
An Endurance-Enhanced Flash Translation Layer via

Reuse for NAND Flash Memory Storage Systems

Yi Wang, Duo Liu, Zhiwei Qin, Zili Shao

Department of Computing

The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong

{csywang, csdliu, cszqin, cszlshao}@comp.polyu.edu.hk

Abstract—NAND flash memory is widely used in embedded
systems due to its non-volatility, shock resistance and high
cell density. In recent years, various Flash Translation Layer
(FTL) schemes (especially hybrid-level FTL schemes) have been
proposed. Although these FTL schemes provide good solutions
in terms of endurance and wear-leveling, none of them have
considered to reuse free pages in both data blocks and log blocks
during a merge operation. By reusing these free pages, less free
blocks are needed and the endurance of NAND flash memory is
enhanced. We evaluate our reuse strategy using a variety of ap-
plication specific I/O traces from Windows systems. Experimental
results show that the proposed scheme can effectively reduce the
erase counts and enhance the endurance of flash memory.

I. INTRODUCTION

NAND flash memory is widely used in embedded systems

as a non-volatile storage device. Different from hard disk

drives, NAND flash memory has several distinct characteristics

that impose challenges for its management. First, NAND

flash memory suffers from “out-of-place update”. One page

in NAND flash memory once be written cannot be updated

(re-written) until it is erased, and the erase operation is al-

ways triggered by the time-consuming process called garbage

collection. Second, NAND flash blocks have a limited erase

lifetime. A block will be broken if its erase counts reaches

the limit. Third, for some NAND flash management schemes,

not all blocks in NAND flash get the same erase counts,

so the lifetime of specific blocks may become shorter than

other blocks. This would affect the usefulness of the entire

flash memory. To address these problems, it is very important

to guarantee that the lifetime of NAND flash (known as

endurance) is prolonged, and write operations are evenly

distributed across all blocks (known as wear-leveling).

In order to solve these constraints, an intermediate software

module called Flash Translation Layer (FTL) is designed

to emulate the flash memory as a block device so that it

can provide transparent storage service to file system users.

According to the granularity of mapping unit, there are three

types of FTL schemes: page-level mapping, block-level map-

ping, and hybrid-level mapping. Among them, hybrid-level

FTL schemes take advantage of both page-level mapping and

block-level mapping and provide good address translation time

with limited memory usage.

In hybrid-level FTL schemes, physical blocks are logically

partitioned into data blocks (primary blocks) and log blocks

978-3-9810801-7-9/DATE11/ c©2011 EDAA

(replacement blocks). Data block is used to store the first

written data, while the updated data is stored in log blocks.

Log-based hybrid-level FTL schemes utilize limited number

of blocks as log blocks, which can provide relatively good

system utilization, system response time and endurance [1],

[2], [3], [4]. In this paper, we focus on log-based FTL designs

and further improve their endurance and wear-leveling.

Although log-based FTL schemes have some advantages,

there are several open issues that should be considered when

adopting log-based FTL schemes. In a merge operation in log-

based FTL schemes, valid pages scattered on a data block

and its corresponding log blocks are copied into a free block.

Both these data blocks and log blocks are known as dirty

blocks, and erase operation is triggered to reclaim the dirty data

block and log blocks. By applying such merge operations, free

pages within dirty blocks are wasted, and unnecessary erase

operations are needed, which can also degrade the endurance

of the entire NAND flash memory.

In recent years, many studies for FTL schemes (especially

hybrid-level FTL schemes) have been proposed [5], [6], [7],

[8], [9], [10], [11]. Although the above FTL schemes provide

good solutions in terms of endurance, wear-leveling, memory

usage, and response time, none of them have considered to

reuse free pages in both data blocks and log blocks in a merge

operation. By applying our reuse strategy, these techniques

can further improve the write performance and enhance the

endurance.

In this paper, we propose a novel NAND flash translation

layer (FTL) scheme to enhance the endurance of log-based

NAND flash memory FTL schemes through reuse strategy.

Our basic idea is to prevent a dirty block (a data block or

a log block) with many free pages from being erased in a

merge operation. The dirty block with many free pages will

be preserved and further reused as a log block. By reusing free

pages in dirty blocks, less free blocks are needed and the life

time of NAND flash memory is prolonged. To the best of our

knowledge, this is the first work that applies the reuse strategy

to reuse both data blocks and log blocks in FTL design.

We conduct experiments using a set of traces collected from

real workloads by DiskMon. We applied our reuse strategy

to a representative log-based FTL design KAST [4], and

compared with KAST in terms of erase counts and endurance

with various configurations. Experimental results show that the

proposed scheme can effectively reduce the erase counts and

enhance the endurance of flash memory as compared with the

representative FTL scheme proposed in the previous work.

The reminder of this paper is organized as follows. Sec-

tion II shows the background and motivation. Section III

presents our proposed NAND flash translation layer scheme.

Section IV presents the experimental results. Section V con-

cludes the paper and discusses future work.

II. BACKGROUND AND MOTIVATION

A. System Architecture for NAND Flash Memory

A typical NAND flash storage system normally consists

of two layers, Flash Translation Layer (FTL) and Memory

Technology Device (MTD) layer, as shown in Figure 1. MTD

layer implements primitive functions over flash memory, such

as read, write, and erase operations. FTL emulates the flash

memory as a block device. The main role of FTL is to redirect

logical addresses from file system into physical addresses in

NAND flash memory, and to maintain the mapping table. FTL

also provides useful components, such as garbage collector and

wear-leveler, to optimize the space utilization and maintain the

same level of wear for each block in NAND flash memory.

����������	
��	�� ��	��������� �	��	����������

�

Fig. 1: System architecture for NAND flash memory.

B. Motivational Example

In this section, we briefly revisit the implementation of a

well-known hybrid-level FTL scheme KAST [4] and present

the motivation of this paper. In hybrid-level FTL schemes,

especially log-based FTL schemes, a logical page number

(LPN) is divided by the number of pages per block to

obtain the logical block number (LBN) and the block offset,

where the LBN is the quotient, and the block offset is the

remainder of the division. For block-level mapping, a block-

level mapping table maps one LBN to one physical block

number (PBN), and this physical block is known as data block.

Log blocks are used to store updated data, and log blocks use

the page-level mapping scheme. The maximum number of log

blocks is used to limit the size of page-level mapping table.

Therefore, log-based FTL schemes only keep a limited number

of blocks as log blocks. In KAST, each log block is enforced to

be associated with only K number of data blocks to guarantee

the worst-case log block merge time.

The space utilization of KAST can be further improved by

adopting our reuse strategy. A motivational example is shown

in Figure 2. In the example, each block has 8 pages, and the

number of log blocks is 4. The maximum associativity of each

log block is 4. The access sequence of write (wr) operations

are listed in Figure 2(a). Based on the given access sequence,

physical blocks are allocated to store the contents.

When a write operation is performed, the content of the

write operation is first written to the page with the correspond-

ing block offset in a data block. In Figure 2(a), the first request

is written to LPN #16. A new data block (physical block

number #0) is allocated, and the content A is stored in the

first page (the reminder of 16/8) of PBN #0. Likewise, physical

blocks PBN #1 to PBN #10 are allocated for the second to the

twentieth requests. For the 21st request, the content of LPN

#80 is updated. In log-based schemes, two kinds of log blocks

are used to store the updated content. Among them, sequential

write log block is used to store the sequential updated data,

while random write log block is to store the updated data for

random write operations. Since the offset for LPN #80 is 0,

a sequential write log block is assigned to store the updated

content (I1). Similarly, for the 22nd and the 23rd requests, a

sequential write log block (PBN #12) is allocated to store the

updated data for data block PBN #0. The 24th request updates

the third page (page number #2) of data block PBN #1. As the

page number is not equal to zero, a random write log block

(PBN #13) is chose to store the content (F1).

The distinct feature of KAST is that it restricts the maximum

number of data blocks that can be associated with a log block.

For the 25th request, the updated content should be written

to a random write block. At this time, only three blocks are

allocated as log blocks. PBN #14 is allocated as a random

write log block, such that the associativity of log block PBN

#13 does not increase. Similarly, for the 26th to 32nd requests,

the updated contents always try to find the random write log

block with the least associativity. The 33rd request updates the

content in data block PBN #10. At this stage, random write log

blocks PBN #13 and PBN #14 are all associated with 4 data

blocks, which is equal to the maximum associativity of each

log block. The 33rd request cannot be written to PBN #13 or

PBN #14. As a result, one random write log block has to be

selected as a victim log block, and a merge operation is issued.

As shown in Figure 2(b), random write log block PBN #13 is

picked up as a victim log block. During the merge operation,

valid pages in victim log block and its associated data blocks

are copied into new data blocks while dirty blocks (the victim

log block and the associated data blocks) are erased. Since log

block PBN #13 is associated with 4 data blocks (PBN #1, PBN

#2, PBN #4, and PBN #8), four new data blocks (PBN #15

to PBN #18) are allocated to copy the valid pages in both log

block (PBN #13) and its corresponding data block. After that,

both victim log block (PBN #13) and 4 data blocks (PBN #1,

PBN #2, PBN #4, and PBN #8) are erased for further usage.

��
��
��
��

��
��
��
��

�	

�! ��
"� �#

�
�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*!

!
&� ��
+� ��
�� �#
,$ �-
�� �.

�
#

%	�� �

�	�	�&��'�
(&)�*�

/! --
�

�� .!
�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*�

!
�� ��

�
�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*�

!
�

�� $�
�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*�

!
0� �!�
)� �!�

�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*�

1! -!
�
�
�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*#

+�! ��
��� ��
��� .!
(�� ���
��$ ��

�
�
#

%	�� �
��! ��
2�� �-
��� $�
0�� �!�

$
�
�
#

%	�� �

3	
�4���5��
���&��'�
(&)�*�$

3	
�4���5��
���&��'�
(&)�*��

��! ��
"�� �#

�
�
$
�
�
#

%	�� �

,�67�
�5	����5��
���&��'�
(&)�*��

1�! -!
�
�
�
$
�
�
#

%	�� �

,�67�
�5	����5��
���&��'�
(&)�*��

!
3� $.

�
�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*�!

!
�

(� ���
�

8$ ��$
�
�
#

%	�� �

�	�	�&��'�
(&)�*-

!
9� �#
2� �-

�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*.

!
�

�� ��
�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*$

�! ��
"� �#

�
�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*!

!
&� ��
+� ��
�� �#
,$ �-
�� �.

�
#

%	�� �

�	�	�&��'�
(&)�*�

/! --
�

�� .!
�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*�

!
�� ��

�
�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*�

!
�

�� ��
�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*$

!
�

�� $�
�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*�

!
0� �!�
)� �!�

�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*�

1! -!
�
�
�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*#

!
�

(� ���
�

8$ ��$
�
�
#

%	�� �

�	�	�&��'�
(&)�*-

!
9� �#
2� �-

�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*.

!
3� $.

�
�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*�!

!
&� ��
+�� ��
�� �#
,$ �-
�� �.

�
#

%	�� �

�	�	�&��'�
(&)�*��

/! --
�

��� .!
�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*��

!
�

(�� ���
�

8$ ��$
�
�
#

%	�� �

�	�	�&��'�
(&)�*�#

!
�

��� ��
�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*�-

+�! ��
��� ��
��� .!
(�� ���
��$ ��

�
�
#

%	�� �
��! ��
2�� �-
��� $�
0�� �!�

$
�
�
#

%	�� �

3	
�4���5��
���&��'�
(&)�*�$

3	
�4���5��
���&��'�
(&)�*��

��! ��
"�� �#

�
�
$
�
�
#

%	�� �

,�67�
�5	����5��
���&��'�
(&)�*��

1�! -!
�
�
�
$
�
�
#

%	�� �

,�67�
�5	����5��
���&��'�
(&)�*��

3�! $.
�
�
�
$
�
�
#

%	�� �

3	
�4���5��
���&��'�
(&)�*�.

+����%	�� :	�5��%	�� 1
�	�5��%	��

�
��
��
�

�������,�67�
��
�44	
�
��5�	��(���)74������()
�
��
�

�
��
��
&

�
��
.!
�

$
��
��
�

�
��
��
�

�
��
��
+

#
��
$�
�

-
��
�!�
0

.
��
-!
1

�!
��
��$
8

��
��
�#
"

��
��
�#
�

��
��
--
/

�$
��
�!�
)

��
��
�#
"�

�$
��
��
+�

��
��
��
��

��
��
-!
1�

��
��
�#
9

��
��
���
(

�#
��
�-
2

�#
��
�-
2�

�-
��
$.
3

�.
��
�-
,

�-
��
.!
��

�.
��
$�
��

�!
��
���
(�

��
��
�!�
0�

��
��
��
��

��
��
$.
3�

�!
��
�.
�

&�;���/�����9%��	�5
 �7�5
��/�����9%��	�5

��

�
	�	�&

��'��
��	

���&
��'��

��	

Fig. 2: Motivational example.

It is noticed that the space utilization of KAST can be

further improved. When a merge operation is triggered, only

one page (page number #2) in PBN #4 is used before it is

got erased. Other dirty blocks (PBN #1, PBN #2, and PBN

#8) and the victim log block (PBN #13) also consist of many

unused free pages.

C. Motivation

In hybrid-level log-based FTL schemes, both victim log

block and its associated data block(s) are erased during a

merge operation. However, there may exist many free pages

in the dirty blocks (victim log block and the associated data

blocks). These unused free pages are wasted and can be reused

to store data. Furthermore, the erasure of dirty blocks in a

merge operation may also degrade the endurance of NAND

flash. If these blocks with many unused free pages can be

reused as random write log blocks, less free blocks are needed

and the life time of NAND flash memory is prolonged. These

observations motivate us to propose a novel NAND flash

translation layer using reuse strategy to effectively improve

the performance (especially space utilization and endurance)

of NAND flash memory.

III. EE-NFTL:ENDURANCE-ENHANCED NAND FLASH

TRANSLATION LAYER

In this section, we introduce our endurance-enhanced

NAND flash translation layer (EE-NFTL) scheme to effec-

tively improve the endurance and space utilization of NAND

flash memory.

A. EE-NFTL through the reuse strategy

The basic idea of EE-NFTL is to preserve a dirty block (a

data block or a log block) with many free pages from being

erased if there are many free pages in this dirty block. We

employ a reuse strategy to further utilize all free pages inside

a preserved dirty block. To achieve this, we put the preserved

dirty blocks into a reuse block list, in which each dirty block

will be further reused as a random write log block. Unused

free pages in a dirty block are fully utilized. Then, the erase

counts of a physical block is reduced and the endurance can

be enhanced.

In EE-NFTL, the reuse strategy is performed based on the

number of free pages in a dirty block. If there are many free

pages in a dirty block, this dirty block should not be erased

in a merge operation. On the other hand, if there exists only a

limited number of free pages in a dirty block, this dirty block

can be erased like that in the conventional scheme. This is

because only the limited number (e.g, 1 or 2) of free pages

may not be valuable for reusing. Therefore, we compare the

actual free page ratio (the number of free pages in a block

divided by the number of pages per block) with a predefined

threshold to decide whether or not to reuse a dirty block in a

merge operation. The free page ratio of a dirty block is denoted

by R, and the threshold is denoted by T . In our reuse strategy,

if R ≥ T , which means there are many free pages in a dirty

block. In this case, this dirty block is preserved and reused as

a random write log block. Otherwise, this dirty block will be

erased in a merge operation.

In our scheme, the preserved dirty block is treated as a

reused block and put into a reuse block list. The reused blocks

in the reuse block list are sorted in descending order by the free

page ratio R. Since some advanced hybrid-level FTL schemes

keep a limited number of log blocks to store the updated data,

it is necessary to restrict the length of the reuse block list. In

our reuse strategy, if a preserved dirty block will be put into

the reuse block list, it will first check whether or not the reuse

block list is full. If the list is not full, this reused block will

be inserted into the reused block list. On the other hand, if the

reuse block list is full, the reused block with the lowest free

page ratio R will be evicted from the list for erase operation.

If a dirty block is preserved for reusing, the valid pages

in this dirty block will be marked as invalid. When a new

random write log block is needed to store the updated data,

the reused block in the reuse block list with the maximum free

page ratio will be selected as a random write log block. If the

reuse block list is empty, a new block from the free block list

will become the random write log block.

An example of EE-NFTL is shown in Figure 3. In this

example, the threshold T is set as 50%. Then a dirty block (a

data block or a log block) will be reused if its free page ratio R
is greater than or equal to 50%. Otherwise, this dirty block will

be erased in a merge operation. During the merge operation,

data blocks (PBN #1, PBN #2, PBN #4, and PBN #8) and the

victim log block (PBN #13) trigger erase operation. Since the

free page ratio R of data block PBN #1 and that of the log

block PBN #13 are less than 50% (3 free pages out of 8 pages

in one block), both PBN #1 and PBN #13 will be erased. Then

these two blocks are put into the free block list. Since the free

page ratio R of data blocks PBN #2, PBN #4, and PBN #8 are

all greater than 50%, these three data blocks will be reused

and put into the reuse block list in the descending order. After

adopting the reuse strategy, free pages in dirty blocks are fully

utilized. Consequently, the erase counts of each block can be

further reduced, and the endurance and space utilization of all

blocks in NAND flash memory can be enhanced.

!
&� ��
+� ��
�� �#
,$ �-
�� �.

�
#

%	�� �

�	�	�&��'�
(&)�*�

/! --
�

�� .!
�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*�

!
�

�� ��
�
$
�
�
#

%	�� �

�	�	�&��'�
(&)�*$

!
�

(� ���
�

8$ ��$
�
�
#

%	�� �

�	�	�&��'�
(&)�*-

+�! ��
��� ��
��� .!
(�� ���
��$ ��

�
�
#

%	�� �

3	
�4���5��
���&��'�
(&)�*��

+����%	�� :	�5��%	�� 1
�	�5��%	��

��������	
����

�!(<=�5�	��&��'�)74����
�(&) �� �� � ��

&
�;���3

�7��

��������	
����

$

#

(<=�5�	��&��'�)74����
�(&)
)74����;�+����(���

�
;����3

�7��

!
�
�
�
$
�
�
#

%	�� �

+����&��'�
(&)�*�

/! --
�

�� .!
�
$
�
�
#

%	�� �

3�7���&��'�
(&)�*�

!
�

�� ��
�
$
�
�
#

%	�� �

3�7���&��'�
(&)�*$

!
�

(� ���
�

8$ ��$
�
�
#

%	�� �

3�7���&��'�
(&)�*-

!
�
�
�
$
�
�
#

%	�� �

+����&��'�
(&)�*��

�

�

-

�

Fig. 3: The reuse strategy of EE-NFTL.

B. The Analysis of EE-NFTL

This section presents the analysis of EE-NFTL. We will

analyze the performance improvement of EE-NFTL over rep-

resentative FTL scheme for two extreme cases. We will also

discuss how the length of the reuse block list influences the

performance of our scheme.

In this analysis, Npage denotes the number of pages in a

block; Nwr denotes the number of write requests to NAND

flash memory; Nlog−blk denotes the maximum number of log

blocks in a NAND flash memory; K denotes the maximum

associativity of a log block.

Random update requests and sequential update requests

form two special cases for the write requests of NAND flash

memory. In this analysis, random update requests represent

that, Nwr write requests are mapped to Nwr/2 data blocks

with non-zero page offset and each page is updated for exactly

once. Sequential update requests represent that, Nwr write

requests are mapped to Nwr/Npage data blocks with page

offset zero and each page is updated for Npage/2 times.

Random update requests mainly use random write log blocks

to store the updated data, while sequential update requests

use sequential write log blocks. In real applications, all

write requests are the mixture of random update requests

and sequential update requests. Therefore, we analyze the

performance of our EE-NFTL and representative FTL scheme

KAST [4] under these two extreme cases.

For random update requests, after updating K × Nlog−blk

pages in K × Nlog−blk different data blocks, all Nlog−blk

blocks are random write log blocks, and the associativity of

each random write log block is K . Given another update

operation, one of the random write log block will be selected

to trigger merge operation. For each merge operation, if the

free page threshold T is less than or equal to 1/Npage, K
data blocks will be put into reuse block list. Therefore, after

each merge operation, the block at the head of the reuse block

list will have Npage − 1 free pages. For this special case, to

keep only one block in reuse block list is enough to handle

each update request. Longer reuse block list will increase the

memory space to store this list, and it will also increase the

time complexity for comparing the free page ratio of each new

coming reused block with that of the blocks in the reuse block

list.

For sequential update requests, a sequential write log block

is allocated to store the first updated data. The subsequent

Npage/2 − 1 update operations will be written to the same

sequential write log block, and this sequential write log block

will be transformed into a random write log block. The merge

operation is triggered when all log blocks are became random

write log blocks and a sequential write request looks up for a

new sequential write log block. In this case, a random write

log block with Npage/2 free pages are selected as a victim log

block. If the free page threshold T is no greater than 1/2, both

random write log block and its associated data block will be

put into the reuse block list. In order to guarantee the benefit

of our reuse strategy, the reuse block list should contain at

least Nlog−blk blocks.

IV. PERFORMANCE EVALUATION

In this section, we present the experimental results with

analysis. We compare and evaluate our proposed EE-NFTL

scheme over the representative hybrid-level FTL scheme

KAST [4] in terms of two performance metrics: the number of

block erase counts, and the endurance of NAND flash memory.

The performance evaluation is through a trace-driven sim-

ulation. The trace of data request was collected from desktop

running DiskMon with an Intel Pentium Dual Core 2GHz

processor, a 200GB hard disk, and a 2GB DRAM. The trace

data reflects the real workload of the system in accessing the

hard disk for daily use. Table I shows the characteristics of

traces.

TABLE I: Characteristics of Traces.

Trace # of write # of read % of % of
operation operation write read

chatOnline 17,890,720 15,133,024 54.18% 45.82%

copyFile 268,671,488 113,664 99.96% 0.04%

office 123,364,096 14,356,928 89.58% 10.42%

p2p 687,524,064 548,744,032 55.61% 44.39%

In our experiments, a 4GB NAND flash memory is con-

figured. The page size, number of pages in a block, and size

of the OOB of each page are set as 2KBytes, 64, 32Bytes,

respectively. The predefined threshold T , the associativity K ,

the maximum number of log blocks, and the length of the

reuse block list are set as 20%, 4, 128, 128, respectively.

To evaluate the effectiveness of the proposed scheme, we

present the experimental results in terms of the block erase

counts and endurance. Table II shows the experimental results

for the number of block erase counts of our proposed scheme

EE-NFTL and a representative hybrid-level FTL scheme

TABLE III: The maximum number of block erase counts of

EE-NFTL versus KAST [4].

Trace KAST EE-NFTL Imp(%)

chatOnline 82 62 24.39

copyFile 1,302 1,049 19.43

office 823 554 32.69

p2p 9,380 6,393 31.84

Average 27.09

KAST. In Table II, column 2-5 present the erase counts for

data blocks and log blocks; columns 6-8 present the total

number of erase counts for all blocks. From the results,

our proposed EE-NFTL can achieve an average reduction of

47.93% among four test traces, and a maximum reduction of

75.27% (Trace p2p) in the total number of erase counts. We

can also observe that our EE-NFTL may slightly increase the

number of erase counts for log blocks (Trace office). That

is because, data blocks with many free pages are reused as

random write log blocks and these blocks are treated as log

blocks when triggering erase operations. This observation is

also proved by the experimental results for the erase counts of

data blocks. As shown in columns 2-3, our EE-NFTL scheme

can significantly reduce the number of erase counts for data

blocks as compared with that of KAST.

The endurance of NAND flash memory is mainly affected

by the worst case erase counts of a physical block in the

flash memory. Table III illustrate the improvement of our

proposed EE-NFTL scheme over KAST in terms of the

maximum number of erase count among all physical blocks.

The experimental results show that, our approach can reduce

27.09% for the maximum erase counts, which represents that

our approach can extend over 1/4 times longer life time for

NAND flash memory.

As the distribution of erase counts among physical blocks

will directly influence the endurance of the NAND flash

memory. For demonstration purpose, we picked up 1024 phys-

ical blocks (about 128MB) of 4GB memory to illustrate the

distribution of the number of block erase counts for each block.

As shown in Figure 4, our scheme can significantly reduce

the erase counts for all four traces. From the experimental

results, we can see that, our EE-NFTL scheme can not only

reduce the total erase counts of NAND flash memory, but also

enhance the lifetime of NAND flash memory by improving its

maximum number of erase counts.

V. CONCLUSION

In this paper, we proposed an endurance-enhanced FTL

scheme, that outperforms the representative log-based FTL

scheme KAST. The performance improvement is achieved by

reusing both data blocks and log blocks in a merge operation.

By doing this, less free blocks are needed and the endurance of

NAND flash memory is enhanced. We conduct experiments on

a set of application specific traces, and the experimental results

show that our scheme can significantly reduce the erase counts

of blocks and improve the endurance.

TABLE II: The number of block erase counts of EE-NFTL versus KAST [4].

data block log block total # of erase counts

Trace KAST EE-NFTL KAST EE-NFTL KAST EE-NFTL Imp(%)

chatOnline 959,681 255,232 964,927 962,655 1,924,608 1,217,887 36.72

copyFile 19,872,640 3,949,248 19,875,776 19,869,152 39,748,416 23,818,400 40.08

office 8,888,128 1,807,136 8,900,929 8,929,920 17,789,057 10,737,056 39.64

p2p 48,122,043 3,949,248 48,180,288 19,869,153 96,302,331 23,818,401 75.27

Average 47.93

� ��� ��� ��	 ��� �	�
�� ��� ���	
�

��

��

��

	�

��

��

�

��

��������������������

�
��
��
��
��

 !
�

(a) KAST / chatOnline

� ��� ��� ��	 ��� �	�
�� ��� ���	
�

��

��

��

	�

��

��

�

��

��������������������

�
��
��
��
��

 !
�

(b) EE-NFTL / chatOnline

� ��� ��� ��	 ��� �	�
�� ��� ���	
�

���

���

���

	��

���

���

��

���

���

����

����

����

����

��������������������

�
��
��
��
��

 !
�

(c) KAST / copyFile

� ��� ��� ��	 ��� �	�
�� ��� ���	
�

���

���

���

	��

���

���

��

���

���

����

����

����

����

��������������������

�
��
��
��
��

 !
�

(d) EE-NFTL / copyFile

� ��� ��� ��	 ��� �	�
�� ��� ���	
�

���

���

���

	��

���

���

��

���

��������������������

�
��
��
��
��

 !
�

(e) KAST / office

� ��� ��� ��	 ��� �	�
�� ��� ���	
�

���

���

���

	��

���

���

��

���

��������������������

�
��
��
��
��

 !
�

(f) EE-NFTL / office

� ��� ��� ��	 ��� �	�
�� ��� ���	
�

���

����

����

����

����

����

�����

��������������������

�
��
��
��
��

 !
�

(g) KAST / p2p

� ��� ��� ��	 ��� �	�
�� ��� ���	
�

���

����

����

����

	���

����

����

�����

��������������������

�
��
��
��
��

 !
�

(h) EE-NFTL / p2p

Fig. 4: The endurance enhancement of EE-NFTL over KAST for traces chatOnline, copyFile, office, and p2p.

In the future, we plan to extend our reuse strategy to large

scale flash memory and Solid State Disk (SSD) to improve

its endurance and wear-leveling. Recently, some non-volatile

memory techniques, such as Phase Change Memory (PCM)

[12], are proposed to become promising candidates for the next

generation memory to replace DRAM. How to apply reuse

strategy to PCM to reduce write activities is also a topic for

us to explore.

ACKNOWLEDGMENT

The work described in this paper is partially supported by

the grants from the Research Grants Council of the Hong Kong

Special Administrative Region, China (GRF PolyU 5260/07E

and GRF PolyU 5269/08E) and HK PolyU 1-ZV5S.

REFERENCES

[1] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho, “A space-efficient
flash translation layer for CompactFlash systems,” IEEE Transactions

on Consumer Electronics, vol. 48, no. 2, pp. 366–375, May 2002.
[2] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song,

“A log buffer-based flash translation layer using fully-associative sector
translation,” ACM Trans. Embed. Comput. Syst., vol. 6, no. 3, p. 18,
2007.

[3] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J.-S. Kim, “A
reconfigurable FTL (flash translation layer) architecture for NAND flash-
based applications,” ACM Trans. Embed. Comput. Syst., vol. 7, pp. 38:1–
38:23, August 2008.

[4] H. Cho, D. Shin, and Y. I. Eom, “KAST: K-associative sector translation
for NAND flash memory in real-time systems,” in DATE ’09: Proceed-

ings of the conference on Design, automation and test in Europe, 2009.

[5] C.-H. Wu and T.-W. Kuo, “An adaptive two-level management for the
flash translation layer in embedded systems,” in ICCAD ’06: Proceed-

ings of the 2006 IEEE/ACM international conference on Computer-aided

design, 2006, pp. 601–606.
[6] Y.-H. Chang and T.-W. Kuo, “A commitment-based management strat-

egy for the performance and reliability enhancement of flash-memory
storage systems,” in DAC ’09: Proceedings of the 46th Annual Design

Automation Conference, 2009, pp. 858–863.
[7] S. Choudhuri and T. Givargis, “Performance improvement of block based

NAND flash translation layer,” in CODES+ISSS ’07: Proceedings of the

5th IEEE/ACM international conference on Hardware/software codesign

and system synthesis, 2007, pp. 257–262.
[8] Y. Joo, Y. Choi, C. park, S. W. Chung, E.-Y. Chung, and N. Chang, “De-

mand paging for OneNAND flash eXecute-In-Place,” in CODES+ISSS

’06: Proceedings of the 4th IEEE/ACM international conference on

Hardware/software codesign and system synthesis, 2006, pp. 229–234.
[9] K. Lee and A. Orailoglu, “Application specific low latency instruction

cache for NAND flash memory based embedded systems,” in SASP ’08:

Proceedings of the 2008 Symposium on Application Specific Processors,
June 2008, pp. 69–74.

[10] Y. Wang, D. Liu, M. Wang, Z. Qin, Z. Shao, and Y. Guan, “RNFTL: a
reuse-aware NAND flash translation layer for flash memory,” in LCTES

’10: Proceedings of the ACM SIGPLAN/SIGBED 2010 conference on
Languages, compilers, and tools for embedded systems, 2010, pp. 163–
172.

[11] Z. Qin, Y. Wang, D. Liu, and Z. Shao, “Demand-based block-level
address mapping in large-scale NAND flash storage systems,” in
CODES/ISSS ’10: Proceedings of the eighth IEEE/ACM/IFIP interna-

tional conference on Hardware/software codesign and system synthesis,
2010, pp. 173–182.

[12] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in ISCA ’09:

Proceedings of the 36th annual international symposium on Computer
architecture, 2009, pp. 14–23.

