
VESPA: Variability Emulation for System-on-Chip
Performance Analysis

Vivek J. Kozhikkottu, Rangharajan Venkatesan, Anand Raghunathan
School of ECE

Purdue University
{vkozhikk,rvenkate,raghunathan}@purdue.edu

Sujit Dey
Department of ECE

UC San Diego
dey@ece.ucsd.edu

Abstract—We address the problem of analyzing the perfor-
mance of System-on-chip (SoC) architectures in the presence
of variations. Existing techniques such as gate-level statistical
timing analysis compute the distributions of clock frequencies
of SoC components. However, we demonstrate that translating
component-level characteristics into a system-level performance
distribution is a complex and challenging problem due to
the inter-dependencies between components’ execution, indirect
effects of shared resources, and interactions between multiple
system-level “execution paths”. We argue that accurate variation-
aware system-level performance analysis requires repeated sys-
tem execution, which is prohibitively slow when based on simula-
tion. Emulation is a widely-used approach to drastically speedup
system-level simulation, but it has not been hitherto applied
to variation analysis. We describe a framework - Variability
Emulation for SoC Performance Analysis (VESPA) - that adapts
and applies emulation to the problem of variation aware SoC
performance analysis. The proposed framework consists of three
phases: component variability characterization, variation-aware
emulation setup, and Monte-carlo driven emulation. We demon-
strate the utility of the proposed framework by applying it to
design variation-aware architectures for two example SoCs -
an 802.11 MAC processor and an MPEG encoder. Our results
suggest that variability emulation has great potential to enable
variation-aware design and exploration at the system level.

I. INTRODUCTION

Variations in the characteristics of transistors and intercon-
nect are widely regarded as one of the major obstacles to con-
tinued scaling of integrated circuits (ICs) [1], [2]. Variation-
aware design – the process of understanding the impact of
variations on ICs and designing systems that are resilient to
them – has therefore emerged as one of the major active
research areas in circuits, architecture, and design automation.

Since variations are inherently a bottom-up phenomenon,
most efforts on addressing them have understandably focused
on the later stages of the design cycle. These include mask-
level techniques such as Resolution Enhancement Technolo-
gies (RET) and Optical Proximity Correction (OPC), circuit-
level techniques such as variation-aware transistor sizing,
variation-aware placement and routing, and statistical timing
analysis and synthesis at the logic level. Unfortunately, in-
evitable increases in variations make it difficult to fully contain
their effect at the later stages of the design cycle. Recognizing
this, there have been several recent efforts on variation-aware
design at the architectural and system levels [3]-[17]. These

This material is based upon work supported in part by the National Science
Foundation under Grant No. 0916117.

978-3-9810801-7-9/DATE11/(c)2011 EDAA

efforts have shown great potential for effectively addressing
variations with substantially lower design overhead and effort.
However, we believe that adoption of variation-aware design
techniques at the system level will require the development
of concomitant variation-aware analysis tools. A commonly
used paradigm for variation-aware analysis at any level of ab-
straction is to repeatedly perform simulation in a Monte-Carlo
loop, while varying the performance/power characteristics of
circuit components in each iteration. While this is the most
accurate and general approach, the need to run simulation in
an iterative loop drastically reduces efficiency and scalability,
limiting the possibilities for design space exploration.

A. Paper Overview and Contributions

In this work, we address the problem of variation-aware
system-level performance analysis, and specifically target the
challenge of improving efficiency and scalability, while main-
taining the generality and accuracy of the iterative simulation
paradigm. Emulation is a widely-used approach to drastically
speedup system-level simulation, but it has not been hitherto
applied to variation-aware performance analysis. We propose
an emulation-based framework — Variability Emulation for
SoC Performance Analysis (VESPA) — for analyzing the
impact of variations on performance at the system level. The
significant contributions of our work are as follows:

• We study the challenges involved in system-level per-
formance analysis under variations. We demonstrate that
translating component-level characteristics into a system-
level performance distribution is a complex and challeng-
ing problem due to the inter-dependencies between com-
ponents’ execution, indirect effects of shared resources,
and interactions between multiple system-level “execu-
tion paths”. We therefore argue that accurate variation-
aware system-level performance analysis requires re-
peated system execution, which is prohibitively slow
when based on simulation.

• We describe the VESPA framework that applies emula-
tion to the problem of variation-aware SoC performance
analysis. A key attribute of the proposed framework is
that mechanisms for adaptation of component frequencies
and the control loop for iterative (Monte-Carlo) analysis
are embedded within the emulation platform, eliminating
the need for re-synthesis of the design or FPGA re-
configuration within the iterative loop. The inherent speed

of emulation is therefore fully exploited for variation-
aware performance analysis.

• We apply the proposed framework to two example SoCs
- an 802.11 MAC processor and an MPEG encoder, and
use it to explore variation-aware architectures based on
multiple frequency islands. For these SoCs, VESPA is
one to two orders of magnitude faster than HW/SW
co-simulation, and four orders of magnitude faster than
register-transfer level (RTL) simulation. Our results also
demonstrate the utility of the proposed framework in
driving variation-aware design at the system level.

The rest of the paper is organized as follows. Section II
summarizes prior work on variation-aware design at the sys-
tem level. Section III describes the challenges involved in
variation-aware system-level performance analysis. Section IV
describes the proposed VESPA framework. Section V presents
the application of the framework to the example SoCs, evalu-
ates its benefits, and shows how the proposed framework can
be applied to drive variation-aware architectural exploration.

II. RELATED WORK

A large body of work over the last decade has analyzed
and addressed the impact of variations on integrated circuits at
various levels of abstraction. We describe some representative
efforts that focus on the earlier stages of the design cycle.
Variation-tolerant design techniques for SoC components, in-
cluding processors, memories, and on-chip buses, have been
proposed [3], [4], [5], [6], [7], [8]. Techniques for optimiz-
ing system-level power management policies under variations
were presented in [9]. A variation-aware task scheduling and
allocation technique for multi-processor SoCs was presented
in [10]. Modern SoCs are frequently divided into islands
that operate at different clock frequencies, supply voltages,
or body bias voltages [11], [12]. Several research efforts have
exploited the multi-island design style to mitigate the effects
of variations [13], [14]. The use of software adaptation to deal
with hardware variations was proposed in [15].

A limited body of work has explored incorporating the im-
pact of variations during system-level performance and power
analysis. An analytical framework for performance analysis of
multi-island systems under variations was presented in [16].
Techniques to perform variation-aware power analysis at the
system level were presented in [17].

Our work addresses the problem of variation-aware perfor-
mance analysis, for which the only known prior work takes
an analytical approach [16]. Analytical techniques have proven
their utility in limited contexts in system-level design (such as
worst-case timing analysis), and are much faster than simula-
tion when they are applicable. However, the most widespread
approaches to system-level performance estimation in practice
(regardless of variations) are based on simulation. This is
because simulation-based approaches are very general (no
limiting assumptions made regarding the system), offer the
flexibility to tradeoff accuracy for efficiency (through the level
of detail at which the model is specified), and are the most
accurate in accounting for complex effects such as shared
system resources, contention, data-dependent execution times,
timing-dependent changes in execution paths, etc. To the best

of our knowledge, ours is the first proposal to apply emulation
to the problem of variation-aware performance analysis. The
key benefit of our approach is that we significantly improve
the speed of variation-aware performance analysis, without
compromising either generality or accuracy.

III. COMPLEXITY OF SYSTEM-LEVEL VARIATION
ANALYSIS

In this section we use an example SoC to illustrate the
challenges involved in analyzing the impact of process varia-
tions on system level performance. The SoC that we consider
implements the 802.11b MAC protocol (shown in Fig. 1).

AVALON INTERCONNECT FABRIC

Packet Buffer CPU

WEP CRC

LLC WEP_
INIT

HDRWEP_
ENCRYPT

ICV

PLI

MAC_CTRL

To physical carrier sense

Transmit
req/grant

Computed
ICV

Frame
Data

FCS

From
Logical
Link
Control

To PHY

Fig. 1: SoC implementing 802.11b MAC protocol

The system takes incoming packets from an on-chip RAM
(Packet Buffer), performs a Cyclic Redundancy Check (CRC)
on it, the packet data is then encrypted using the Wired
Equivalent Privacy (WEP) encryption scheme, another CRC
computation is performed on this encrypted packet data and
the packet is stored back to the Packet Buffer. We implemented
both WEP and CRC components as hardware accelerators.
The components are connected to each other using the Avalon
Interconnect Fabric [18]. Since we are interested in designing
variation-tolerant SoCs, we utilize the multi-island design style
for the SoC [12] 1.

We first find the delay (clock frequency) distribution of the
components of this SoC, by synthesizing each component and
using commercial gate-level statistical timing analysis tools.

CPU Packet Buffer CRC WEP

2

4

6

8

10

D
el

ay
(n

s)

Fig. 2: Component-wise delay distribution
for the 802.11 MAC SoC

Fig. 2 shows
that there is a
large diversity
in both the
mean and
the standard-
deviation of the
delays across
components.
The delay
distribution at
the component

level is mostly a function of logic depth and the number of
critical paths [3]. When the component has a large number

1For SoCs that contain a single frequency island, we note that the per-
formance analysis problem degenerates to simply determining the frequency
distribution, which can be performed using conventional gate-level SSTA
tools without any system-level analysis. However, such a design would incur
significant performance degradation or yield loss due to variations.

of critical paths, calculating the statistical maximum of
individual path distributions tends to increase the mean and
decrease the standard deviation of the component clock
distribution. Similarly higher logic depth contributes to
decreasing the σ/µ ratio of the clock period distribution [3].
In general different components in an SoC tend to have
different circuit level characteristics, we might find a large
diversity in their delay or frequency profiles under variations.
Given the delay distribution of each component, we evaluate
the sensitivity of the system’s performance to variations using
the VESPA framework. We measure the system performance
of the MAC system under varying frequencies of two of its
components (WEP and CRC). Fig. 3 shows that, in most of
the frequency space, system performance is more sensitive
to variations in the WEP frequency as it is the dominant
component in the system’s critical path. However, there exists
a region in this space (highlighted by a rectangle in Fig. 3)
where the system is more sensitive to the CRC component
than the WEP. In this region the CRC component starts to
dominate the system critical path.

To further analyze the sensitivity of system performance
to delay variations of components, we consider two dif-
ferent instances of the MAC system with nominal fre-
quencies corresponding to Points A and B in Fig. 3 and
measure the minimum throughput that would guarantee
95% yield with varying σ/µ of component frequencies.

40
60

80
100

40
60

80
100

1

1.5

2

2.5

3

3.5

WEP Frequency (MHz)CRC Frequency (MHz)

Th
ro

ug
hp

ut
 (M

Bp
s)

B

A

Fig. 3: System performance vs. component
frequency

Fig. 4 shows
that a system
designed
around Point A
as the nominal
case is most
sensitive to
variations in
the WEP
block’s
frequency
whereas
the system
designed with
Point B as
the nominal case is most sensitive to the CRC block. In
general different components have different sensitivities and
even these sensitivities are a function of the frequencies of
operation of the other components of the system.

0 5 10 15 20
0.8

0.85

0.9

0.95

1

1.05

% Variation in frequency of component

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

WEP
CRC
Packet Buffer
CPU

(a) Point A

0 5 10 15 20
0.8

0.85

0.9

0.95

1

1.05

% Variation in frequency of component

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

WEP
CRC
Packet Buffer
CPU

(b) Point B

Fig. 4: System sensitivity to variations at different nominal
frequencies

The sensitivity of system performance to component varia-
tions is a very complex problem due to several factors.

• Component interdependence: System sensitivity to a
component is determined by the percentage of time a
component spends in the system critical path, which
depends on a component’s interaction (synchronization
and communication) with other SoC components.

• Shared resources: Resources such as a system bus that are
shared by all components result in contentions that lead
to variable latencies. These contention profiles and thus
latencies change in the presence of component variations.

• Multiple paths of execution: In systems that have multiple
paths of execution, variations can cause a given path
to speed up or slow down and as a result it may no
longer even be a part of the system’s critical path, causing
discontinuities in the system’s sensitivity to a component.

Any accurate and general system-level performance analysis
technique must consider these intricacies. One approach is
Monte-Carlo simulation of the system for sufficiently large
number of samples, so as to have a high level of confidence
in the performance distribution. Using sampling theory [19],
we estimate that the MAC system discussed above requires
900 samples for a confidence level of 99% on the estimated
mean value with margin of error less than 1%. Performing such
a large number of system level simulations would require a
prohibitively large run-time and is not practical.

Emulation is a well known technique for improving the
runtime of system level simulation. It provides orders of mag-
nitude improvement in performance over system simulation at
various levels of abstraction. However, using standard emula-
tion techniques for variation aware analysis poses a number
of challenges. Variation aware analysis requires emulating the
system at multiple sample frequencies. This in turn would
require synthesis of the system and downloading the bit-stream
for every sample repeatedly. The overhead involved would
defeat the benefits obtained through emulation. In contrast, the
VESPA framework performs these operations exactly once.
This is accomplished by down-scaling the frequency distri-
bution of each component to the operating frequency range
of the FPGA, using reconfigurable PLLs whose frequency
can be changed on the fly and a software control routine to
vary the operating frequencies of the component and perform
repeated emulation of the application program at different
sample frequencies. This process is discussed in detail in the
next section.

IV. VESPA FRAMEWORK

In this section, we present an overview of our proposed
variation aware emulation framework. The framework takes
as its input, the SoC architecture, the application software,
RTL component models, variation-enhanced cell libraries and
outputs the system performance distribution. The flow as
shown in Fig. 5 can be divided in to three distinct phases.
The Component Variability Characterization phase generates
the delay distribution for each component of the SoC. The
Variation-aware Emulation Setup phase consists of adding var-
ious hardware components and software routines essential for

Physical and
Logic

Synthesis

Synthesized
Netlist

Variation
Aware Library

SSTA Engine

Component
Variability

Models

Phase 1: Component Variability
Characterization

SoC
Architecture Island

Partitioning

Designer Input

Add Asynch.
Comm Interface

Frequency
Downscaling

Factor

FPGA
Synthesis Bitstream

Application
Software

Insert
Emulation

Control Loop

Cross-
Compilation

Software
Image

Emulation
Platform

Measure
Performance

Execute
Application

Reconfigure
PLLs

Monte Carlo
Sampling

Phase 3: Monte-Carlo Driven Emulation

Phase 2: Variation Aware Emulation Setup

Compute
Confidence Level

SoC Component
Model

ARM946E-S
MPEG-4
Co-proc.

AHB I/F

Va
ria

tio
n A

wa
re

 A
rc

hi
te

ct
ur

e E
xp

lo
ra

tio
n

Fig. 5: VESPA Framework

performing variation-aware performance analysis. The Monte-
carlo Driven Emulation phase describes the various steps the
runtime control software executes so as to obtain the desired
performance distribution.

A. Component Variability Characterization

In this phase, we synthesize different components of the sys-
tem from their RTL models using commercial logic synthesis
tools. A gate-level variation-aware technology library is fed to
a statistical static timing analysis (SSTA) engine along with
the synthesized component netlist to compute the frequency
distribution for different components of the SoC, taking into
account the structural correlation that may exist between gates
and paths within each component. At the end of this phase,
we obtain the component level delay distributions for each
component in the SoC.

B. Variation-aware Emulation Setup

In this phase, we perform the design-time operations re-
quired for setting up our emulation framework. Based on
designer input, the SoC architecture is first partitioned into
multiple frequency islands. We then insert FIFOs and other
asynchronous interface logic so that the different frequency
islands can communicate efficiently with each other. In or-
der to perform variation-aware analysis efficiently, we need
to change the frequency of each island without performing
repeated synthesis. This is accomplished by generating re-
configurable PLLs whose frequencies can be controlled at
runtime by programming them from software executing on a
microprocessor. The frequency distribution obtained from the
first phase needs to be down-scaled by an appropriate factor
to ensure correct functioning in the emulation environment.
Each component is synthesized individually such that correct
operation is guaranteed for frequencies ranging from µ−3σ to
µ+3σ and its corresponding down-scaling factor is obtained.
The down-scaling factor of the entire system is then computed
by finding the maximum of each component’s down-scaling
factor. We then take the given SoC application program and

encapsulate it within a software control routine that performs
the operations required to measure system performance.

C. Monte-carlo Driven Emulation

In the Monte-carlo Driven Emulation phase, the software
control routine first samples the component distributions to
obtain their operating frequencies. It then reconfigures each
island’s PLL to its sampled frequency point. The given SoC
application is then executed and its performance is measured
with the help of hardware counters. This process is repeated for
a fixed number samples, or until a a given level of confidence
is achieved in the generated distribution. Once the software
control loop terminates, the desired performance distribution
is obtained.

V. EXPERIMENTAL RESULTS

In this section, we first describe our experimental set up
and show that considerable speed up can be achieved using
the VESPA framework compared to existing techniques. We
then present two case studies to illustrate the utility of our
framework for variation-aware architecture exploration.

A. Experimental Setup

In the component variability characterization phase, Syn-
opsys Design Compiler was used to synthesize various SoC
components using the IBM 45nm technology library. Vari-
ations were modeled in accordance with [20]. The SSTA
analysis was performed using Synopsys Primetime-VX [21]
to obtain the frequency distributions of different components.
Access time of the memory components were estimated using
CACTI5.3 [22] and variations were modeled in accordance
with [23]. We used an Altera DE3 board with a Stratix III
EPS3SL150 FPGA and the Quartus 10.0 FPGA design kit. The
Nios2 IDE was then used to create the software framework
and control the runtime emulation flow. The speed up of
the proposed framework was compared with models of the
systems simulated using the hardware/software co-simulation
tool Gezel [24] and RTL simulation using Modelsim.

CPU Frame
Buffer

Input
Buffer

Output
Buffer

Motion
Estimation DCT

MPEG Controller

(a) Block Diagram

Architecture Component Mapping
1 island CPU, Frame Buffer, MPEG Controller, ME, DCT

2 island-1 CPU Frame Buffer, MPEG Controller,
ME, DCT

2 island-2 CPU, Frame
Buffer MPEG Controller, ME, DCT

3 island-1 CPU
Frame Buffer,

MPEG
Controller

ME, DCT

3 island -2 CPU Frame Buffer
MPEG

Controller, ME,
DCT

4 island CPU Frame
Buffer

MPEG
Controller, ME DCT

(b) Different Island Partitions

0 10 20 30 400

0.2

0.4

0.6

0.8

of Frames/sec

R
el

at
iv

e
Fr

eq
ue

nc
y

of
 o

cc
ur

en
ce

1island
2island−1
2island−2
3island−1
3island−2
4island

(c) Performance Distribution

Fig. 6: Exploring multi-island architectures for the MPEG encoder

TABLE I: Runtime Comparison

System Cycles executed per sec.(x106) Speed up
RTL Gezel VESPA VESPA/RTL VESPA/ISS

MPEG 0.0015 2.07 133 88666 64
MAC 0.0017 2.16 133 78235 61

We consider two example SoCs - an 802.11b MAC proces-
sor and an MPEG Encoder. The MAC system was described
in detail in Section III. Fig. 6a shows the block diagram
of the MPEG encoder system. The input frames are stored
in the Frame Buffer. The MPEG controller coordinates the
transfer of blocks from the Frame buffer to the Input Buffer
and motion estimation is performed by comparing the current
and previous frames. The DCT block computes the Discrete
Cosine Transform and stores the compressed data in the Output
Buffer. The performance of the system is primarily determined
by the time required to read packets from the Frame Buffer
and the time taken to perform motion estimation. The CPU and
DCT spend a relatively small amount of time in the system
critical path.

B. Speed Up

Table I compares the number of cycles executed per second
using RTL simulation, HW/SW co-simulation using Gezel and
VESPA. On average, our proposed frame work was found to
have a speed up of 80000x compared to RTL simulation and
60x with respect to HW/SW co-simulation using Gezel. These
results clearly demonstrate that the proposed framework can
be used to efficiently model the effect of process variations on
system performance.

C. Case Study 1: Island Partitioning and Component Mapping

In this case study, we use VESPA to study island parti-
tioning for the MPEG system. We demonstrate the tradeoff
between the adaptivity offered by larger numbers of islands
and the overhead introduced by asynchronous communication
interfaces. We also show that, for a given number of islands,
the system performance greatly depends on the mapping of
the components to islands.

Fig. 6b shows six different partitions of the MPEG system
and the corresponding system performance distributions are

0 5 10 15 20

22

24

26

28

30

% Variation in frequency of component

M
in

. F
ra

m
es

/S
ec

 fo
r 9

5%
 y

ie
ld

CPU
FB+MC
ME+DCT

(a) 3 island-1

0 5 10 15 20
10.5

11

11.5

12

12.5

13

13.5

% Variation in frequency of component

M
in

. F
ra

m
es

/s
ec

 fo
r 9

5%
 y

ie
ld

CPU
FB
MC+ME+DCT

(b) 3 island-2

Fig. 7: Impact of component mapping on sensitivity

shown in Fig. 6c. Initially, there is an improvement in
the system performance as the number of islands increases.
However, when the system is partitioned beyond a certain
threshold, the overhead of communication interfaces begins
to dominate, causing a reduction in system performance.
The 1island, 2island-1, 3island-1 and 4island architectures
demonstrate this.

For a given number of islands, both the system performance
and its sensitivity to components depend on the component-to-
island mapping. For example, let us compare the 3island-1 and
3island-2 architectures in Fig. 6c and Fig. 7. In the 3island-
1 configuration, Frame Buffer and MPEG controller operate
at the same frequency and there is no need for additional
asynchronous communication interfaces, which decreases the
read latency for macroblocks. System performance is deter-
mined mainly by the ME block which makes it more sensitive
to variations in ME+DCT than FB+MC. On the other hand,
in the 3island-2 configuration, the Frame Buffer and MPEG
controller are in different islands and memory read latency
becomes a substantial part of the system critical path. This
makes system performance sensitive to variations in frequency
of the Frame Buffer and ME block.

D. Case Study 2: Design Space Exploration

In this case study we demonstrate how VESPA can be
used to efficiently perform exhaustive design space exploration
and also show the need for performing variation-aware sys-
tem design using the MAC system described in Section III.

1 island 2 island 3 island 4 island
0

0.5

1

1.5

2

2.5

3
Th

ro
ug

hp
ut

 (M
Bp

s)

Fig. 8: Multi-island design space for
the 802.11 system

Fig. 8 shows the
throughput that can
guarantee 95% yield
for all possible island
partitionings and
component-to-island
mappings. System
performance again
increases initially
with increasing
number of islands

(until 3 islands). However, due to high overheads involved
in inter-island communication, further increasing the
number of islands deteriorates system performance.
For a given fixed number of islands, the component-
to-island mapping also has a huge impact on system
performance, as illustrated by the vertical spread in Fig. 8.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.5
0

0.5

1

1.5

2

2.5

Throughput (MBps)

N
or

m
al

is
ed

 F
re

qu
en

cy
 o

f o
cc

ur
en

ce

CRC+PB
WEP+PB

95% yield point

Fig. 9: Performance distributions for
two 3-island designs

Consider the two
points encircled
in Fig. 8, which
correspond to
two three-island
configurations, one
in which the Packet
Buffer and the
CRC component are
mapped to same
island (CRC+PB)
and another in which
the Packet Buffer
is grouped along with the WEP component (WEP+PB).
Fig. 9 shows the system performance distribution profile for
these two configurations. When variations are ignored, both
configurations would yield nearly identical performance. In
both configurations the individual component’s throughput
is limited by memory access times. In the WEP+PB
configuration, the CRC component has to communicate
across an island partition, leading to higher memory access
times. As a result system performance becomes highly
sensitive to CRC variations and similarly in the CRC+PB
configuration system performance is more sensitive to the
WEP component. From SSTA analysis, it turns out the
WEP component has much larger σ in the clock period than
the CRC block. Thus, as shown in Fig. 9, the CRC+PB
configuration is more severely impacted by variations than
the WEP+PB configuration. As a result, for the same yield
requirement the WEP+PB mapping is clearly better than
CRC+PB mapping. In general, architectures in which high
variability components are not a large part of the system
critical path, tend to be more tolerant to variations.

In summary, our experiments clearly establish the value
of the proposed system-level variation analysis framework in
driving variation-tolerant design.

VI. CONCLUSION

We presented a framework for system-level performance
analysis under variations, which leverages emulation to sig-
nificantly speedup analysis without sacrificing generality and

accuracy of simulation. Key to preserving the inherent effi-
ciency of emulation is the ability to perform repeated system
executions without re-configuring the emulation platform or
re-synthesizing the design. We applied the proposed frame-
work to two example SoCs, and demonstrated its utility in
exploring variation-aware multi-island architectures for both
systems.

REFERENCES

[1] S. Borkar et. al. Parameter variations and impact on circuits and
microarchitecture. In Proc. DAC, pages 338–342, 2003.

[2] International Technology Roadmap for Semiconductors.
http://public.itrs.net/reports.html.

[3] K. A. Bowman, S. G. Duvall, and J. D. Meindl. Impact of die-to-die
and within-die parameter fluctuations on the maximum clock frequency
distribution for gigascale integration. IEEE JSSC., 37(2):183 –190, Feb.
2002.

[4] N. S. Kim et. al. Total power-optimal pipelining and parallel processing
under process variations in nanometer technology. In Proc. ICCAD,
pages 535–540, 2005.

[5] A. Agarwal et. al. A process-tolerant cache architecture for improved
yield in nanoscale technologies. IEEE TVLSI, 13(1):27 – 38, 2005.

[6] D. Ernst et. al. Razor: A low-power pipeline based on circuit-level
timing speculation. In Proc. MICRO, pages 7 – 18, Dec. 2003.

[7] P. Ndai et. al. Trifecta: A nonspeculative scheme to exploit common,
data-dependent subcritical paths. IEEE Trans. VLSI, 18(1):53 –65, Jan.
2010.

[8] S. Pandey, R. Drechsler, T. Murgan, and M. Glesner. Process variations
aware robust on-chip bus architecture synthesis for MPSoCs. In Proc.
ISCAS, pages 2989 –2992, May 2008.

[9] S. Chandra, K. Lahiri, A. Raghunathan, and S. Dey. System-on-chip
power management considering leakage power variations. In Proc. DAC,
pages 877–882, June 2007.

[10] F. Wang and Y. Xie. Embedded multi-processor system-on-chip (MP-
SoC) design considering process variations. In Proc. IPDPS, pages 1–5,
2008.

[11] D. E. Lackey et. al. Managing power and performance for system-on-
chip designs using voltage islands. In Proc. ICCAD, pages 195–202,
2002.

[12] K. Niyogi and D. Marculescu. Speed and voltage selection for gals
systems based on voltage/frequency islands. In Proc. ASP-DAC, pages
292–297, 2005.

[13] B. Stefano et. al. Process variation tolerant pipeline design through a
placement-aware multiple voltage island design style. In Proc. DATE,
pages 967–972, Mar. 2008.

[14] U. Y. Ogras, R. Marculescu, and D. Marculescu. Variation-adaptive
feedback control for networks-on-chip with multiple clock domains. In
Proc. DAC, pages 614–619, June 2008.

[15] A. Pant, P. Gupta, and M. van der Schaar. Software adaptation in quality
sensitive applications to deal with hardware variability. In Proc. Great
Lakes Symp. on VLSI, pages 85–90, 2010.

[16] S. Garg and D. Marculescu. System-level throughput analysis for
process variation aware multiple voltage-frequency island designs. ACM
TODAES., 13(4):1–25, 2008.

[17] S. Chandra, K. Lahiri, A. Raghunathan, and S. Dey. Considering process
variations during system-level power analysis. In Proc. ISLPED, pages
342–345, 2006.

[18] ALTERA. http://www.altera.com/.
[19] R. A. Fisher. Statistical methods and scientific inference. Oliver and

Boyd, 1956.
[20] Y. Cao and L. T. Clark. Mapping statistical process variations toward

circuit performance variability: an analytical modeling approach. In
Proc. DAC, pages 658–663, June 2005.

[21] Primetime-VX. Synopsys inc.
[22] CACTI-5.3. http://quid.hpl.hp.com:9081/cacti/detailed.y.
[23] S. Mukhopadhyay, H. Mahmoodi, and K. Roy. Modeling of failure

probability and statistical design of SRAM array for yield enhancement
in nanoscaledCMOS. IEEE Trans. CAD, 24(12):1859 – 1880, Dec. 2005.

[24] GEZEL Hardware/Software Codesign Environment.
http://rijndael.ece.vt.edu/gezel2/.

