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Abstract 

Today, due to the increasing demand for more and more 

complex applications in the consumer electronic market segment, 

Systems-on-Chip consist of many processing elements and 

become larger and larger. While on-chip system designers must 

be able to get fast and accurate communication performance 

analysis for such huge systems, the simulation-based approaches 

are not adequate anymore. Addressing the increasing need for 

early performance evaluation in NoC-based system design flow, 

this paper presents a generic analytical method to estimate 

communication latencies and link-buffer utilizations for a given 

NoC architecture with a given application mapped on it. The 

accuracy of our method is experimentally compared with the 

results obtained from Cycle-Accurate SystemC simulations.    

I. INTRODUCTION 
The broad interest in Network-on-Chip (NoC) technology has 

led to the definition of many NoC architectures, implementation 
strategies, and network performance evaluation methods [1-4]. 
Due to growing SoC complexity, NoC communication 
parallelism and the need to tight time-to-market design 
flows, traditional simulation-based methods don’t fulfill anymore 
all requirements of performance evaluation domains: they are 
extremely slow, non-exhaustive, non-scalable with growing 
system size and also they are achieved relatively late in design 
flow. Mathematical and analytical methods seem to be reliable 
alternatives for performance evaluation purposes before 
implementation and very soon in design process. 

This paper presents a performance evaluation method based 
on a numerical analysis approach providing the average buffer 
utilizations, the mean packet latency and the router port-to-port 
latency of a given NoC architecture. The average buffer 
utilization gives helpful insights into optimal link capacity 
allocation and the distribution of the traffic over network buffers. 
The packet latency is an essential metric in NoC-based system 
performance and helps to estimate the application runtime. 
Expressed as a function of offered-load, packet latency can 
demonstrate the maximum acceptable throughput (saturation 
threshold) of a network.  

NoC performance evaluation is traditionally based on 
simulation [5-7]. Nevertheless, analytical techniques using 
queuing theory have also been proposed to measure the 
communication latency of NoCs and parallel computer networks 
(off-chip communication) [8-14]. Some of them target only a 
particular network topology such as [12, 13] which are restricted 
to k-ary n-cubes or hypercube network topologies. Some others 
place limitation on buffer or packet size, like [10] which 
addresses wormhole routing with exponentially distributed 
message length, or [14] proposing an analytical model for 
wormhole routing delay but restricted to networks with single flit 
buffer capacity. In [14] the end-to-end transfer delay is 
approximated for packets larger than the buffers along their path. 
Link acquisition time is ignored by assuming that there are as 

many virtual channels as the number of flows sharing the same 
physical link (so every head flit can acquire a VC instantaneously 
on every link it traverses). Using queuing models, the method 
approximates the link transmission time by considering the time 
attributed to other virtual channels (i.e. other flows) that 
interleave over the same physical link. Actually, the authors 
analyze a “quasi-“circuit-switching case while our proposed 
method investigates packet-switching cases dominated by both 
port acquisition and link transfer delays. Authors of [11] present 
a more general queuing theory based model addressing wormhole 
routing with arbitrary size messages and finite buffers under 
application-specific traffic patterns also supporting arbitrary 
network topology and deterministic routing. While the framework 
of our approach relies on the same assumptions, our methodology 
is different from theirs: our approach is based on numerical 
analysis and iterative computation, whereas [11] relies on the 
generalization of the single queue model to multiple queues in the 
router. Using that approach, however, the backpressure effect due 
to downstream contention tends to be minimized, and thus the 
saturation effect arises later than what can be observed in 
simulations.  

The method presented in this paper is generic with respect to 
the implementation in the sense that it supports arbitrary network 
topologies and deadlock-free routing algorithms with arbitrary 
packet and buffer lengths. Regarding the applications, we target 
known traffics with any repartition on the NoC as long as it can 
be approximated with Poisson distributions (modeled by mean 
values). The paper is structured as follows: In section II we 
discuss the basic concepts and assumptions. Section III explains 
our analytical method in detail. Section IV includes experimental 
results and the comparison with the simulation results. Finally 
section V concludes the paper. 

II. PACKET LATENCY 
The definition of NoC latency varies from one work to 

another. It can be measured per data word, header, packet, or 
message transfer (several packets) while including or excluding 
the time at the source queue [15].  

 
Fig.1: At each node of the path disrupting packets appear 

probabilistically in front of tagged packet. 

The term packet latency is interpreted in this paper as the 
mean latency of a tagged packet traversing the NoC from a given 
source to a given destination. Packets are considered atomic (i.e. 
they cannot be divided into shorter pieces by the network) so 
when the header of a packet arrives to a port the packet body 
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arrives immediately after it. In fig.1 the black arrows represent 
the tagged packet’s path from its source to its destination, while 
dashed arrows demonstrate “disrupting packets” competing with 
the tagged packet for the same output at each node. The proposed 
method computes separately the mean latency of each node of the 
path by considering the probabilities and delays of contention 
between the tagged packet and all other disrupting packets 
arriving to that node. Node mean latencies are then summed up to 
give the mean latency of the entire path. For computing the node 
mean latency we propose an iterative approach that enables us to 
consider the reciprocal impact of all incoming flows to that node, 
on each other. Since the latency of a node depends on the latency 
of its following node and so on, the order for computing node-
latencies is important and must follow the reverse order of 
dependencies. We use a recursive algorithm that regarding the 
NoC topology, routing algorithm and traffic pattern finds all 
latency dependencies and returns the node latencies and average 
buffer utilizations according to the proper computation order. 

III. NODE LATENCY  

The term “node latency” is used in this paper as the mean 
latency that the tagged packet header needs to cross a node and 
the buffer after the node. It is labeled with “lat-in2out-Np” when 
the tagged packet arrives from “in” port and targets “out” ports 
of node Np, and includes two following components (fig.2): 

1. The port-acquisition delay (dly_port_acq): is the delay 

needed for the header flit to acquire its output port and is 

counted from the moment the packet header appears at the 

head of the input buffer of Np until the moment its output 

port is allocated and so it can be written in the input buffer 

of the next node (Np+1).  

2. The link transfer delay (dly_link_xfr): The time duration 

a packet header takes for being transferred through the 

buffer of link NpNp+1 and is counted from the moment the 

packet header is written to the buffer until the moment it 

arrives to the head of that buffer (at input port of Np+1). 

 
Fig.2:  lat-w2e-Np = dly_port_acq + dly_link_xfr 

A. Port Acquisition Delay  
Port acquisition delay includes the router service time for the 

packet header (dly_hdr_serv) and also the delay caused by 
contentions with other disrupting packets competing for the same 
output port (dly_hdr_cont):  

dly_port_acq(io) =dly_hdr_cont(io)+dly_hdr_serv    (Eq.1) 

Router service time is a function of router architecture and 
considered as an input parameter for the method. The header 
contention delay (dly_hdr_cont) depends on the probabilities of 
contention (pr_cont) between the tagged packet and all other 
competing inputs and also the delay each disrupting packet 
causes until it releases the shared output port (dly_cont). We 
assume that arbitration mechanism is starvation-free and fair in 

the sense that it is symmetric in terms of probability of selection 
of simultaneous packets on the inputs. Also we assume that at 
most one packet from each demanding input is allowed to pass 
after arbitration (never two consecutive packets from the same 
input are routed at a single allocation when there is other 
demanding inputs). With this assumption we have: 
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Where I is the set of all input ports competing for the output 
port o, assuming the tagged-packet is present at input port i.  

1) Contention Delay 
Contention delay dly_conto(ij) is the mean delay a disrupting 
packet coming from input port j produces in front of the tagged 
packet from input port i, before releasing the shared output port 
o. The tagged packet may arrive on anytime of the presence of a 
disrupting packet: it may arrive when the disrupting packet is 
stalled by the rest of previous flits accumulated in buffer (impact-
buf(o)) or when its header is waiting on router input port j to be 
served (dly_hdr_cont(jo)) or finally the tagged packet may arrive 
uniformly on each body-flit (of a disrupting packet) when it is 
crossing the router in a pipeline way (mean packet length L). 
Regarding the probability of contention with the header or body 
of a disrupting packet, dly_conto(ij) is obtained from equation 3: 
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Where dly_hdr_cont(jo)is the delay met by the header of 
disrupting packet in contention with other packets, which are 
similarly considered as disrupting packets for the first one. The 
“impact-buf” is the back pressure impact which arises when the 
contention in the network is very high. When the number of flits 
accumulated in the buffer exceeds the buffer size, packets have to 
wait until this extra flits, retro-propagated in preceding input 
buffers, be transferred. In section III.C.2 we explain how we 
compute the average link-buffer utilization. It depends on the 
latency of the following node which is supposed to be computed 
in advance regarding the computation order. 
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As expressed in equations 2 and 3 there is a reciprocal 
dependency between header contention delays of different 
packets competing for output o. E.g. dly_hdr_cont(io) in (Eq.2) is 
a function of dly_conto(ij) which itself is a function of  
dly_hdr_cont(jo)and vice versa. We propose an iterative 
computation (III.B) that for a given node determines latencies 
between all competing inputs and the associated output port. The 
iteration starts with dly_hdr_cont(jo)=0 in Eq.3 for all j.  

2) Contention Probability  

At a given router N the probability of contention between the 
tagged packet coming from input i and a disrupting packet 
coming from j for obtaining output o is called pr_conto(ij) and in 
a general way we have: 

joioo PP(ij)cont_pr     

Pjo depicts the probability of the presence of data on link j 
addressing link o. In our method we assume that the tagged 
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packet is already present, so Pio = 1 and therefore the contention 
probability is equal to Pjo (pr_conto(ij)=pjo). In quasi zero loads 
when the probability of contention is very weak, the forwarding 
rate λjo (the data rate from input link j to output link o of the 
router) is a good approximation for pr_conto(ij). But in practice 
when the load increases, all delays imposed to the header of a 
disrupting packet (i.e. delay header contention and impact buffer) 
result in increasing the probability of contention and must be 
taken into account: (Eq.4) 

L
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Where λjo is the forwarding rate and is determined from 
distribution traffic matrix (T) and routing algorithm. Similar to 
dly_conto(ij), pr_conto(ij) is a function of dly_hdr_cont(jo)and 
obtained from iterations. In the same way the first iteration begins 
with dly_hdr_cont(jo)=0 in Eq.4 for all j. 

B. Iterating Refinement 
 To compute and refine the reciprocal impact of different 

flows to each other we perform iterations on all inputs competing 
for the same output of a router. For each iteration one of the 
competing inputs is marked as the tagged packet (iTag) and others 
are marked as disrupting packet inputs. For example in fig.3 four 
inputs i1, i2, i3 and i4 of router Np compete for the output o. Each 
iteration aims to find the header contention delay between input 
port iTag and output port o (dly_hdr_cont(iTago)). The probability 
and delay of contention with disrupting input i (pr_conto(itagi), 
pr_conto(itagi)) are computed according to equations 4 and 3 
respectively in which the dly_hdr_cont(io) is obtained from the 
previous iteration. The first iteration starts with 
dly_hdr_cont(io)=0 and returns the header contention delay of 
iTag (dly_hdr_cont(i1o)) which is used in the second iteration for 
finding dly_hdr_cont(i2o). We note that i1 is the tagged packet 
port in iteration 1 while it is considered as a disrupting packet in 
iteration 2. More we progress in iterations more the result 
becomes accurate. Clearly iterations make a loop (for example in 
the fifth iteration i1 is again considered as iTag). As soon as two 
successive iterations for the same iTag is less than a constant ε 
(determined by the desired accuracy) we can stop the iteration for 
that input. The iteration approach provides the latencies of 
reaching a given output port from all possible input ports of a 
given node. 

 

Fig.3 Iterating Latency calculation for different inputs (i1, i2, 
i3, i4) competing for obtaining the same output (o) 

C. Link Transfer Delay 
The link transfer delay (dly_link_xfr) is the time duration a 

packet header takes to be transferred through the buffer of link 
NpNp+1 after acquisition of the output port at NP. This delay 
includes the buffer latency (dly_buf_const) which is a constant 
delay required for traversing the buffer even when it is empty and 
depends on buffer architecture, and the pipeline delay 
(dly_buf_pipo) caused by flits previously accumulated in the 
buffer: dly_link_xfro = dly_buf_const + dly_buf_pipo(i) 

In fact dly_buf_pipo(i) is the average number of flits 
accumulated in front of the packet from input i, immediately 
when its output port o is allocated: 
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Where dly_bufo(j) is the buffer space occupied after the 
transmission of a disrupting packet coming from input j in 
contention with i. The first sigma covers the cases in which the 
tagged packet is in contention with a disrupting packet and 
therefore meets all the buffer space occupied by that disrupting 
packet (dly_bufo(j)) while the second sigma covers the cases in 
which it arrives just after a transmission (no contention for the 
obtaining of the output port) and in this case the tagged packet 
meets the mean buffer space taken by previous transmissions 
(dly_bufo(j)/2) which could be even from its own input.  

dly_bufo(j) is equal to the pipelined delay dly_buf_pipo(j) plus 
the time the header of that disrupting packet waits before being 
routed at NP+1(stop_next_node). Similar to dly_hdr_cont for 
computing dly_buf_pipo, we consider the reciprocal impact of all 
incoming flows addressing output o of Np, on each other by 
performing iterations. 
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1) Stop at Next-Node and recursive computation 
Clearly while the header is waiting at input port of NP+1 the 

body flits are accumulated behind it and since the packet header 
can be routed to different output links of Np+1, stop-next-node is 
equal to the average latency needed for acquiring any of these 
outputs. If O be the set of all possible outputs of NP+1 to which a 
packet from i (of NP+1) may be routed and fio, o O the 
forwarding probability then we have: 
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As stated stop_next_node is a function of acquisition delays and 
impact buffers of all output o O of NP+1 and recursively triggers 
the same computation for all output port of node Np+1 which are 
similarly dependent on their following nodes. As mentioned 
before this dependency to following nodes makes a graph of 
dependency that must be covered from its tails (i.e. cores) and in 
a reverse order. So by implementing a recursive algorithm and 
calling it for a desired node we are able to cover the whole graph. 
The recursive algorithm traverses the graph until the cores and 
then it computes the mean latency of each node of the graph and 
uses it for computing the mean latency of its backward dependent 
node and continues until the latency of the desired node obtained. 

2) FIFO utilization 

The average utilization of the fifo connected to output port o 
is equal to the data forwarding rate of port o (i.e. the sum of all of 
forwarding rates λio) plus the average rate of the occupied buffer 
space after the transfer of packets for all possible input port i. 
Note that dly-bufo is the average occupied buffer space after the 
transfer of a specific packet and to obtain the rate of occupation it 
must be multiplied by the forwarding rate. 
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IV. EXPERIMENTAL RESULTS   
In order to experimentally evaluate our method we have 

targeted a NoC architecture arranged in a two dimensional mesh 
topology with an x-first (X-Y) routing algorithm [16]. 2D-mesh 
topology and x-first routing algorithm are adequate choices for 
regular and homogeneous NoC architectures[7]. We choose a 
uniform random traffic pattern which according to [17] is the 
most common traffic pattern used for NoC performance 
evaluations. In this experiment we assume that cores (local 
subsystems) consume the incoming packets with the constant rate 
of one flit per cycle. The results for a 5x5 2D-mesh NoC are 
presented. Mean packet length set to 16 flits which is typically 
the length of a cash-line request. Offered-load is expressed with 
the average number of flits per 100 cycles per core. Latency vs. 
offered-load curve for path N5,1 N1,5 (the diagonal path of the 
NoC) is presented in fig. 4. Obtained result is compared with the 
result of a corresponding SystemC CABA simulation platform 
according to which the service time of header flits (dly_hdr_serv) 
is set to 1 cycle and dly_const_buf to 2 cycles. In simulations for 
each offered-load we have taken the average latency of 1000 
received packets per destination. As it can be observed, the 
inaccuracy of our approach (compared with the simulation 
results) is less than 5% for offered-loads less than 35%. After this 
the offered-load the NoC begins to be saturated and the latency 
tends to infinity. Our method predicts a saturation threshold of 
37% for this NoC architecture which is very close to what the 
simulation demonstrates. Comparing to results of the method 
proposed in [11] our method seems to provide a more accurate 
approximation for the saturation threshold. 

 

Fig.4 latency/load curve for N5,1N1,5 

Fig.5 shows average buffer utilizations for all buffers along 
the path N5,1N1,5. Buffers are numerated from source to 
destination (1=buffer N5,1N4,1 etc.) at offered-load=30%.  
Table.1 compares simulation and analytic run-time for analyzing 
the diagonal path (the longest path form bottom-right to top-left) 
in a 2D-mesh NoC with different dimensions. 

V. CONCLUSION 

In this paper a novel numerical analysis method has been 

proposed for computing the mean packet latency between two 
nodes of a given NoC. It also provides average buffer utilization 
and port-to-port router latency, dominated by both port-
acquisition and link-transfer delays. It finds as well the saturation 
threshold of the network within a good accuracy (comparing to 
simulation). The experimentally evaluation of the method and 
comparison with the corresponding CABA SystemC simulations 
have shown that the method provides quite accurate results.  

The methodology is generic and adaptable to arbitrary NoC 
topology and deterministic deadlock free routing algorithms. It 

supports arbitrary packet and buffer length with a worm-hole 
routing policy and works for applications that could be 
formalized into the form of a distribution traffic matrix. 

 
Fig.5 Mean-Buffer-Utilization for buffers of the path N5,1N1,5  

at offered-load 30%   
Table.2 Run-Time comparison 

NoC Path 
Simulation Run-Time 

(second) 
Analytical Run-Time 

(second) 

4x4 N4,1N1,4 9332 (~ 3 hours) 1 

5x5 N5,1N1,5 16121 (~ 5hours) 2 

6x6 N6,1N1,6 34415 (~10 hours) 6 

10x10 N10,1N1,10 More than 48 hours 46 

Although currently we do not cover the case of several VCs, 

we believe that if the distribution of traffic on each virtual 

network is specified (to have one traffic-matrix and one routing 

function per virtual network) then it is possible to extend our 

method to several stages of arbitration within each router. A 

comprehensive study of this possibility is left for future work.   
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