
A Modeling Method by Eliminating Execution
Traces for Performance Evaluation

Kouichi Ono†, Manabu Toyota‡, Ryo Kawahara†, Yoshifumi Sakamoto‡, Takeo Nakada† and Naoaki Fukuoka§
† IBM Research - Tokyo, 1623-14 Shimotsuruma, Yamato-shi, Kanagawa, 242-8502 Japan

‡ Component Technology Solution, IBM Japan, Ltd., 338 Enpukuji-cho, Nakagyou-ku, Kyoto, 604-8175 Japan
§ Tokyo R&D Center, KYOCERA MITA Corp., 2-14-9 Tamagawadai, Setagaya-ku, Tokyo, 158-8610 Japan

[onono|mtoyota|ryokawa|sakay|nakada]@jp.ibm.com, naoaki_fukuoka@kyoceramita.co.jp

Abstract—This paper describes a system-level modeling
method in UML for performance evaluation of embedded sys-
tems. The core technology of this modeling method is reverse
modeling based on dynamic analysis. A case study of real MFPs
(multifunction peripherals/printers) is presented in this paper to
evaluate the modeling method.

I. INTRODUCTION

It is necessary to decide the system architecture in the
early stages of product development to achieve the required
performance. System-level simulations based on models are
good solutions for performance estimation in the early stage
of product development. Unified Modeling Language (UML)
is widely used to model a large variety of application software.
Nowadays, it is generally recognized that embedded and real-
time systems are good target for UML [2].

This paper proposes a reverse modeling method in UML
for performance evaluation of system-level design of legacy
embedded systems. The modeling method is a reverse engi-
neering for creating abstract behavioral features using dynamic
analysis of the existing systems.

II. RELATED WORK

Tonella and Potrich proposed a reverse modeling method
using static flow analysis [6] which was a technique for the
automatic extraction of UML interaction diagrams from C++
code. The method makes no abstractions when interaction
diagrams are extracted. Therefore, it is not able to create
abstract models of system-level design.

Briand et al. proposed a reverse modeling method using
dynamic analysis [1] which formally defined a model trans-
formation approach using metamodels and consistency rules.
The method also makes no abstraction when a model is created
by applying rules.

III. MODELING METHOD AND SIMULATION

An overview of our model-based performance evaluation
method is shown in Fig. 1. The method starts by capturing the
execution traces of the target embedded system’s behaviors
[4]. The execution traces consist of the entries and exits of
function invocations with their timestamps and the values of
selected parameters. The execution traces are eliminated by
the reverse modeling, sequence diagrams are created, and then
state machine diagrams are created. After that, the model is

Fig. 1. Overview of Model-based Performance Evaluation

modified to represent the architectural changes that denotes
parallelization to improve the system performance for the next-
generation products. At the same time, performance informa-
tion is extracted from the execution traces as external files,
and used when the model is executed to simulate the system
performance. This means that the model simulation is a sort
of trace-driven simulation [5]. A simulation of the modified
model with the performance parameter files will estimate the
system performance at the next-generation products.

This paper is focusing on the reverse modeling method,
which is the key technology of our work. The method involves
the modeling using dynamic analysis, which creates a model
from the execution traces captured while observing the behav-
iors of the embedded system. There are two reasons why the
method is defined as a method using dynamic analysis. The
first reason is the accuracy of the system behaviors. Static
analysis can extract precise information from the source code.
However, several aspects of dynamic characteristics make
accurate analysis difficult. These include data dependencies,
pointers to functions, and others. Dynamic analysis can eluci-
date the performance of software components.

The second reason is abstraction. The complexity of model
must be reduced by abstraction of behaviors. To abstract the
behaviors, it is crucial to analyze the execution traces from an
appropriate viewpoint. Unimportant information for the behav-
iors as seen from the selected viewpoint should be eliminated
in the generated model. Since our method assumes the model
is used for the performance estimation by its simulation, our
concern is performance. For the dynamic analysis, execution

978-3-9810801-6-2/DATE10 © 2010 EDAA

Fig. 2. Abstraction of Execution Traces

traces can be abstracted when the execution traces include
performance information, such as execution times, resource
utilization, and so on. However, in the static analysis, source
code cannot be abstracted to reveal the performance because
performance information is not included in the source code
and the performance cannot be predicted without execution.

IV. REVERSE MODELING OF BEHAVIOR

The reverse modeling creates behavioral features from ex-
ecution traces. The execution traces are abstracted based on
the performance, so that unimportant invocations are merged
to important invocations. The importance of each function
invocations is calculated as a weight from the performance
information in the execution traces. For example, the execution
time of each invocation can be used as the weight. The se-
lection based on the importance of the function invocations is
called abstraction of execution traces. The selected invocations
are regarded as representatives of the system behavior, which
are dominant about the system performance on the behavior.
Therefore, the total execution time of selected invocations is a
large portion of the entire execution time of system behavior.

The outlook of abstraction of execution traces is shown
in Fig. 2. An execution trace includes entries and exits
for function invocations, timestamps, and other performance
information, Each function is subject to the identified object.

An object call tree T is defined as

T = (N, s), (1)

where N is a set of nodes that denote function invocations,
and s is a mapping from the node to a sequence of nodes that
denotes a list of function invocations called from inside the
invocation. The mapping s is defined as a partial function:

s : N 7−→ seq N, (2)

where seq N is a set of sequences of zero of more elements
in the set N . The sequence s(n) is a list of sub-nodes of a
node n in the object call tree.

Also, a mapping from the function invocation to object is
defined as a total function:

o : N −→ O, (3)

where O is a set of identified objects. The object o(n) is an
object where the function invocation n is the subject.

Suppose that the weight of the function invocations w is
given, which is a mapping from function invocations N to the
weight W . It is defined as a total function as follows.

w : N −→ W (4)

The mapping w must satisfy an invariant such that

∀n ∈ N

w(n) ≥
#s(n)∑
i=1

w(s(n)[i])

 , (5)

where #s(n) is the length of sequence s(n) and s(n)[i] is an
element as position i in the sequence s(n).

The execution time of function invocation satisfies the in-
variant because the execution time of every function invocation
equals the total amount of execution time of the sub-function
invocations. Therefore, the execution time can be used as w.
Alternatively, the amount of the datagram received from or
sent to the network or bus during the function invocation, and
the amount of memory allocated during the function invocation
can be used as w.

An abstract object call tree TA is defined as

TA = (NA, sA), NA ⊆ N, sA : NA 7−→ seq NA, (6)

where the node sequence sA(n) denotes a sequence of node
children as function invocations within the function of node n
in TA. In additions, NA and sA must satisfy the relationship:

∀n ∈ NA, ∀i ∈ N
[1 ≤ i ≤ #sA(n) →

r(n, sA(n)[i], s, o(n), o(sA(n)[i]))], (7)

where N is the set of natural numbers. And the reachability
predicate r(m, n, s, om, on) means that it is reachable from
the node m to n through the intermediate nodes which are
subject to om or on and are calculated by s. The predicate r
is defined as follows.

r(m,n, s, om, on) ≡
o(m) = om ∧
[m = n ∧ o(n) = on ∨

m 6= n ∧ rs(m,n, s, om, on)] (8)

rs(m,n, s, om, on) ≡
∃i ∈ N, k ∈ N [1 ≤ i ≤ #s(m) ∧ k = s(m)[i]

∧ (o(k) = om ∨ o(k) = on)
∧ r(k, n, s, o(k), on)] (9)

Suppose that the threshold t is given as a real number in
the closed interval [0, 1]. And NA and sA must satisfy the
following relationship to t:

∀n ∈ NA

#sA(n)∑
i=1

w(sA(n)[i]) ≥ t ∗ w(n)

 (10)

The object call tree T and the abstract object call tree TA

is shown in Fig. 2. The difference between T and TA is the
elimination of some nodes whose weights are not dominant to
the total amount. The node which is not dominant is eliminated
in two ways. The first one is simplification of nodes in an
object, which is related to Equation 7. In Fig. 2, the root node
invokes the node A and A invokes D. Both the root node
and A are subject to the same object V, and D is subject
to W. In short, A is an intermediate node on the interaction
between V and W, i.e. V interacts with W via the invocation of
A. The reverse modeling method suppresses the intermediate
nodes by merging them into the ancestor node which is the
representative of the object interactions.

The second one is condensation of leaf nodes, which is
related to Equation 10. In Fig. 2, the node E invokes J, K and
L. The node E and L are subject to the same object X, and
L is simplified and merged to E by the first elimination way
described above. The remaining node J and K are leaf nodes
and they are subject to the object Z which differs from X. It
represents that there are object interaction between X and Z.
It is supposed that the weight of K invoked from E is high
but the weight of J invoked from E is very low. The reverse
modeling method condenses the leaf nodes with low weight
where nodes with high weight exist in the same object of the
leaf nodes, by merging them into the ancestor node which is
the representative of the object interactions. Threshold is used
for deciding whether the leaf node is condensed.

In both node elimination ways, the ancestor node acts over
the eliminated nodes. It means that the abstraction substitutes
the ancestor nodes for the eliminated nodes as the represen-
tatives in the system behavior. Note that the node elimination
does not remove the eliminated nodes, but merges them to the
ancestor nodes for simplifying the behavioral representation.

After the abstract object call tree is created, the execution
trace is extracted by filtering with the nodes NA, then the
extracted execution trace is transformed into the abstract
sequence diagram shown at the right hand side in Fig. 2. State
machine diagrams of the identified objects can be created from
the abstract sequence diagram by existing model transforma-
tion technologies [3].

V. CASE STUDY - MFP PRINT JOB PROCESSING

A case study about applying this method to a real MFP is
presented in this section. An execution trace sample about the
print job processing component is shown at the left side in
Fig. 3. The print job processing is significant component of
MFP products. The execution trace is converted to the function
call tree Tf , and the performance parameters are extracted
from the trace shown at the right side in Fig. 3. The nodes
in Tf with digits (“14”, “15” and “31”) and the mark “*”
denotes iterative invocations, the digits are the numbers of
iterations, and the mark “*” means lots of iterations.

An object call tree T is created from the function call
tree Tf by object identification. For the reverse modeling,
it is necessary to identify objects by grouping functions or
classes of the source code. Since the system-level behavior

Fig. 3. An Execution Trace of Print Job Processing (as Function Call Tree
and Extracted Performance Parameters)

Fig. 4. Abstract Object Call Tree of Print Job Processing

should be considered as interactions of coarse-grained objects,
“modules” specified in the design documents are suitable as
the objects at this case. The tree T is shown at the left side in
Fig. 4. The tree T has 15,340 nodes. Since the tree T is very
large, its sequence diagram must be too much complicated.
Fig. 4 shows the elimination of the tree T by abstraction
argued in Section IV, in order to create an abstract object
call tree TA. At the abstraction of this case, the execution
time of function invocation is used as the weight, and the
threshold t given as 0.95 (95%). The nodes with the mark
“*” have very short execution times, therefore, the nodes are
eliminated although they are numerous. And, the intermediate
nodes are merged to the ancestor nodes because they are in
the same object of their ancestor. The tree TA created by
the abstraction has 155 nodes. The number of nodes will
be reduced considerably by the abstraction method. And the
behavioral model created with the abstract tree is appropriately
exact because the created abstract tree TA satisfies that the
amount of execution times in TA must be over 95% (the
threshold t) of the total amount of the execution traces. The
tree TA is transformed into a sequence diagram shown in
Fig. 5.

VI. EVALUATION

As an evaluation of the reverse modeling method, a com-
parison of system performance data between model simulation
and real system is discussed here. As the target real system,

Fig. 5. Abstract Sequence Diagram of Print Job Processing

we made a MFP product prototype. The MFP prototype was
developed on a FPGA board with dual-core PowerPC proces-
sors. The source code of existing MFP product was ported to
the platform, which was designed for single processor system.
After porting, we re-designed the MFP software for AMP
architecture. There are two major software components in
MFP print job processing. So one software component was
allocated to one PowerPC processor core, and another software
component was allocated to another PowerPC processor core,
and they are working in parallel. As the results of MFP
prototype development, we made the prototype for single
processing system and the prototype for AMP architecture.

The reverse modeling and simulation for performance evalu-
ation were done according to the following procedure. At first,
execution traces were captured by observation of the prototype
for single processing system. JEITA Printer Benchmark Test
Patterns were used for the system observation. And, the model
of single processing system was created by the reverse mod-
eling method from these execution traces. At the same time,
the performance parameters were extracted from the execution
traces. After that, the model of AMP architecture was created
by parallelizing the model of single processing system. And
then, performance results were evaluated by simulating the
model of AMP architecture with the performance parameters.
Finally, the performance evaluation results were compared
with the performance data by the system observation of the
MFP prototype of AMP architecture.

Fig. 6 shows the comparison of the model simulation results
and the MFP prototypes. There are the prototype for single
processing system (“Single Proc. (simulation)”), the model
of single processing system (“Single Proc. (observed)”), the
prototype for dual-core AMP architecture (“Asym. Multi. Proc.
(simulation)”), and the model of dual-core AMP architecture
(“Asym. Multi. Proc. (observed)”). Six test patterns in J12 set
of JEITA Printer Benchmark Test Patterns were used for the
comparison. For example, “J12p07” means that the test case
uses the page 07 test pattern in J12 set. Each test case consists
of the four same pages, and the test case “J12p07” is composed
of the four same pages as the page 07 in J12 set. For most print
test patterns, the performance evaluation results of the model
of dual-core AMP architecture are nearly equal to the results of

Fig. 6. Evaluation with JEITA Printer Benchmark Test Patterns

MFP prototype for dual-core AMP architecture. Note that, for
the AMP architecture cases, there are performance overhead
about data transfer between processors via the internal bus and
memory access. The performance overhead is relatively bigger
at the cases of small print test patterns (J12p13 and J12p15)
than the cases of large print test patterns (J12p02, J12p03,
J12p07 and J12p11).

VII. CONCLUSIONS

This paper presents a reverse modeling method for perfor-
mance evaluation using dynamic analysis of legacy embedded
systems. The method creates abstract behavioral feature of
models by eliminating execution traces of existing products.
Abstraction of behavioral feature by eliminating execution
traces is the key technology, which is done by consider-
ing every function invocation’s weight dominant to the total
amount how much the function will effect the entire system
performance. A case study about applying this method to real
MFP is presented in this paper as an evaluation of the reverse
modeling method.

REFERENCES

[1] L. C. Briand, Y. Labiche, and J. Leduc. Toward the reverse engineering of
UML sequence diagrams for distributed Java software. IEEE Transactions
on Software Engineering, 32(9):642–663, September 2006.

[2] S.-U. Jeon, J.-E. Hong, and D.-H. Bae. Interaction-based behavior
modeling of embedded software using UML 2.0. In Proceedings of Ninth
IEEE International Symposium on Object and Component-Oriented Real-
Time Distributed Computing (ISORC 2006), pages 351–355, Gyeongju,
Korea, April 2006. IEEE Computer Society.

[3] H. Liang, J. Dingel, and Z. Diskin. A comparative survey of scenario-
based to state-based model synthesis approaches. In Proceedings of the
2006 International Workshop on Scenarios and State Machines (SCESM
2006, co-located to ICSE 2006), pages 5–12, Shanghai, China, May 2006.
IEEE Computer Society / ACM.

[4] N. Ohba and K. Takano. Hardware debugging method based on signal
transitions and transactions. In Proceedings of the 11th Asia South
Pacific Design Automation Conference (ASP-DAC 2006), pages 454–459,
Yokohama, Japan, January 2006.

[5] C. A. Prete, G. Prina, and L. Ricciardi. A trace-driven simulator for
performance evaluation of cache-based multiprocessor systems. IEEE
Transactions on Parallel and Distributed Systems, 6(9):915–929, Septem-
ber 1995.

[6] P. Tonella and A. Potrich. Reverse engineering of the interaction diagrams
from C++ code. In Proceedings of the 19th International Conference on
Software Maintenance (ICSM 2003), pages 159–168, Kloveniersburgwal
29, Amsterdam, The Netherlands, September 2003. IEEE Computer
Society.

	Main
	DATE'10
	Front Matter
	Table of Contents
	Author Index

