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Abstract—This paper proposes a highly efficient methodology
for the statistical analysis of RC nets subject to manufactur-
ing variabilities, based on the combination of parameterized
RC extraction and structure-preserving parameterized model
order reduction methods. The sensitivity-based layout-to-circuit
extraction generates first-order Taylor series approximations of

resistances and capacitances with respect to multiple geometric
parameter variations. This formulation becomes the input of
the parameterized model order reduction, which exploits the
explicit parameter dependence to produce a linear combination
of multiple non-parameterized transfer functions weighted by the
parameter variations. Such a formulation enables a fast compu-
tation of statistical properties such as the standard deviation of
the transfer function given the process spreads of the technology.
Both the extraction and the reduction techniques avoid any
parameter sampling. Therefore, the proposed method achieves
a significant speed up compared to the Monte Carlo approaches.

I. INTRODUCTION

Much work has been done aimed at capturing the effects

of process variations using parameter-aware techniques. The

research focuses mainly on two aspects. One is parameterized

Layout Parasitic Extraction (LPE), which models the effect of

physical variations by generating linear or quadratic models

of capacitances and resistances as a function of process

parameters. Most work has concentrated on the capacitances.

Approaches for calculating the first-order capacitance sensi-

tivities vary from the enhanced look-up table technique based

on analytical models [1], to adjoint methods [2], [3], as well

as the domain-decomposition technique [4]. Quadratic models

generated by methods based on the Hermite polynomial chaos

technique [5], [6], [7] are usually more accurate and yet more

computationally expensive compared to the linear models.

On the other hand, a relatively modest amount of work

has been done for parameterized resistance extraction [8], [9],

because it is relatively simple. More importantly, it is the ca-

pacitance computation rather than the resistance computation

which dominates the complexity of the overall LPE procedure.

The capacitance and the resistance models generated by

the parameterized LPE tools may be used directly for SPICE

simulations, or more often, they are fed to a Parameterized

Model Order Reduction (pMOR) procedure to achieve an

essential speedup. This pMOR procedure is the other aspect

of using parameter-aware techniques for capturing variablities.

Many pMOR methods are based on multi-dimensional

moment matching. They rely on matching the moments of

the parameterized system transfer function, which depends

on both the frequency and the parameters [10], [11]. A

sampling based approach [12] extended from the PMTBR

algorithm [13] proposes to use the statistical information of the

parameters as a guidance for a multidimensional sampling of

the joint frequency plus parameter space. Recently, a structure-

preserving pMOR technique [14] proposes a reformulation

of the system to maintain an explicit parameter dependence

of the transfer function. This property is very convenient for

variational and statistical analysis, as will be demonstrated in

this paper.

In order to understand the impact of the physical process

variations on the performance of a circuit, the above two

aspects have to be fully and well integrated. This has seldom

been studied yet, and therefore to draw the overall picture is

an important contribution of this paper.

However, a simple combination of the above two aspects

does not solve the real problem. The final goal of modeling

manufacturing variabilities is to obtain the statistical prop-

erties of the system response, given the process spreads of

the technology. The traditional Monte Carlo approach has

a fatal drawback: the parameter sampling implies a huge

computational burden for both the extraction and the reduction

procedures, which is least favorable in practice.

In this paper, a fast statistical analysis methodology for

RC nets subject to variabilities is proposed. A complete

design flow will be demonstrated: from the layout and the

process spreads to the statistical properties of the system

response. The proposed method avoids parameter samplings

by using the parameterized LPE and the pMOR methods.

In particular, the parameterized extraction applies the linear

model of capacitances presented in [2], [4], and the linear

model of resistances which will be presented in Section III.

As mentioned, the structure-preserving pMOR technique [14]

is used for the reduction procedure.

The rest of the paper is organized as follows. Section II

and III present the parameterized extraction methods for the

capacitances and the conductances respectively. Section IV

introduces the reduction methods for the parameterized system

generated by the previous extraction, focusing on the structure-

preserving pMOR technique. In Section V, the proposed

statistical analysis methodology for RC nets is presented.

Finally, Section VI concludes the paper.

II. PARAMETERIZED CAPACITANCE EXTRACTION

A system subject to manufacturing variabilities is often

described using a parameterized representation of the con-

ductance and the capacitance matrices G(λ) ∈ R
n×n and
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C(λ) ∈ R
n×n. These matrices can be approximated by a

Taylor series w.r.t. multiple parameter variations. For instance,

a first order approximation:

C(λ) = C0 +
∑Q

i=1 λiCi

G(λ) = G0 +
∑Q

i=1 λiGi

(1)

where C0 and G0 are the nominal values for the matrices,

Ci and Gi are the sensitivities w.r.t. to the i-th parameter

variation λi, and Q is the number of parameters.

A. BEM-based capacitance extraction

When the Boundary Element Method (BEM) is applied

to capacitance extraction, the surfaces of conductors are dis-

cretized into panels. Capacitances between these discretized

panels are called partial short-circuit capacitances, denoted C̄

in this context. Each entry C̄ij is equal to the charge on panel

i when panel j is held at a unit potential and all other panels

are short-circuited to the ground. The nominal capacitances

C0 used in (1) are calculated by accumulating the associated

partial short-circuit capacitances.

These partial short-circuit capacitances can be obtained

from the inversion of the Green’s function matrix G, whose

entry G(i, j) amounts to the potential induced at panel pi by

a unit charge at panel pj . Equation (2) shows the Green’s

function for a uniform dielectric of infinite dimensions:

G(i, j) =
1

4πε|pi − pj |
(2)

with ε the permittivity, and |pi − pj | the Euclidian distance

between panels pi and pj .

Thus the capacitance is a non-straightforward function of

the panel position or the dimensions of wires. Further, since

capacitance is a mutual property between panels (or wires),

adding or removing a panel or changing its position can the-

oretically induce variations in all capacitances in the system.

These two facts make the computation of capacitance sensi-

tivities very complicated. Any technique whose computational

complexity depends on the number of parameters or the

number of capacitances would not be feasible, for instance,

the perturbation method. In the following, a summary is given,

regarding the sensitivity computation technique which will

be used in this paper. The computational complexity of this

technique does not depend on the number of parameters nor

the number of capacitances.

B. Capacitance sensitivities

As shown in [4], the sensitivity of the capacitance between

nodes i and j w.r.t. a parameter variation λp is given by

∂Cij

∂λp

=
∑

k∈sλp


 1

εAk

∑

a∈Ni

∑

b∈Nj

C̄k,aC̄k,b


 (3)

where sλp
is the set of victim panels incident to parameter

p. In other words, these are the panels whose positions are

changed due to the variation λp. Ak is the area of panel k and

ε is the material permittivity around panel k. C̄k,a is an entry

in the partial short-circuit capacitance matrix C̄, representing

the capacitance between two panels k and a. And
∑

a∈Ni
C̄k,a

expresses the capacitance between a panel k and a node i.

The above discussion shows:

• Sensitivities between different nodes can be obtained

simply by assembling different sets of associated partial

short-circuit capacitances, i.e.,
∑

a∈Ni
C̄k,a.

• Sensitivities w.r.t. different parameter variations are local

for different sets of victim panels, i.e., k ∈ sλp
.

• The nominal capacitances are computed using the partial

short-circuit capacitances C̄.

It follows that the data needed for the sensitivity computation

and for the nominal capacitance calculation is the same, i.e.,

the partial short-circuit capacitances C̄. Therefore, all the

sensitivities between various nodes w.r.t. multiple variations

can be computed simultaneously with the nominal capacitance

extraction. The representation C(λ) in (1) can be obtained

with a single extraction procedure. It has been shown in [2],

[4] that the extra computational time for the sensitivity is neg-

ligible compared to that of the standard capacitance extraction.

The high efficiency of capacitance sensitivity computation is

essential because during the parasitic extraction, the overall

performance is ruled by the capacitance extraction instead of

the conductance extraction. As can be seen in the next section,

both the nominal conductance extraction and its sensitivity

computation are simpler and more straightforward compared

to that of the capacitances.

III. PARAMETERIZED CONDUCTANCE EXTRACTION

This section presents the generation of the parameterized

conductances. Firstly, a brief summary of the nominal con-

ductance extraction using the Finite Element Method (FEM)

is given (see [15] for more details). Then, the computation of

sensitivities w.r.t. geometric variations is presented.

A. FEM-based conductance extraction

To perform FEM, the interconnect polygons are firstly

discretized into retangles or triangles, which are often called

tiles. Computation is then conducted for each tile to place a

conductance element to each branch, as illustrated in Fig. 1(a).

For for rectangle tile, the conductance element on a branch

between two vertices (xi, yi) and (xj , yj) is computed as

Gij =





Gsh
(xi−xj)

2

2A
if yi = yj

Gsh
(yi−yj)

2

2A
if xi = xj

0 otherwise

(4)

where A is the area of the tile, and Gsh is the sheet conduc-

tance, i.e. the inverse of the sheet resistance, of the material.

Sheet conductances or sheet resistances of different layers are

usually defined in the technology file provided by the foundry.

As to the triangle tiles defined by three vertices (xi, yi),
(xj , yj) and (xk, yk), the conductance element Gij can be

calculated as

Gij = Gsh

(xk − xi)(xk − xj) + (yk − yi)(yk − yj)

4A
. (5)

It is known that the sheet conductance Gsh is defined as a

product of the conductivity σ and the layer thickness t
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Fig. 1. a) Illustration of the FEM for conductance extraction; b)
Illustration of the layout perturbation for the sensitivity computation.

Gsh = σt. (6)

Thus Equation (4) and (5) can be summarized in the following

expression:
Gij(tα, lα) = Gsh(tα)F (lα). (7)

where i and j are indices of the vertices of a tile α, tα
is its corresponding layer thickness, and lα represents the

incident vertices. It follows that the dependencies of Gij

on the layer thickness (z-dimension) and the layout (x, y-

dimensions) are separate, which is very convenient for the

sensitivity computation.

B. Conductance sensitivities

Unlike capacitances, there are practically only two geo-

metric parameters relevant to each conductance, namely the

thickness of its corresponding layer tα and its corresponding

tile dimension lα. Furthermore, as concluded from Equation

(7), the sensitivities of a conductance w.r.t. these two parameter

variations can be computed separately, i.e.,

∂Gij

∂λt

= F
∂Gsh(t)

∂λt

;
∂Gij

∂λl

= Gsh

∂F (l)

∂λl

. (8)

1) Variation in the layer thickness: The calculation is

simple and straightforward. Considering the sensitivity is for

the nominal or designed system, the substitution of (6) in the

left equation of (8) leads to:

∂Gij

∂λt

|t0 = Fσ =
Fσt0

t0
=

Gij(t0)

t0
(9)

where t0 is the nominal layer thickness and Gij(t0) is the

nominal conductance.

2) Layout variation: The perturbation method is used to

calculate the sensitivities w.r.t. the layout variation.

Unlike capacitance, conductance is a self -property of an

interconnect, depending solely on its own dimension and ma-

terial property. Thus the sensitivities of all the conductances in

the system w.r.t their related layout variations can be obtained

using only one finite difference (FD) computation with simply

one extra system solve. In this case, the perturbation method is

a very appropriate choice for its high accuracy and the modest

additional computational complexity, i.e., 1× the nominal

extraction.

Using the perturbation method, the sensitivities of conduc-

tances w.r.t. the layout variation can be calculated as

∂Gij

∂λl

= lim
λl→0

Gij(l0 + λl) − Gij(l0)

λl

(10)

where λl is the layout perturbation, Gij(l0) is the nominal

conductance and Gij(l0 + λl) represents the perturbed con-

ductance. An issue related to the computation of (10) in a

matrix form is that the size of the conductance matrix G has

to remain the same. To do so, the dimension of the perturbed

system is generated by adjusting the vertex coordinates of the

original system, illustrated in Fig. 1(b). This implies that only

the conductances related to the boundary nodes are affected

and generate non-zero sensitivities. It can also be seen from

the figure that irregular shapes can be handled as well. This

has a practical meaning because the corners of wires or wire-

like structures are usually no longer right angles after the

lithography and the etching processes.

IV. ORDER REDUCTION OF PARAMETERIZED SYSTEMS

This section summarizes the pMOR methods for the param-

eterized system generated in the previous sections, focusing

on the structure-preserving technique to be applied in the

proposed statistical analysis methodology.

A. Parameterized Model Order Reduction

In Section II and III, the sensitivity-based parameterized

LPE technique generates the capacitance and the conductance

matrix descriptors (1) for a parameterized system. Such a sys-

tem has an associated parameter dependent frequency response

that can be modeled via the transfer function

H(s, λ) = E [sC(λ) + G(λ)]
−1

B (11)

where C(λ),G(λ) ∈ R
n×n are the generated parameter

dependent capacitance and conductance matrices, and B ∈
R

n×m and E ∈ R
p×n are the input and the output incidence

matrices respectively.

For a complete analysis, a linear system of dimension n has

to be solved for every point of the parameter plus frequency

space. Thus when the size of the system n is large, the analysis

of the function in (11) becomes prohibitive.

To overcome this issue, Parameterized Model Order Reduc-

tion (pMOR) approaches seek to efficiently generate a reduced

order approximation, usually by projecting the system into a

suitable reduced q-dimensional subspace, q ≪ n, spanned by

the columns of a projector V ∈ R
n×q (see [10], [11], [12]

for details). The projection generates a Reduced Order Model

(ROM) with an associated reduced transfer function

Ĥ(s, λ) = Ê

[
sĈ(λ) + Ĝ(λ)

]−1

B̂ (12)

where Ĉ(λ), Ĝ(λ) ∈ R
q×q , B̂ ∈ R

q×m, and Ê ∈ R
q×p define

the ROM of dimension q ≪ n, which can be handled much

more efficiently.

B. Explicit Parameter Matching

Standard projection based pMOR approaches generate a

ROM with an equivalent Taylor series formulation for the

Ĉ(λ) and Ĝ(λ) matrices, which is useful in terms of com-

patibility. This allows for a fast evaluation of the system

matrix for any parameter and frequency point, but still requires

solving the system in order to obtain the system response.



Any modification of the frequency or parameter values implies

another solve. For statistical analysis with potentially a large

number of Monte Carlo (MC) samples this could be expensive.

A different pMOR approach which is interesting in terms

of statistical analysis is the one presented in [14], valid for

the cases in which the output behavior w.r.t. the parameters is

smooth, which as can be seen is indeed the case. It proposes a

reformulation of the system as a Taylor series approximation

of the transfer function w.r.t. the parameters.

This is achieved by a Taylor series representation of the

matrices C(λ) and G(λ) as in (1), plus an expansion of the

state vector in Taylor series w.r.t. the parameters, but not w.r.t.

the frequency:

x(s, λ) = x0(s) +

Q∑

i=1

T∑

j=1

λ
j
ixij(s) (13)

with x0 the nominal state vector, and xij the sensitivity of

order j w.r.t. parameter λi. This formulation, presented here

without cross terms, can be extended to any desired order,

including cross terms. As an example, for a single parameter

λ1, using the first order sensitivities in (1) (i.e. G0,C0,G1

and C1), the states can be approximated as

x(s, λ1) = x0(s) + λ1x1 + λ2
1x2 + . . .

x0(s) = (G0 + sC0)
−1

Bu

x1(s) = −(G0 + sC0)
−1(G1 + sC1)x0(s)

x2(s) = −(G0 + sC0)
−1(G1 + sC1)x1(s)

. . .

(14)

This explicit parameter dependence can be shifted to the

output, which generates a parameterized transfer function as

H(s, λ) = H0(s) +

Q∑

i=1

T∑

j=1

λ
j
iHij(s) (15)

where Hij = Exij are the frequency dependent transfer

function sensitivities, each one related to one sensitivity of the

states x. In other words, the parameterized transfer function

can be written as the contribution of the nominal transfer func-

tion plus the contribution of each one of the non-parameterized

transfer function sensitivities w.r.t. the parameters, i.e. a linear

combination of the multiple non-parameterized transfer func-

tions weighted by the parameter variation.

The work in [14] also presents a compact state-space

formulation for the complete system generating the individual

transfer functions in (15), plus a scheme for efficiently reduce

each transfer function independently (via preservation of the

system structure), in order to maintain the explicit parameter

dependence (see [14] for details).

A very important property of this representation and reduc-

tion is that it maintains an explicit parameter dependence on

the output. Every reduced transfer function sensitivity, which

only depends on the frequency, can be solved independently.

The parameterized response is obtained by a linear combina-

tion of the multiple transfer functions, as shown in (15).

This specific structure-preserving property enables a very

fast way to evaluate the statistical properties, for instance the

standard deviation of the system response, which is a main

topic of this paper presented in Section V.
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Fig. 2. Comparison of the design flows.

V. STATISTICAL ANALYSIS OF RC NETS

In this section, a statistical analysis methodology for RC

nets is proposed. By combining the parameterized parasitic

extraction and the structure-preserving MOR techniques, the

transfer function and its standard deviation due to process vari-

ations can be obtained with a significant speed up, compared

to the traditional Monte Carlo approach.

A. Design flow

The design flow of the proposed method is shown in

Fig. 2(a). With the input of the layout information from design-

ers and the technology file from the foundry, parameterized RC

extraction generates the first order parameterized Taylor series

G(λ) and C(λ) as in (1).

As addressed earlier, the computational complexity of set-

ting up the parameterized conductance representation is two

times the complexity of the nominal conductance G0 ex-

traction and the complexity of setting up the parameterized

capacitance representation is the same as the nominal capaci-

tance extraction. The computation of capacitances rather than

conductances dominates the overall computational burden.

Therefore, the asymptotic complexity of the parameterized

RC extraction, including the nominal values G0, C0 and

their sensitivities Gi, Ci w.r.t. multiple parameters, is the

same as the asymptotic complexity of the nominal capacitance

extraction. The high efficiency of the parameterized extraction

technique is one essential advantage of the proposed method.

Using the generated parameterized matrix descriptors (1),

the structure-preserving pMOR technique is applied to calcu-

late the reduced transfer function with an explicit parameter

dependence, expressed as

Ĥ(s, λ) = Ĥ0(s) +

Q∑

i=1

T∑

j=1

λ
j
i Ĥij(s) (16)

where i represents the parameter index and j represents the

order in the Taylor series expansion.

Applying various parameter settings, the induced variability

of the transfer function can be easily obtained from (16).



Furthermore, and unlike standard projection based pMOR

approaches, any change of the parameter variations simply

requires evaluating the linear combination, with no need for

additional system solution. This implies a major boost in the

efficiency of the variational analysis.

More importantly, given the process spreads of the param-

eters (3σλi
) from the manufacturer, the statistical properties

such as the standard deviation of the transfer function (16)

can be evaluated with a negligible complexity. This is the

other essential advantage of the proposed method and will

be discussed in Section V-B.

At last, the obtained mean and the standard deviation of

the transfer function µ
Ĥ

(s) and σ
Ĥ

(s) are fed back to the

designers so that adjustments or improvements can be carried

out before the tape-out. Thus the proposed method is very

convenient for design exploration and optimization.

Traditionally, to compute the statistical properties of the

transfer function, one has to perform a Monte Carlo simulation

which implies a huge computational burden, as indicated in

Fig. 2(b). A parameter sampling has to be conducted using

the layout and the technology based on the particular process

spread, obtaining k problem instances for the layout parasitic

extractor. Then k standard parasitic extractions are performed

to generate k non-parameterized systems, i.e., k groups of

matrix descriptors (Gvar, Cvar). This is followed by k SPICE

simulations or non-parameterized MOR procedures. Finally,

the mean and the standard deviation of the transfer function

can be calculated from the generated k transfer functions,

denoted H̄(s). Since the sampling number k has to be large

enough to ensure a reliable statistical distribution, the work-

load of this traditional design flow is enormous due to the

k-fold parasitic extraction and the k-fold SPICE simulation or

standard MOR procedure.

The above two issues are conquered by the parameterized

LPE and the structure-preserving pMOR techniques respec-

tively. As addressed earlier and as shown in Fig. 2(a) both

techniques avoid the parameter sampling. Therefore, the pro-

posed method is highly efficient as a variation-aware modeling

approach, especially for statistical analysis.

B. Statistical property computation

This section explains the computation of the mean and the

standard deviation of the reduced transfer function (16). Both

the nominal transfer function Ĥ0(s) and the transfer function

sensitivities Ĥij(s) are vectors of the system response to

frequency samples. The following computation is conducted

for each frequency sample sk. For the ease of discussion, some

short-hand notations are used:

a0 = Ĥ0(sk), aij = Ĥij(sk), F (λi) =

T∑

j=1

aijλ
j
i (17)

The expectation of Ĥ(sk, λ) can then be expressed as

E[Ĥ(sk, λ)] = E[a0] +

Q∑

i=1

E[F (λi)] (18)

where the expectation of F (λi) can be computed as

E[F (λi)] =

∫
∞

−∞

T∑

j=1

aijλ
j
i f(λi)dλi =

T∑

j=1

aij

∫
∞

−∞

λ
j
i f(λi)dλi

(19)

with f(λi) the probability density function of λi. It is common

to assume the distribution of the geometric parameter varia-

tions to be Gaussian with a mean of zero, i.e., λi ∼ N (0, σλi
).

Then
∫
∞

−∞
λ

j
if(λi)dλi = E[(λi − µλi

)j ], µλi
= 0 is the

central moment of the Gaussian distribution with a zero mean

of order j. Therefore Equation (19) is a linear combination

of the Gaussian central moments from order 1 to T , weighted

by the corresponding transfer function sensitivities. The mean

of the transfer function (µcH0

(sk)) can then be computed by

substituting (19) into (18).

As for the standard deviation, it is interesting to note that

the variations of different parameters are usually independent

since they are originated from different process steps. Assum-

ing this is the case, the standard deviation of Ĥ(sk, λ) can be

computed as

σ bH
(sk) =

√√√√
Q∑

i=1

V ar(F (λi)) (20)

where the variance of F (λi) is calculated as follows, using

the computed expectation of F (λi), i.e., µF (λi),

V ar(F (λi)) = E[(F (λi)) − µF )2] = −µ2
F (λi)

+ E[F 2(λi)],

(21)

with

E[F 2(λi)] =

T∑

j=1

a2
ijE[λ2j

i ] + 2

T∑

j=1

T∑

l=j+1

aijailE[λj+l
i ]. (22)

Note that E[λ2j
i ] and E[λj+l

i ] are also central moments of

Gaussian distributions with zero means. Thus substituting (22)

into (21) solves the variance of F (λi), which is a combination

of the Gaussian central moments with various orders, weighted

by the incident transfer function sensitivities. At last, the

standard deviation of the transfer function of each frequency

sample σ bH
(sk) can be obtained by substituting (21) into (20).

C. Experiment and result

To demonstrate the efficiency and the accuracy of the

proposed method, a two-terminal RC structure is studied. As

shown in Fig. 3, the example has two layers consisting of

a meandering poly resistor connected to terminal A and a

fork-structure metal capacitor connected to terminal B. This

example is initially modeled with 410 states.

This structure depends on six geometric parameters, namely

the poly and the metal thicknesses, the layout variations

and the dielectric thicknesses of the two layers. The process

spreads (3σλi
) of these parameters are assumed to be 10% of

their nominal values.

To verify the results of the proposed method, a Monte Carlo

(MC) simulation with 700 samples is performed according

to the flow in Fig. 2(b). The experiment is conducted on a

3.00GHz Intel 2 Core CPU. Results are summarized in Fig. 4.

The mean of the transfer function computed by the proposed



Fig. 3. Layout of the RC example with a poly resistor (red) and a
metal capacitor (blue).
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Fig. 4. Results of the proposed method compared to the Monte Carlo
approach.

method shows a perfect agreement with the result obtained

from the MC simulation (see Fig. 4(a)). To indicate how

much is the effect of the assumed process spreads, Fig. 4(a)

also shows the induced variability of the transfer function,

i.e., µH(s) ± 3σH(s), given by the proposed method and

the MC approach respectively. Fig. 4(b) shows the accuracy

of the proposed method. The relative error of the computed

mean µ
Ĥ

(s) is very small, with an average over the frequency

being 0.0125 and the maximum being 0.0274. The computed

relative standard deviation
σ

Ĥ

µ
Ĥ

(s), known as the mismatch by

designers, has an average relative error (absolute value) over

the frequency of 0.0206 and a maximum of 0.0274. Therefore,

the proposed method nicely captures the effect of the physical

process variations on the system response.

More importantly, the proposed method achieves a signif-

icant speed up over the traditional Monte Carlo approach.

Table I shows the elapsed time and speed ups in the extraction

procedure and the evaluation of the statistical properties, for

the traditional MC analysis, the traditional MC analysis plus

non-parameterized MOR (in this case PRIMA [16]) on each

extracted system, and the proposed approach. Note that the

speed up, which already achieves two orders of magnitude for

a middle size example (410 states), will further increase as the

increase of the size of the system and the number of samples.

VI. CONCLUSION

This paper presents a highly efficient statistical analysis

methodology for RC nets subject to manufacturing variabili-

ties. It achieves zero parameter sampling, based on the combi-

nation of a sensitivity-based parameterized parasitic extraction

technique and a structure-preserving pMOR technique. Given

the layout and the process spreads of the technology, the sta-

tistical properties such as the mean and the standard deviation

TABLE I
CPU TIME OF THE PROPOSED METHOD AND THE MC APPROACH

Extraction Evaluation Total

MC 55h49′ (1×) 46′12′′ (1×) 56h35′ (1×)

MC + MOR 55h49
′ (1×) 3

′
30

′′ (13×) 55h52
′ (1.01×)

Proposed 4′49′′ (695×) 0.43′′ (6446×) 4′50′′ (701×)

of the system response can be obtained extremely fast. As

such, the proposed method provides a very convenient tool

for design exploration and optimization.
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