
An Analytical Method for Evaluating Network-on-Chip Performance

Sahar Foroutan1,2, Yvain Thonnart2, Richard Hersemeule1, Ahmed Jerraya2
1 ST-Microelectronics, 2 CEA-Leti

{sahar.foroutan, yvain.thonnart, ahmed.jerraya}@cea.fr

richard.hersemeule@st.com

Abstract

Today, due to the increasing demand for more and more

complex applications in the consumer electronic market segment,

Systems-on-Chip consist of many processing elements and

become larger and larger. While on-chip system designers must

be able to get fast and accurate communication performance

analysis for such huge systems, the simulation-based approaches

are not adequate anymore. Addressing the increasing need for

early performance evaluation in NoC-based system design flow,

this paper presents a generic analytical method to estimate

communication latencies and link-buffer utilizations for a given

NoC architecture with a given application mapped on it. The

accuracy of our method is experimentally compared with the

results obtained from Cycle-Accurate SystemC simulations.

I. INTRODUCTION
The broad interest in Network-on-Chip (NoC) technology has

led to the definition of many NoC architectures, implementation
strategies, and network performance evaluation methods [1-4].
Due to growing SoC complexity, NoC communication
parallelism and the need to tight time-to-market design
flows, traditional simulation-based methods don’t fulfill anymore
all requirements of performance evaluation domains: they are
extremely slow, non-exhaustive, non-scalable with growing
system size and also they are achieved relatively late in design
flow. Mathematical and analytical methods seem to be reliable
alternatives for performance evaluation purposes before
implementation and very soon in design process.

This paper presents a performance evaluation method based
on a numerical analysis approach providing the average buffer
utilizations, the mean packet latency and the router port-to-port
latency of a given NoC architecture. The average buffer
utilization gives helpful insights into optimal link capacity
allocation and the distribution of the traffic over network buffers.
The packet latency is an essential metric in NoC-based system
performance and helps to estimate the application runtime.
Expressed as a function of offered-load, packet latency can
demonstrate the maximum acceptable throughput (saturation
threshold) of a network.

NoC performance evaluation is traditionally based on
simulation [5-7]. Nevertheless, analytical techniques using
queuing theory have also been proposed to measure the
communication latency of NoCs and parallel computer networks
(off-chip communication) [8-14]. Some of them target only a
particular network topology such as [12, 13] which are restricted
to k-ary n-cubes or hypercube network topologies. Some others
place limitation on buffer or packet size, like [10] which
addresses wormhole routing with exponentially distributed
message length, or [14] proposing an analytical model for
wormhole routing delay but restricted to networks with single flit
buffer capacity. In [14] the end-to-end transfer delay is
approximated for packets larger than the buffers along their path.
Link acquisition time is ignored by assuming that there are as

many virtual channels as the number of flows sharing the same
physical link (so every head flit can acquire a VC instantaneously
on every link it traverses). Using queuing models, the method
approximates the link transmission time by considering the time
attributed to other virtual channels (i.e. other flows) that
interleave over the same physical link. Actually, the authors
analyze a “quasi-“circuit-switching case while our proposed
method investigates packet-switching cases dominated by both
port acquisition and link transfer delays. Authors of [11] present
a more general queuing theory based model addressing wormhole
routing with arbitrary size messages and finite buffers under
application-specific traffic patterns also supporting arbitrary
network topology and deterministic routing. While the framework
of our approach relies on the same assumptions, our methodology
is different from theirs: our approach is based on numerical
analysis and iterative computation, whereas [11] relies on the
generalization of the single queue model to multiple queues in the
router. Using that approach, however, the backpressure effect due
to downstream contention tends to be minimized, and thus the
saturation effect arises later than what can be observed in
simulations.

The method presented in this paper is generic with respect to
the implementation in the sense that it supports arbitrary network
topologies and deadlock-free routing algorithms with arbitrary
packet and buffer lengths. Regarding the applications, we target
known traffics with any repartition on the NoC as long as it can
be approximated with Poisson distributions (modeled by mean
values). The paper is structured as follows: In section II we
discuss the basic concepts and assumptions. Section III explains
our analytical method in detail. Section IV includes experimental
results and the comparison with the simulation results. Finally
section V concludes the paper.

II. PACKET LATENCY
The definition of NoC latency varies from one work to

another. It can be measured per data word, header, packet, or
message transfer (several packets) while including or excluding
the time at the source queue [15].

Fig.1: At each node of the path disrupting packets appear

probabilistically in front of tagged packet.

The term packet latency is interpreted in this paper as the
mean latency of a tagged packet traversing the NoC from a given
source to a given destination. Packets are considered atomic (i.e.
they cannot be divided into shorter pieces by the network) so
when the header of a packet arrives to a port the packet body

N0 N1 N2 N3 N4

S C1 C2

2
C3 D

tag-pkt path from Source to Destination
Disrupting packets (dsrp-pkt)

lat_c2e_N0 lat_w2e_N1 lat_w2e_N2 lat_w2e_N3 lat_w2c_N4

978-3-9810801-6-2/DATE10 © 2010 EDAA

arrives immediately after it. In fig.1 the black arrows represent
the tagged packet’s path from its source to its destination, while
dashed arrows demonstrate “disrupting packets” competing with
the tagged packet for the same output at each node. The proposed
method computes separately the mean latency of each node of the
path by considering the probabilities and delays of contention
between the tagged packet and all other disrupting packets
arriving to that node. Node mean latencies are then summed up to
give the mean latency of the entire path. For computing the node
mean latency we propose an iterative approach that enables us to
consider the reciprocal impact of all incoming flows to that node,
on each other. Since the latency of a node depends on the latency
of its following node and so on, the order for computing node-
latencies is important and must follow the reverse order of
dependencies. We use a recursive algorithm that regarding the
NoC topology, routing algorithm and traffic pattern finds all
latency dependencies and returns the node latencies and average
buffer utilizations according to the proper computation order.

III. NODE LATENCY

The term “node latency” is used in this paper as the mean
latency that the tagged packet header needs to cross a node and
the buffer after the node. It is labeled with “lat-in2out-Np” when
the tagged packet arrives from “in” port and targets “out” ports
of node Np, and includes two following components (fig.2):

1. The port-acquisition delay (dly_port_acq): is the delay

needed for the header flit to acquire its output port and is

counted from the moment the packet header appears at the

head of the input buffer of Np until the moment its output

port is allocated and so it can be written in the input buffer

of the next node (Np+1).

2. The link transfer delay (dly_link_xfr): The time duration

a packet header takes for being transferred through the

buffer of link NpNp+1 and is counted from the moment the

packet header is written to the buffer until the moment it

arrives to the head of that buffer (at input port of Np+1).

Fig.2: lat-w2e-Np = dly_port_acq + dly_link_xfr

A. Port Acquisition Delay
Port acquisition delay includes the router service time for the

packet header (dly_hdr_serv) and also the delay caused by
contentions with other disrupting packets competing for the same
output port (dly_hdr_cont):

dly_port_acq(io) =dly_hdr_cont(io)+dly_hdr_serv (Eq.1)

Router service time is a function of router architecture and
considered as an input parameter for the method. The header
contention delay (dly_hdr_cont) depends on the probabilities of
contention (pr_cont) between the tagged packet and all other
competing inputs and also the delay each disrupting packet
causes until it releases the shared output port (dly_cont). We
assume that arbitration mechanism is starvation-free and fair in

the sense that it is symmetric in terms of probability of selection
of simultaneous packets on the inputs. Also we assume that at
most one packet from each demanding input is allowed to pass
after arbitration (never two consecutive packets from the same
input are routed at a single allocation when there is other
demanding inputs). With this assumption we have:


 ijIj

OO (ij)contdly(ij)contprcont(io)rhddly
,

.= __ (Eq.2)

Where I is the set of all input ports competing for the output
port o, assuming the tagged-packet is present at input port i.

1) Contention Delay
Contention delay dly_conto(ij) is the mean delay a disrupting
packet coming from input port j produces in front of the tagged
packet from input port i, before releasing the shared output port
o. The tagged packet may arrive on anytime of the presence of a
disrupting packet: it may arrive when the disrupting packet is
stalled by the rest of previous flits accumulated in buffer (impact-
buf(o)) or when its header is waiting on router input port j to be
served (dly_hdr_cont(jo)) or finally the tagged packet may arrive
uniformly on each body-flit (of a disrupting packet) when it is
crossing the router in a pipeline way (mean packet length L).
Regarding the probability of contention with the header or body
of a disrupting packet, dly_conto(ij) is obtained from equation 3:

BAjoconthdrdlyFijcontdly o *))(__()(_  (Eq.3)

cont(jo)_hdr_dlybuf(o)_impactL

buf(o)impactL
A






_

)
2

1_
(cont(jo)_hdr_dly

buf(o)impactL
B 




Where dly_hdr_cont(jo)is the delay met by the header of
disrupting packet in contention with other packets, which are
similarly considered as disrupting packets for the first one. The
“impact-buf” is the back pressure impact which arises when the
contention in the network is very high. When the number of flits
accumulated in the buffer exceeds the buffer size, packets have to
wait until this extra flits, retro-propagated in preceding input
buffers, be transferred. In section III.C.2 we explain how we
compute the average link-buffer utilization. It depends on the
latency of the following node which is supposed to be computed
in advance regarding the computation order.



 


otherwise1)(-

1)-(0

-buf_sizeused_bufAvr_

buf_sizeufAvr_used_b
bufimpact_

As expressed in equations 2 and 3 there is a reciprocal
dependency between header contention delays of different
packets competing for output o. E.g. dly_hdr_cont(io) in (Eq.2) is
a function of dly_conto(ij) which itself is a function of
dly_hdr_cont(jo)and vice versa. We propose an iterative
computation (III.B) that for a given node determines latencies
between all competing inputs and the associated output port. The
iteration starts with dly_hdr_cont(jo)=0 in Eq.3 for all j.

2) Contention Probability

At a given router N the probability of contention between the
tagged packet coming from input i and a disrupting packet
coming from j for obtaining output o is called pr_conto(ij) and in
a general way we have:

joioo PP(ij)cont_pr 

Pjo depicts the probability of the presence of data on link j
addressing link o. In our method we assume that the tagged

Np
tag-pkt

West-in
East-out

North-in Core-in

South-in

tag-pkt
dsrp-pkt

Np+1

West-in

lat_w2e_Np

dly_port_acq dly_link_xfr

packet is already present, so Pio = 1 and therefore the contention
probability is equal to Pjo (pr_conto(ij)=pjo). In quasi zero loads
when the probability of contention is very weak, the forwarding
rate λjo (the data rate from input link j to output link o of the
router) is a good approximation for pr_conto(ij). But in practice
when the load increases, all delays imposed to the header of a
disrupting packet (i.e. delay header contention and impact buffer)
result in increasing the probability of contention and must be
taken into account: (Eq.4)

L

cont(jo)hdrdlybufimpactL

cont(jo))hdrG(dly(ij)contpr

jo

o







Where λjo is the forwarding rate and is determined from
distribution traffic matrix (T) and routing algorithm. Similar to
dly_conto(ij), pr_conto(ij) is a function of dly_hdr_cont(jo)and
obtained from iterations. In the same way the first iteration begins
with dly_hdr_cont(jo)=0 in Eq.4 for all j.

B. Iterating Refinement
 To compute and refine the reciprocal impact of different

flows to each other we perform iterations on all inputs competing
for the same output of a router. For each iteration one of the
competing inputs is marked as the tagged packet (iTag) and others
are marked as disrupting packet inputs. For example in fig.3 four
inputs i1, i2, i3 and i4 of router Np compete for the output o. Each
iteration aims to find the header contention delay between input
port iTag and output port o (dly_hdr_cont(iTago)). The probability
and delay of contention with disrupting input i (pr_conto(itagi),
pr_conto(itagi)) are computed according to equations 4 and 3
respectively in which the dly_hdr_cont(io) is obtained from the
previous iteration. The first iteration starts with
dly_hdr_cont(io)=0 and returns the header contention delay of
iTag (dly_hdr_cont(i1o)) which is used in the second iteration for
finding dly_hdr_cont(i2o). We note that i1 is the tagged packet
port in iteration 1 while it is considered as a disrupting packet in
iteration 2. More we progress in iterations more the result
becomes accurate. Clearly iterations make a loop (for example in
the fifth iteration i1 is again considered as iTag). As soon as two
successive iterations for the same iTag is less than a constant ε
(determined by the desired accuracy) we can stop the iteration for
that input. The iteration approach provides the latencies of
reaching a given output port from all possible input ports of a
given node.

Fig.3 Iterating Latency calculation for different inputs (i1, i2,
i3, i4) competing for obtaining the same output (o)

C. Link Transfer Delay
The link transfer delay (dly_link_xfr) is the time duration a

packet header takes to be transferred through the buffer of link
NpNp+1 after acquisition of the output port at NP. This delay
includes the buffer latency (dly_buf_const) which is a constant
delay required for traversing the buffer even when it is empty and
depends on buffer architecture, and the pipeline delay
(dly_buf_pipo) caused by flits previously accumulated in the
buffer: dly_link_xfro = dly_buf_const + dly_buf_pipo(i)

In fact dly_buf_pipo(i) is the average number of flits
accumulated in front of the packet from input i, immediately
when its output port o is allocated:








Ij

o
o

ijIj
oo

o

2

(j)dly_buf
(j)bufpr_(j)dly_buf(ij)pr_cont

(i)pdly_buf_pi

)(
,

Where dly_bufo(j) is the buffer space occupied after the
transmission of a disrupting packet coming from input j in
contention with i. The first sigma covers the cases in which the
tagged packet is in contention with a disrupting packet and
therefore meets all the buffer space occupied by that disrupting
packet (dly_bufo(j)) while the second sigma covers the cases in
which it arrives just after a transmission (no contention for the
obtaining of the output port) and in this case the tagged packet
meets the mean buffer space taken by previous transmissions
(dly_bufo(j)/2) which could be even from its own input.

dly_bufo(j) is equal to the pipelined delay dly_buf_pipo(j) plus
the time the header of that disrupting packet waits before being
routed at NP+1(stop_next_node). Similar to dly_hdr_cont for
computing dly_buf_pipo, we consider the reciprocal impact of all
incoming flows addressing output o of Np, on each other by
performing iterations.

L

jdly_buf
(j)pr_buf

nodestop_next_(j)pdly_buf_pijdly_buf

o
joo

oo

)(

)(





1) Stop at Next-Node and recursive computation
Clearly while the header is waiting at input port of NP+1 the

body flits are accumulated behind it and since the packet header
can be routed to different output links of Np+1, stop-next-node is
equal to the average latency needed for acquiring any of these
outputs. If O be the set of all possible outputs of NP+1 to which a
packet from i (of NP+1) may be routed and fio, o O the
forwarding probability then we have:























Oi

N

io

N

ioN

io

Oo
NN

N
io

p

p

p

1p1p

P

f

(o)impact_bufiocqdly_port_afnodestop_next_

1

1

1

1))((





As stated stop_next_node is a function of acquisition delays and
impact buffers of all output o O of NP+1 and recursively triggers
the same computation for all output port of node Np+1 which are
similarly dependent on their following nodes. As mentioned
before this dependency to following nodes makes a graph of
dependency that must be covered from its tails (i.e. cores) and in
a reverse order. So by implementing a recursive algorithm and
calling it for a desired node we are able to cover the whole graph.
The recursive algorithm traverses the graph until the cores and
then it computes the mean latency of each node of the graph and
uses it for computing the mean latency of its backward dependent
node and continues until the latency of the desired node obtained.

2) FIFO utilization

The average utilization of the fifo connected to output port o
is equal to the data forwarding rate of port o (i.e. the sum of all of
forwarding rates λio) plus the average rate of the occupied buffer
space after the transfer of packets for all possible input port i.
Note that dly-bufo is the average occupied buffer space after the
transfer of a specific packet and to obtain the rate of occupation it
must be multiplied by the forwarding rate.

Tagged packet
Disrupting packets

Np
o

i2

i3

i4

Np
o

i1

i3

iTag

i4

Np
o

i1 i2

i4

Np
o

i1 i2

i3

Iteration 1

Iteration 3
Iteration 2

Iteration 4

iTag

iTag

iTag






Ii
oio ibufdlyotilzationmean_buf_u))(_1()(

IV. EXPERIMENTAL RESULTS
In order to experimentally evaluate our method we have

targeted a NoC architecture arranged in a two dimensional mesh
topology with an x-first (X-Y) routing algorithm [16]. 2D-mesh
topology and x-first routing algorithm are adequate choices for
regular and homogeneous NoC architectures[7]. We choose a
uniform random traffic pattern which according to [17] is the
most common traffic pattern used for NoC performance
evaluations. In this experiment we assume that cores (local
subsystems) consume the incoming packets with the constant rate
of one flit per cycle. The results for a 5x5 2D-mesh NoC are
presented. Mean packet length set to 16 flits which is typically
the length of a cash-line request. Offered-load is expressed with
the average number of flits per 100 cycles per core. Latency vs.
offered-load curve for path N5,1 N1,5 (the diagonal path of the
NoC) is presented in fig. 4. Obtained result is compared with the
result of a corresponding SystemC CABA simulation platform
according to which the service time of header flits (dly_hdr_serv)
is set to 1 cycle and dly_const_buf to 2 cycles. In simulations for
each offered-load we have taken the average latency of 1000
received packets per destination. As it can be observed, the
inaccuracy of our approach (compared with the simulation
results) is less than 5% for offered-loads less than 35%. After this
the offered-load the NoC begins to be saturated and the latency
tends to infinity. Our method predicts a saturation threshold of
37% for this NoC architecture which is very close to what the
simulation demonstrates. Comparing to results of the method
proposed in [11] our method seems to provide a more accurate
approximation for the saturation threshold.

Fig.4 latency/load curve for N5,1N1,5

Fig.5 shows average buffer utilizations for all buffers along
the path N5,1N1,5. Buffers are numerated from source to
destination (1=buffer N5,1N4,1 etc.) at offered-load=30%.
Table.1 compares simulation and analytic run-time for analyzing
the diagonal path (the longest path form bottom-right to top-left)
in a 2D-mesh NoC with different dimensions.

V. CONCLUSION

In this paper a novel numerical analysis method has been

proposed for computing the mean packet latency between two
nodes of a given NoC. It also provides average buffer utilization
and port-to-port router latency, dominated by both port-
acquisition and link-transfer delays. It finds as well the saturation
threshold of the network within a good accuracy (comparing to
simulation). The experimentally evaluation of the method and
comparison with the corresponding CABA SystemC simulations
have shown that the method provides quite accurate results.

The methodology is generic and adaptable to arbitrary NoC
topology and deterministic deadlock free routing algorithms. It

supports arbitrary packet and buffer length with a worm-hole
routing policy and works for applications that could be
formalized into the form of a distribution traffic matrix.

Fig.5 Mean-Buffer-Utilization for buffers of the path N5,1N1,5

at offered-load 30%
Table.2 Run-Time comparison

NoC Path
Simulation Run-Time

(second)
Analytical Run-Time

(second)

4x4 N4,1N1,4 9332 (~ 3 hours) 1

5x5 N5,1N1,5 16121 (~ 5hours) 2

6x6 N6,1N1,6 34415 (~10 hours) 6

10x10 N10,1N1,10 More than 48 hours 46

Although currently we do not cover the case of several VCs,

we believe that if the distribution of traffic on each virtual

network is specified (to have one traffic-matrix and one routing

function per virtual network) then it is possible to extend our

method to several stages of arbitration within each router. A

comprehensive study of this possibility is left for future work.

References

[1] K. Goossens, J. Dielissen, and A. Radulescu, "AEthereal Network on Chip: Concepts,

Architectures, and Implementations," IEEE Des. Test, vol. 22, pp. 414-421, 2005.

[2] T. Bjerregaard, "The MANGO Clockless Network-on-Chip: Concepts and

Implementation." vol. PhD thesis: Technical University of Denmark, 2005.

[3] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin, "An Asynchronous NOC

Architecture Providing Low Latency Service and Its Multi-Level Design Framework," in

Proceedings of the 11th IEEE International Symposium on Asynchronous Circuits and

Systems: IEEE Computer Society, 2005.

[4] M. Coppola, M. D. Grammatikakis, R. Locatelli, G. Maruccia, and L. Pieralisi, Design of

Cost-Efficient Interconnect Processing Units: Spidergon STNoC, 2008.

[5] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, and M. Poncino, "Legacy

SystemC co-simulation of multi-processor systems-on-chip," 2002, pp. 494–499.

[6] S. G. Pestana, E. Rijpkema, A. Radulescu, K. Goossens, and O. P. Gangwal, "Cost-

Performance Trade-Offs in Networks on Chip: A Simulation-Based Approach," in

Proceedings of the conference on Design, automation and test in Europe - Volume 2:

IEEE Computer Society, 2004.

[7] A. Sheibanyrad, I. Miro Panades, and A. Greiner, "Systematic comparison between the

asynchronous and the multi-synchronous implementations of a network on chip

architecture," in Design Automation and Test in Europe (DATE) Nice, France: EDA

Consortium (IEEE, ACM), 2007, pp. 1090-1095.

[8] P. Hu and L. Kleinrock, "An analytical model for wormhole routing with finite size input

buffers," 1997, pp. 549-560.

[9] A. E. Kiasari, D. Rahmati, H. Sarbazi-Azad, and S. Hessabi, "A Markovian Performance

Model for Networks-on-Chip," 2008, pp. 157-164.

[10] W. J. Guan, W. K. Tsai, and D. Blough, "An analytical model for wormhole routing in

multicomputerinterconnection networks," 1993, pp. 650-654.

[11] U. Y. Ogras and R. Marculescu, "Analytical router modeling for networks-on-chip

performance analysis," 2007, pp. 1-6.

[12] W. J. Dally, "Performance analysis of k-ary n-cube interconnection networks," IEEE

Transactions on Computers, vol. 39, pp. 775-785, 1990.

[13] A. Khonsari, M. Ould-Khaoua, and J. Ferguson, "A General Analytical Model of

Adaptive Wormhole Routing in k-Ary n-Cube Interconnection Networks," SIMULATION

SERIES, vol. 35, pp. 547-554, 2003.

[14] Z. Guz, I. Walter, E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, "Network Delays

and Link Capacities in Application-Specific Wormhole NoCs," Special Issue of the

Journal of VLSI Design, 2007.

[15] E. Salminen, A. Kulmala, and T. D. Hamalainen, "On network-on-chip comparison," in

DSD 2007. 10th Euromicro Conference on Digital System Design Architectures,

Methods and Tools, 2007.

[16] W. J. Dally, Principles and practices of interconnection networks: Morgan Kaufmann,

2004.

[17] E. Salminen, A. Kulmala, and T. D. Hamalainen, "On network-on-chip comparison,"

2007, pp. 503-510.

	Main
	DATE'10
	Front Matter
	Table of Contents
	Author Index

