
FlexRay Switch Scheduling - A Networking
Concept for Electric Vehicles

Martin Lukasiewycz, Samarjit Chakraborty
TU Munich, Germany

{martin.lukasiewycz, samarjit.chakraborty}@rcs.ei.tum.de

Paul Milbredt
AUDI AG, Germany

paul.milbredt@audi.de

Abstract—It is projected that the communication data volume
in electric vehicles will significantly increase compared to state-
of-the-art vehicles due to additional functionalities like x-by-
wire and safety functions. This paper presents a networking
concept for electric vehicles to cope with the high data volume
in cases where a single FlexRay bus is not sufficient. We present
a FlexRay switch concept that is capable of increasing the
effective bandwidth and improving the safety of existing FlexRay
buses. A prototype FPGA implementation shows the feasibility
of our approach. Further, a scheduling approach for the FlexRay
switch that obtains the optimal results based on Integer Linear
Programming (ILP) is presented. Since the ILP approach be-
comes intractable for real-world problems, we present a heuristic
three-step approach that determines the branches of the network,
performs a local scheduling for each node, and finally assembles
the local schedules into a global schedule. Test cases and an entire
realistic in-vehicle network are used to emphasize the benefits of
the proposed approach.

I. INTRODUCTION

Next generation electric vehicles will radically change the
design paradigms in the automotive network domain. For the
sake of simplicity, the legacy Control Area Network (CAN) [1]
buses shall be replaced by a homogeneous core network. A
strong candidate for this network is the standardized FlexRay
protocol [2] that is tailored to the automotive domain. How-
ever, even current top-of-the-range cars already contain one
FlexRay bus and several CAN buses such that the entire
communication data would exhaust the capacity of a single
FlexRay bus. One natural answer for this problem would be a
gateway that interconnects multiple FlexRay buses and, thus,
increases the bandwidth of the network. However, this solution
comes at a high price: The gateway leads to an additional delay
since multiple FlexRay buses cannot be synchronized and
messages have to be buffered. This approach goes against the
benefits of the time-triggered FlexRay bus and implementing
distributed functions with strict real-time requirements might
be hampered. As a remedy, we propose a FlexRay switch
and a scheduling approach that is capable of increasing the
effective bandwidth without introducing additional delays to
the communication.
FlexRay Protocol: The amount of communication in vehicle
networks is constantly increasing due to the growing number
of safety, comfort, and entertainment functions. Most recently,
several car manufacturers introduced the first FlexRay buses in
production vehicles to cope with the high data volume [3], [4].
The FlexRay communication system [2] has been developed by
an industrial consortium to cope with the ever increasing data
volume and real-time communication requirements of state-
of-the-art vehicles. It offers a time-triggered and an event-
triggered segment, a bandwidth of 10 Mbit/s, and supports
different topologies, i.e., linear bus, star and hybrid topolo-
gies. Thus, FlexRay is the prospective automotive standard
communication system.

CC0 (Communication Cycle) CC1 · · · CC63

Dynamic
Segment

Symbol
Window

Network
Idle TimeStatic Segment

Slot 1 Slot 2 Slot nSlot n
· · ·payload payload payload

Fig. 1. The FlexRay communication protocol. Each communication cycle
contains a static segment that comprises a set of equally sized slots.

The FlexRay communication is organized in 64 cycles,
as illustrated in Figure 1. Each cycle is divided into four
segments of configurable duration: (1) The static segment
enabling a guaranteed real-time transmission of critical data,
(2) the dynamic segment for low-priority and event-triggered
data, (3) the symbol window used to transmit special symbols,
and (4) the network idle time used to perform a clock synchro-
nization. The focus of this paper is put on scheduling the static
segment. The static segment is made up of n equally sized slots
where each slot is uniquely assigned to one node (or none).
One node, however, may occupy more than one slot. Each
slot consists of a header and trailer segment and a payload
segment that is statically configured to carry between 0 and
254 bytes. By a predefined schedule, each slot is filled with
messages (also referred to as frames or protocol data units)
of the applications. The size of each message is fixed and
given in bytes as the basic unit. The AUTomotive Open System
ARchitecture (AUTOSAR) FlexRay Interface Specification [5]
suggests a multiplexing technique using the communication
cycles to increase the utilization of the bus.
Contributions of the Paper:The proposed FlexRay switch
is a central hardware device that is capable of connecting
multiple FlexRay branches transparently, i.e., a modification of
the FlexRay bus participants is not necessary. In comparison
with the interconnection of buses using a gateway, the switch
does not require data buffering and also does not introduce any
additional delay to the communication. The proposed switch
separates communication branches such that each FlexRay
slot may be used by different nodes concurrently on distinct
branches. Hence, this approach increases the effective band-
width of the bus. Moreover, the switch might serve as a central
bus guardian, thereby increasing the safety of the network.

As a proof-of-concept, the switch is implemented on an
Field Programmable Gate Array (FPGA) platform. Experi-
ments show that the prototype meets the FlexRay Electric
Physical Layer (EPL) Specification [6].

To capitalize on the advantages of the switched FlexRay, an
978-3-9810801-7-9/DATE11/ c©2011 EDAA

appropriate topology and scheduling determination becomes
necessary. In this paper, we present an ILP approach that
is capable of determining the optimal network topology and
scheduling. Due to the exponential nature of ILP formulations,
a heuristic approach becomes necessary to handle problems
of realistic size. This heuristic approach is performed in three
steps. The first step determines the network topology, i.e., the
branches. In the second step, the scheduling for each node is
determined. In the third and last step, the schedules of each
node are assembled into a global schedule.

Test cases of various sizes show the benefits of the proposed
approach. Increasing the number of branches, significantly de-
creases the number of used slots and, thus, boosts the effective
bandwidth. A scenario of a migration from a realistic in-
vehicle network consisting of four CAN buses and a FlexRay
bus to a homogeneous FlexRay network is investigated. While
a single FlexRay bus does not provide enough bandwidth, the
switch concept with the proposed scheduling approach allows
to determine a feasible schedule.
Organization of the paper: The remainder of the paper
is organized as follows: Section II discusses related work.
The FlexRay switch concept and the scheduling problem
definition are presented in Section III. Section IV outlines
the FPGA implementation of the switch. In Section V, an
exact scheduling approach using ILP is proposed as well as an
heuristic three-step approach. Experimental results including
test cases and a realistic case study are presented in Section VI,
before concluding remarks are made in Section VII.

II. RELATED WORK

Today, the most prevailing bus system for in-vehicle com-
munication is the event-triggered CAN [1] which is restricted
to a bit rate of 1Mbit/s only. A significantly higher bandwidth
with 10Mbit/s is provided by the FlexRay bus [2]. Moreover,
the FlexRay protocol allows a time-triggered communication
which is necessary for several control functions with real-time
requirements. In a dual channel mode, the FlexRay protocol
even allows to double the bandwidth. However, in this case
the second channel cannot be used for error correction. On the
other hand, Ethernet [7] might be an alternative to cope with
the high data volume of upcoming electric vehicles. However,
to ensure real-time properties, special implementations of
the Ethernet protocol become necessary [8]. Moreover, the
electromagnetic compatibility for Ethernet in the automotive
domain is not as well researched as the FlexRay bus [6] and
hence Ethernet is only considered for non-critical multimedia
applications as a compensation for the cost-intensive Media
Oriented Systems Transport (MOST) [9]. Due to the stan-
dardization of the FlexRay bus for the automotive domain it
is a strong candidate for upcoming (homogeneous) in-vehicle
networks that require a significantly higher bandwidth.

A major challenge for the proposed FlexRay switch concept
is the determination of an efficient schedule. In this paper,
we focus on scheduling the static segment. An approach that
optimizes the static segment with a Genetic Algorithm (GA) is
proposed in [10]. The work in [11] introduces an ILP approach
for a proposed custom software architecture. In [12], the
authors present a Mixed Integer Linear Programming (MILP)
approach for scheduling messages and tasks in a synchronous
architecture. Recent work on scheduling the static segment is
proposed in [13] and [14] which consider the optimization
of the schedule with respect to cycle multiplexing. However,
these papers do not consider scheduling multiple FlexRay
buses and, therefore, are not applicable to the scheduling

r1 r2 r3 r4

FlexRay Switch
B1 B2

m1,m2 m3m4,m5

Fig. 2. FlexRay network with four nodes R = {r1, r2, r3, r4} and a switch
separating the bus into two branches B1 = {r1, r2} and B2 = {r3, r4}.
The messages M = {m1,m2,m3,m4,m5} are scheduled on the network.

(a) Scheduling without FlexRay Switch

m1,m2 m3 m4,m5

Slot 1 Slot 2 Slot 3
...B1 ∪B2

(b) Scheduling with FlexRay Switch

m1,m2

m3

m4,m5

Slot 1 Slot 2

...
B1

B2

Fig. 3. Schedules for the network in Figure 2 resulting in (a) three used
slots without a switch and (b) two used slots by using the proposed FlexRay
switch.

problem that originates from using the FlexRay switch as
proposed in the work at hand.

III. SWITCH CONCEPT

In the following, the FlexRay switch concept is presented,
using a simple example. Additionally, the resulting scheduling
problem is introduced in a formal description.

A. Example
To illustrate the benefits of the FlexRay switch in terms of

an increased bandwidth, Figure 2 is introduced as an example
architecture. Here, four nodes are connected to a FlexRay bus
that is separated into two branches using the proposed FlexRay
switch. Assuming that the messages m1,m2 and m4,m5 can be
sent in a single slot (see Section I for an introduction of the
FlexRay protocol), the schedule without the switch requires
three slots as illustrated in Figure 3(a). Using the switch,
the number of used slots is reduced to two by scheduling
the messages m1,m2 and m3 in parallel as illustrated in
Figure 3(b).

This approach does not require any modifications of the
communication controllers of the FlexRay participants since
each branch has a local schedule that entirely meets the
FlexRay specification. Compared to a solution using a gate-
way, the switch does not induce any additional delay. More-
over, a gateway requires buffers to store and forward messages.
Hence, the FlexRay switch is a simple and cheap solution that
increases the effective bandwidth while ensuring the real-time
properties of the FlexRay bus. Note that a branch might be
cascaded using an active star. This becomes necessary if a
branch consists of more than eight nodes as required in the
FlexRay specification [2].

B. Problem Formulation
To benefit from the FlexRay switch, an appropriate topology

and a schedule have to be determined. The system require-
ments are defined as a set of communicating nodes R and a
set of messages M :

• The network consists of a set of communicating FlexRay
nodes R. A FlexRay node r ∈ R might be an Electronic
Control Unit (ECU) or a gateway to other buses.

• Each message m ∈ M is defined by its size wm ∈ N
and repetition rm ∈ {2n|n ∈ {0, .., 6}} (the mes-
sage m is sent each rm-th cycle). Given the period
of the a message pm, the repetition is determined by
rm = 2max(dlog2

pm
p e,6) with p being the duration of

a communication cycle. Each message has exactly one
sender defined by src :M → R and a set of a receivers
dest :M → 2R.

The topology and schedule are determined by three tasks:
(1) The determination of the branches B, (2) the packing of
messages in the slots S, and (3) the assignment of a slot-id
for each slot σ. Here, B defines the topology and (S, σ) the
schedule:
• Each branch B ∈ B is a subset of the nodes. Hence, the

following holds:

∀B ∈ B : B ⊆ R (1)

On the other hand, all branches are disjoint sets and each
resource is on exactly one branch:

∀B, B̃ ∈ B, B 6= B̃ : B ∩ B̃ = {} (2)⋃
B∈B

B = R (3)

• Each slot S ∈ S contains a set of messages. It holds:

∀S ∈ S : S ⊆M (4)

All messages in a slot have the same sender:

∀S ∈ S,m, m̃ ∈ S : src(m) = src(m̃) (5)

In this paper, we assume an AUTOSAR [5] compliant
packing, i.e., each message is assigned a base cycle bm
and offset xm: A message is sent in its slot in each
cycle (n · rm + bm)%64 with bm < rm and n ∈ N0

at the position xm which is the offset in bytes in a slot.
Depending on the messages in a slot, each slot occupies
a set of branches determined by the function b : S → 2B

as follows:

b(S) = {B|B ∈ B ∧B ∩
⋃
m∈S

src(m) ∪ dest(m) 6= {}}

(6)
• For each slot S ∈ S the function σ : S → N determines

a slot-id (FRIF SLOT ID in [5]). If two slots share the
same slot-id, the occupied branches have to be disjoint:

∀S, S̃ ∈ S, S 6= S̃ : σ(S) = σ(S̃)→ b(S) ∩ b(S̃) = {}
(7)

The determination of (B, S, σ) is performed with the goal of
using as few slot-ids as possible. This optimization objective
arises from the fact that there exists a limited number of slot-
ids for each schedule and the number of necessary slot-ids
determines the schedulability. This holds, in particular, in a
scenario with a high data volume, i.e., in upcoming electric
vehicles. Note that additional constraints on S and σ might
become necessary in order to consider synchronized ECUs,
see [12].

FlexRay Switch

Schedule Execution Module

Configuration
Module

HDT

DCM

host I/F

clock
reset

bus driver interface

Fig. 4. Block diagram of the FlexRay switch prototype.

IV. SWITCH IMPLEMENTATION

For the prototype of the FlexRay switch, an automotive
testing platform [15] based on an FPGA (Xilinx Spartan 3-
1500) with eight FlexRay transceivers was used. The proto-
type switch was programmed in VHDL at register transfer
level (RTL). A detailed introduction is given in [16], in the
following the architecture of the switch prototype is outlined.

The behavior of the switch is primarily defined by the con-
figured schedule which controls routing during synchronous
operation. In the dynamic segment or asynchronous operation
mode, e.g., startup, the switch behaves as a central bus
guardian, protecting the branches from faulty nodes. The
switch is divided into several parts as illustrated in Figure 4.
The switch configuration might be performed at run time by
the host via the host interface. For this purpose, the Host Data
Translator (HDT) transforms incoming commands and data
from the platform-specific host interface to the internally used
format. The Digital Clock Management (DCM) generates the
required 80 MHz clock for an eight times oversampling of the
FlexRay transmission rate of 10 Mbit/s. The configuration of
the switch schedule is performed in the Configuration Module.
The Schedule Execution Module is responsible for switching
the branches. This module has to implement the FlexRay clock
synchronization to be aware of the global time and the current
slot-id. For each slot-id i, the module has a matrix Ai that
determines if a slot is forwarded from branch B to branch B̃.
The matrix is defined as follows:

Ai(B, B̃) =
{
1 if ∃m ∈ S, S ∈ Si, src(m) ∈ B, dest(m) ∩ B̃ 6= {}
0 otherwise

(8)
with

Si = {S|S ∈ S ∧ σ(S) = i}. (9)

A major challenge in the implementation of the switch
is the required compliance with the FlexRay EPL [6]: The
maximal delay between two communicating nodes is 250ns
which equals 2.5bits in case of a bandwidth of 10Mbit/s. Ex-
tensive tests revealed that the prototype FPGA FlexRay switch
satisfies this constraint, see [16]. Moreover, a commercial off-
the-shelf FlexRay switch should have the same behavior as an
active star.

V. SWITCH SCHEDULING

In this paper, we use the industrially accepted
AUTOSAR [5] compliant packing, i.e., each message is
assigned a base cycle bm and offset xm in a slot as described
in Section III. The base cycle and offset have to be chosen
such that two messages never overlap. In this work, we use

the transformation to bin packing. Thus, each message is
assigned a width wm (the payload) and height

hm = H/rm (10)

with W being the slot size in bytes and H = 64, i.e., the
number of communication cycles. Instead of determining the
base cycle, the goal is now to determine the y-offset ym which
is determined by

ym = lm · hm = t(bm, rm) · hm (11)

with

t(x, y) =


0, x = 0

t(x2 ,
y
2), x is even

t(x−12 , y2) +
y
2 , x is odd

(12)

Here, lm denotes the level of a message m. Correspondingly,
the base cycle bm is determined as follows:

bm = t(lm, rm) = t(
ym
hm

, rm) (13)

The offset xm in the slot equals the x-offset in the bin. A
detailed introduction on this transformation is given in [14].

For the sake of completeness, an ILP formulation that solves
the presented scheduling problem optimally is presented in
the following. However, experimental results reveal that this
exact approach is only applicable to small problems due
to the exponential runtime complexity. Hence, a heuristic
approach becomes necessary for realistic problems where the
ILP becomes intractable. A three-step heuristic is presented
that is capable of delivering competitive schedules as shown
in the experimental results.

A. Exact Solution with Integer Linear Programming
The ILP formulation relies on the following binary vari-

ables:
• mσ,l : message m is placed at the level l in slot with

slot-id i
• i : slot with slot-id i is used (imax is defined as the

maximal number of slot-ids)
• rB : node r ∈ R is on branch B ∈ B
• rB,i : node r ∈ R is using the slot with id i on branch
B ∈ B

The ILP is formulated as follows:

min
∑

i∈{1,..,imax}

i (14)

∀ m ∈M :
∑

i∈{1,..,imax}

H
hm
−1∑

l=0

mi,l = 1 (15)

∀ r ∈ R, i ∈ {1, .., imax}, y ∈ {0, ..,H − 1} :∑
m∈M,src(m)=r

wm ·mi,
⌊ y
hm

⌋ ≤W (16)

∀ r ∈ R :
∑
B∈B

rB = 1 (17)

∀ i ∈ {1, .., imax}, B ∈ B :
∑
r∈R

rB,i ≤ 1 (18)

∀
m∈M,i∈{1,..,imax},l∈{0,..,

H
hm
−1},

B∈B,r∈src(m)∪dest(m),r̃=src(m) :

−mi,l − rB + r̃B,i ≥ −1 (19)

∀ r ∈ R, i ∈ {1, .., imax}, B ∈ B : −rB,i + i ≥ 0 (20)

The objective function (14) of the ILP minimizes the
number of used slot-ids. Here, imax is the minimal number of
slot-ids necessary to solve the problem. This number is either
the minimal value of the available slots or an upper bound
determined by a heuristic for scheduling without the switch.
The constraints (15) state that each message m is placed in
exactly one slot with slot-id i at the specific level l. By adding
the sizes of the messages and restricting this sum by the size
of a slot, the constraints (16) ensure that the size of each slot
is not exceeded. The constraints (17) state that each node is
assigned to exactly one branch as required in Equation (1)-
(3). The requirement that a slot-id on a specific branch can at
most be assigned to one node as given in Equation (5), is stated
in the constraints (18). Correspondingly to the requirement in
Equation (7), the constraints (19) ensure that for each message
that is assigned to a slot-id, the sender is using the slot-id on
the specific affected branch. The constraints (20) state that if a
slot-id is used on a specific branch by any resource, the slot-id
is allocated for the schedule.

Solving this ILP, provides a slot-id i and level l for each
message m. Placing the elements starting from the highest
element to the most left void space in the bin at the level l
results in a feasible solution of the bin packing problem. Each
bin packing solution is transformed to a slot packing S by
determining the base cycle using the level of each message,
see Equations (10) and (13). The slot-id assignment σ is
deduced from the mi,l variables. The variables rB determine
the topology B.

B. Heuristic Solution

Since the ILP approach becomes intractable for problems
of even moderate size, we propose a heuristic approach that
provides a set of topologies and schedules for a network
using the FlexRay switch. For the sake of simplicity and
extensibility, the heuristic is separated in three steps: (1) The
topology is determined by deducing a set of branches, (2) the
messages are packed into slots, (3) a slot-id is assigned to
each slot. This multi-step approach has the advantage that
some step might be performed manually, e.g., the topology
might be already given by replacing an active star device by
the proposed FlexRay switch.

1) Topology: The goal of the first step is to determine an
appropriate set of branches. Here, nodes which have a high
communication flow between each other shall be on same
branch to reduce the inter-branch communication. For this
purpose, we provide an iterative algorithm that returns a set
of candidate topologies in Algorithm 1.

Algorithm 1 Iterative algorithm to determine a set of candidate
topologies.

1: procedure T(GR(R,E), ω : E → N)
2: while |E| > 0 do
3: select e with ω(e) = minẽ∈E(ω(ẽ))
4: E = E\{e}
5: B = wcc(GR(R,E))
6: Bcandidates = Bcandidates ∪ {B}
7: end while
8: end procedure

The algorithm receives the fully-meshed graph GR(R,E)
for all nodes R and the function ω : E → N which is
determined as the data volume between two nodes as follows:

ω(e = (r, r̃)) =
∑

m∈M
(r=src(m),r̃∈dest(m)∨r̃=src(m),r∈dest(m))

wm · Hrm

(21)
The algorithm iteratively removes the edge e ∈ E with
the lowest data volume (line 3,4). The weakly connected
components (wcc), i.e., the graphs that are not connected, are
determined and the corresponding nodes of each unconnected
graph form a branch (line 5). The obtained topology B is added
to the candidate topologies (line 6). Note that this algorithm
generates exactly |R| candidate topologies. The worst-case
complexity of the algorithm is O(|R|4+|M |) since the number
of edges is in O(|R|2), the determination of the weakly
connected components requires O(|R|2), and the function ω
is determined in O(|M |).

2) Slot Packing: We use an iterative heuristic algorithm as
given in Algorithm 2.

Algorithm 2 Fast greedy heuristic for slot packing.
1: S = {}
2: for m ∈M do
3: for S ∈ S with ∀m̃ ∈ S : src(m) = src(m̃) do
4: if place(m,S) then
5: continue with next m
6: end if
7: end for
8: create new S and add it to S
9: place(m,S)

10: end for

The algorithm starts with an empty set of slots S (line 1).
Each message m ∈ M is tried to be placed subsequently in
a slot S ∈ S if the sender of the message equals the sender
of the slot (line 2,3). Here, the function place(m,S) tries to
place each message m in slot S with the minimal offset and
base cycle and returns true if the placing is successful, and
false otherwise (line 1). If a message is not placed in any of
the slots in S, a new slot S is allocated, added to S, and the
message m is placed into this new empty slot (line 8,9).

The order of the messages in M is determined lexicograph-
ically by three attributes that are determined as follows:
• messages that affect a higher number of nodes determined

by ∑
B∈B,(src(m)∪dest(m))∩B 6={}

|B| (22)

are ordered to the front
• messages with a lower repetition are ordered to the front
• messages with a higher payload are ordered to the front

This ensures that slots are filled first with messages that affect
a high number of nodes. Hence, the subsequent packed slots
affect a less number of nodes such that a parallel scheduling
of these slots is more likely and, thus, bandwidth might be
saved. The complexity of this algorithm is in O(|M | · |S|)

3) Slot Assignment: Finally, each slot requires the assign-
ment of a slot-id. In case the number of slot-ids is minimized,
this problem equals the vertex coloring problem for the graph
GS(S, ES) with (S, S̃) ∈ ES ↔ b(S) ∩ b(S̃) = {}. Each
pair of slots that share at least one branch cannot have the

test case slots runtime[s] |R| |M |
tc1 28 8.2 8 217
tc2 58 130 16 464
tc3 114 362 32 923

TABLE I
THE THREE TEST CASES PROVIDED FOR A SCALABILITY ANALYSIS.

GIVEN IS THE OPTIMAL SOLUTION IN CASE A SINGLE FLEXRAY BUS IS
USED AS WELL AS THE REQUIRED RUNTIME. ADDITIONALLY, THE

NUMBER NODES AND MESSAGES ARE GIVEN.

same color or slot-id, respectively. For the vertex coloring,
we use a heuristic approach in [17]. The used contraction-
based Recursive-Largest-First (RLF) algorithm has a worst-
case complexity of O(|S|3).

VI. EXPERIMENTAL RESULTS

This section discusses our experimental results based on
three test cases and one realistic case study. All experiments
were carried out on an Intel Core i5 2.53 GHz with 4 GB
RAM. The FlexRay bus was configured such that the cycle
duration is 5ms and the duration of one static segment is
4.03ms. The static segment consists of 62 slots with each slot
having a payload of 42 bytes (one byte is reserved for update
bits).

A. Test cases
In order to illustrate the benefits of the FlexRay switch

scheduling, a set of test cases is first presented. The proposed
three test cases are sampled from the distribution of message
lengths and periods as given in the realistic case study of
an existing FlexRay bus. The size of messages ranges from
1byte to 32bytes and the periods range from 5ms to 320ms,
see [14]. The ratio of multicast messages is approximately
50%. The number of ECUs and messages are given in Table I.
The data volume of the first test case equals a state-of-the-art
FlexRay bus in the automotive domain. The second test case
embodies the data volume that is common in a modern in-
vehicle network. The third test case shall serve as an example
of an upcoming electric vehicle network with an increased
bandwidth due to x-by-wire and additional safety functions.

For a very small example with six nodes (|R| = 6) and 42
messages (|M | = 42), the ILP approach is able to find the
optimal FlexRay switch schedule within 1142s. However, the
optimal solution using 8 slots and 2 branches is also found with
the proposed heuristic in 29ms. Moreover, for the proposed test
cases, the exact ILP approach failed to deliver results within
a reasonable amount of time: The optimization was aborted
after 24 hours. Thus, the ILP approach is only applicable for
small problems such that a heuristic becomes necessary for
problems of realistic size.

The optimal results obtained for a network consisting of a
single FlexRay bus without the switch are given in Table I.
Here, the presented ILP approach is applied separately for
each sender node and, finally, the results are assembled in
a global schedule. Note that this approach is significantly
more efficient, since the resulting ILP formulations are more
compact and may be solved separately. While the first test
case allows a FlexRay schedule without a switch, the second
test case already results in a utilization of 93% (58/62 slots),
prohibiting almost any scope for substantial further extensibil-
ity. The third test case cannot be scheduled on a FlexRay bus
since the required number of slots clearly exceeds the number
of available slots.

2 4 6 8

20

40

60

80

100

120

branches |B|

sl
ot

-i
ds
|{
σ
(S

)|S
∈
S}
|

tc1
tc2
tc3

Fig. 5. Results of the test cases for a switched FlexRay scheduling with the
proposed three-step heuristic. For the given bus configuration, 62 slots exist
in the static segment.

branches slot-ids runtime[s]
1 (Powertrain,Chassis,Body,Comfort,FlexRay) 63 1.4
5 (Powertrain)(Chassis)(Body)(Comfort)(FlexRay) 35 0.28
2 (Powertrain,Chassis,FlexRay)(Body,Comfort) 45 0.25

TABLE II
RESULTS OF THE REALISTIC CASE STUDY.

The results obtained with the proposed heuristic are il-
lustrated in Figure 5. For the first test case, the number of
slots is reduced to 18 slot-ids saving 10 slots in the case
where four branches are used. The second test case shows
that the number of used slots may be reduced to 28 using five
branches. The most significant gain is achieved for the third
test case using eight branches. Here, the number of used slots
is reduced to 40 allowing a feasible schedule which cannot be
obtained without the presented FlexRay switch. The runtime
of the scheduling for a given approach ranges from 24ms to
113ms for tc1, 35ms to 175ms for tc2, and 77ms to 265ms for
tc3. Hence, the heuristic is capable of delivering competitive
results always within less than 1s. This short runtime enables
an iterative optimization of the FlexRay parameters like the
communication cycle duration, slot number, or slot size.

B. Case Study
Finally, a realistic case study of a state-of-the-art entire

in-vehicle network is used to emphasize the benefits of
the proposed FlexRay switch. The used network consists of
four CAN buses (Powertrain,Chassis,Body,Comfort) and one
FlexRay bus interconnected by a central gateway. The number
of ECUs is 56 with a total number of 370 messages that
are transmitted on the static segment (diagnosis, calibration,
maintenance data were not considered since they are not
critical and are usually scheduled on the dynamic segment).
If all ECUs are interconnected by a single FlexRay bus using
a cascaded active star topology, an optimal schedule with 63
slots was obtained, see Table II. This schedule is not feasible
since the static segment in the investigated scenario has only
62 slots.

In order to achieve a feasible schedule, the gateway was

replaced by the proposed FlexRay switch, i.e., the branches
are defined by the given topology such that each CAN bus
forms a branch and the FlexRay bus forms a branch. In this
case, the proposed heuristic reduced the number of required
slots to 35 and hence the resulting schedule is feasible. Our
last example used two branches, i.e., the (Body,Comfort)-
branch and the (Powertrain,Chassis,FlexRay)-branch. Here,
the obtained number of used slots was 45 which is still
sufficient, respecting the upper bound of 62 slots.

VII. CONCLUSION

This paper presents a novel concept for upcoming in-vehicle
networks, using a FlexRay switch to increase the safety and
effective bandwidth of the network. The prototype FlexRay
switch was implemented on an FPGA and tested extensively
in terms of compliance with the FlexRay EPL specification.
In order to benefit from the FlexRay switch architecture,
an approach for determining the topology and scheduling of
the network becomes necessary. In this paper, we proposed
an exact approach based on ILP and a three-step heuristic
approach. Since the exact approach is intractable for problem
of realistic size, the heuristic becomes necessary. The heuristic
is capable of delivering competitive results as shown for
the presented test cases and a realistic case study where it
significantly decreases the number of required slots such that
a feasible schedule may be obtained.

REFERENCES

[1] CAN, “Controller Area Network,” http://www.can.bosch.com/.
[2] FlexRay Communications System, Protocol Specification Version 2.1

Revision A, FlexRay Consortium, Dec. 2005. [Online]. Available:
http://www.flexray.com

[3] J. Berwanger, M. Peteratzinger, and A. Schedl, “FlexRay startet
durch - FlexRay-Bordnetz für Fahrdynamik und Fahrerassistenzsysteme
(in German),” in Elektronik automotive: Sonderausgabe 7er BMW,
2008, available at http://www.elektroniknet.de/home/automotive/bmw-
7/flexray-startet-durch/.

[4] G. Linn, W. Sichert, P. Milbredt, and G. Kistler, “Serieneinfhrung
eines weckfhigen FlexRay-Bussystems,” Elektronik Automotive, vol.
Sonerausgabe Audi A8, pp. 102–104, Februar 2010, in German.

[5] AUTOSAR, Specification of the FlexRay Interface Version 3.0.2, 2008,
http://www.autosar.org.

[6] FlexRay Communications System, Electrical Physical Layer
Specification, Version 2.1, FlexRay Consortium, May 2005. [Online].
Available: http://www.flexray.com

[7] R. Daoud, H. Amer, H. Elsayed, and Y. Sallez, “Ethernet-based car
control network,” in Proc. of CCECE ’06, 2006, pp. 1031–1034.

[8] D. Jansen and H. Buttner, “Real-time Ethernet: the EtherCAT solution,”
Computing and Control Engineering, vol. 15, p. 16, 2004.

[9] MOST, “Media Oriented Systems Transport,”
http://www.mostcooperation.com/.

[10] S. Ding, N. Murakami, H. Tomiyama, and H. Takada, “A ga-based
scheduling method for flexray systems,” in Proc. of EMSOFT ’05. New
York, NY, USA: ACM, 2005, pp. 110–113.

[11] K. Schmidt and E. Guran Schmidt, “Message Scheduling for the
FlexRay Protocol: The Static Segment,” IEEE Transactions on Vehicular
Technology, vol. 58, no. 5, pp. 2170–2179, 2009.

[12] H. Zeng, W. Zheng, M. Di Natale, A. Ghosal, P. Giusto, and
A. Sangiovanni-Vincentelli, “Scheduling the FlexRay Bus Using Op-
timization Techniques,” in Proc. of DAC ’09, 2009, pp. 874–877.

[13] M. Grenier, L. Havet, and N. Navet, “Configuring the communication
on flexray: the case of the static segment,” in Proc. of ERTS 2008, 2008.

[14] M. Lukasiewycz, M. Glaß, P. Milbredt, and J. Teich, “FlexRay Schedule
Optimization of the Static Segment,” in Proc. of CODES+ISSS ’09,
2009, pp. 363–372.

[15] P. Milbredt, A. Steininger, and M. Horauer, “Automated Testing of
FlexRay Clusters for System Inconsistencies in Automotive Networks,”
in Proc. of DELTA ’08, Hong Kong, China, 2008.

[16] P. Milbredt, B. Vermeulen, G. Tabanoglu, and M. Lukasiewycz,
“Switched FlexRay Increasing the Effective Bandwidth and Safety of
FlexRay Networks,” in Proc. of EFTA ’10, Bilbao, Spain, 2010.

[17] A. Hertz, “A Fast Algorithm for Coloring Meyniel Graphs,” Journal of
Combinatorial Theory, Series B, vol. 50, no. 2, pp. 231–240, 1990.

