulator, is 91µs,
and the minimum time to acquire a single ADC sample with
full precision in this platform is 125µs. Finally, the uniform
variability-aware duty cycle control module, which runs peri-
odically every 10 minutes, completes within 250(N + 1)µs,
where N is the number of adaptable tasks in the system.
This time is required to distribute available active time across
all adaptable tasks, and to determine the rate of activity (i.e.
period, number of iterations) of each task. When the system
becomes stable, i.e., when all the tasks reach their allowable
duty-cycle, the uniform variability-aware duty cycle control
module completes within 250µs. The runtime overhead of our
simple duty cycling abstractions is considerably smaller than
that of comparable solutions in the literature [19], [38]

VI. CONCLUSION
In this paper we showed the implication of power variation

to duty cycling in low power sensors. We presented variability-
aware methods to find optimum duty cycle schedules, and
showed that instance and temperature-dependent variability
aware duty cycle scheduling gives a 7.1x improvement in
the sensing quality, whereas pessimistic estimations of power
consumption leaves 61% of the energy untapped, and datasheet
power specifications fail to meet required lifetimes by 14%.
We introduced an adaptive duty cycling software stack for
TinyOS which provides simple abstractions for application
adaptation with very small runtime overhead.

As variation in active power becomes more significant,
and sleep power becomes comparable in magnitude to active
power, power variability will have implications beyond low
power sensing applications. In future work we will explore
online learning of variability parameters. A combination of
pre-characterization and online learning of variability will
allow adaptation to dynamic variation due to aging.
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