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Abstract—High speed serial  interfaces  represent  the  new trend

for device-to-device communication. These systems require clock

recovery  modules  to  avoid  clock  forwarding.  In  this  paper we

present a high-speed clock recovery method usable with low-cost

FPGAs.  Our  proposed  solution  features  increased  speed  and

reduced size compared to existing designs. The method allows a

maximum  throughput  of  400Mbps  compared  to  the  vendor

supplied solution capable of only 160Mbps. The module was also

integrated and tested within a serial transceiver system. Although

the implementation is specific to a given vendor, the idea can also

be  applied  to  others  devices  because  it  uses  only  generally

available components from most vendors.
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I.  INTRODUCTION

An important issue for embedded system designers is the
task  of  high  speed  device-to-device  communication.
Traditionally synchronization between the devices was ensured
by the use of a common clock for both the transmitter and the
receiver modules. This required either a common clock source,
or the transmission of a synchronization signal along with the
data.  The first  solution is called a system-synchronous  setup
and it has the problem of requiring the designer to take into
account  the delays of both devices for the transmission. The
second  method  is  called  a  source-synchronous  setup.  Its
advantage is simplicity and ease of use. The disadvantages of
this  method are due to the extra transmission lines required.
The clock line also has more stringent constraints than the data
line concerning noise,  and  the phase difference between the
two  lines  is  required  to  be  kept  at  a  minimum  to  ensure
synchronization. Due to these problems operating frequency is
limited and the production costs are increased.

By  embedding  the  clock  signal  inside  the  data  line  the
number  of  transmission  lines  can  be  reduced  and  the
synchronization ensured while  providing greater immunity to
noise[1]. This technique has allowed the creation of the multi-
gigabit  serial  communication  protocols  but  can  also  help
reduce  power  consumption  and  cost  in  embedded  systems
where device-to-device bandwidth is important.

The task to perform the extraction of the synchronization
information  from  the  data  line  is  called  clock  and  data
recovery.  It represents the most critical task in modern high

performance serial  communication systems as its  capabilities
limit the transmission bandwidth.

Literature  presents  three  main  types  of  clock  and  data
recovery  methods:  PLL-based[2],  optical[3],  and  over-
sampling  based[4].  PLL  based  methods  use  a  phase  locked
loop controlled by a phase detector which is sampling the input
sequence.  Frequent  changes  are  required  for  the  lock  to  be
achieved,  but  these  are  guaranteed  by  the  communication
protocols.  The  method  is  mainly  dependent  on  the  phase
detection  methodology.  Currently  published  phase  detection
methods require two samples for every bit of data[5-7].  The
disadvantage  of  this  solution  is  the  requirement  of  a
controllable oscillator.  Optical clock recovery based methods
are a variation to  the basic  PLL based method,  but they are
applied directly on the optical  stream. Although this  method
can  operate  at  very  high  speeds,  it  can  only  be  used  over
optical-fiber transmission. Over-sampling based methods use a
higher  clock  frequency  to  sample  the  signal  in  multiple
position. This method doesn't recover the clock signal, but it is
able to recover the data. The usual over-sampling rate is 4-5 for
high  speed  circuits  and  3  for  circuits  used  in  gigabit
transmission. The method is simple and robust, but it requires a
higher  frequency  clock.  This  method  is  usually  used  in
programmable devices when no dedicated hardware blocks are
available, due to the fully digital design.

Currently  two  types  of implementations  are  available  for
FPGAs.  High-end  models  implement  clock  recovery  in
dedicated  hardware  components  part  of  configurable  multi-
gigabit  transceivers[1].  Low-end  models  have  no  such
hardware blocks, but the vendors offer reference designs using
on-board  logic[4].  These  designs  use  a  4-5X  oversampling
method  to  data  recovery.  Our  proposed  solution  is  a  novel
method  to  implement  a  PLL  based  clock  recovery  method
inside an FPGA using only integrated components.  By using
the user controllable phase shift feature of the clock managers
available also on low-cost FPGAs, we are able to provide clock
recovery at twice the speed of the existing reference designs.
Generally  the  clock  recovery  feature  is  provided  by  PLL
devices,  but  it  is  not  the  case  for  FPGAs.  Thus  we  were
required to implement a user defined PLL digital loop around
the  existing  components.  The  implementation  is  based  on
Xilinx technologies, but similar technologies are available also
from the other major FPGA vendors such as Altera, Actel and
Lattice.
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II. RELATED WORK

As  presented  previously,  the  vendors  recommend
oversampling  based methods  for  low-cost  FPGAs.  We have
selected the reference design proposed by Xilinx[4] due to our
available  hardware.  The  method  uses  simple  oversampling
based on 4 clock phases. The design requires 21 flip-flops and
approximately 25 LUTs. The combinational logic requirements
were approximated based on the number of inputs required for
each separate combinational line. The architecture also requires
multiple logic levels between registers, reducing the maximum
operating frequency to 160MHz as noted in the documentation.
As the figure was supplied by the vendor itself, we will take it
as the reference maximum operating speed. Currently no faster
method was found to be available for this family of chips.

III. CLOCK RECOVERY LOOP ARCHITECTURE

The  architecture  is  a  basic  feedback  loop  containing  a
sensor  and  an actuator.  The phase  detecting block acts  as a
sensor for the current setup, while the oscillator control module
modifies  the  phase  of  the  clock  signal  (Fig.1).   The  main
difference from the classic PLL is that the system doesn't act on
the oscillator  itself,  but  it  acts  on the  clock manager  placed
between the oscillator and the system. As a result the control
interface is simplified and the other blocks from the loop are
not required anymore.

Figure 1. Loop architecture

A. Oscillator control

The  novelty  of  our  approach  is  the  use  of  dynamic
oscillator  control  using  only  integrated  components.  Both
major FPGA vendors include a dynamic phase shift possibility
in their  clock manager.  This feature  is  available  in both the
low-cost  and  high-end  series,  but  it  is  not  commonly  used
because  it  is  not  required  in  traditional  designs.  It  has  a
maximum  resolution  of  20-100ps  depending  on  model  and
operating frequency. For our research we have selected to use a
Spartan3E  chip,  a  low-cost  solution  from Xilinx.  This  chip
features  a  dynamic  phase  shift  resolution  of  20-30ps
independent of operating frequency. As all Xilinx FPGAs this
model also uses a delay-locked-loop instead of a PLL for clock
management. This has the advantage of a simple phase model
based on time-steps. The phase shift also affects all of the clock
manager outputs, thus enabling phase shifted quadrature clocks
using a single component[8].

The  phase  adjustment  operation  requires  multiple  clock
cycles  for  the  clock  manager.  The  amount  is  not  know  in
advance, but the end of the operation is signaled on a dedicated
output. A controller was designed to handle with this issue. A
reduced  complexity  is  preferred  for  this  component  for
increased operating frequency. The implementation is a Mealy
automaton, Fig. 2, with two states, one for sampling the phase
detector and one for waiting after the clock manager. Sampling
is  performed  into  registers  controlled  by  the  automaton  to
ensure that no residual data remains from the transition phase.
The final structure requires a total of 4 flip-flops and 5 LUTs.

Figure 2. State machine

B. Phase detection

The phase-detection component provides the feed-back in
the locking loop, thus its performance directly affects the clock
recovery. Traditionally analog phase-detectors, are used which
generate a command with the amplitude directly correlated to
the  measured  phase-shift.  This  allows  for  a  faster  locking
mechanism and a smoother  operation once locking has been
achieved[2].  The  method  requires  analog  components  which
are unavailable on FPGAs. Due to the technology constraints,
we were required to use a fully digital phase detector. These
are also  called  bang-bang type  phase  detectors  as  they only
provide  information  on  direction,  but  not  on  amplitude.
Consequently this method can never provide perfect alignment,
the  system  will  operate  with  a  continuous  jitter  around  the
phase lock. 

For our work we have selected a slight variation[6] of the
basic Alexander phase detector[5] using only half the sampling
frequency.  This   method  is  called  a  half-rate  binary  phase
detector  and  it  enables  support  for  double-data-rate
transmission. It  uses quadrature clocks for sampling the data
line in three positions to gather data about the transitions on the
data  line.  Note  that  although  the  oversampling  methods
presented in reference designs also use quadrature clocks, they
are capable  of providing only single-data-rate  data recovery,
thus  having  half  the  bandwidth  of  our  approach.  The phase
detector is robust and simple requiring only three flip-flops and
two XOR gates. The transition diagram is presented on Fig. 3.
The  main  disadvantage  of  this  method  is  that  locking  is
achieved when the data line is phase locked with the second
sampling edge. This violates the setup and hold times of the
second register leading to metastability. As suggested by Xilinx
literature[4] we are using a second row of registers to buffer the
data  and  to  limit  the  load  on  the  metastable  register.  The
structure  of  the  detector  can  be  seen  on  Fig.  4.  The  direct
register-to-register transfer allows us to bring the data from the
falling edge of the clock to the rising edge using a single step.
Experiments prove that this solution is adequate and the system
operates as required. The data recovery function is performed
by the first and third registers which sample the two bits of data
when the system is locked.



Figure 3. Transition diagram for original half-rate phase detector

Figure 4. Original half-rate phase detector and new structure

C. Phase lock detection

Besides  detecting  the  phase  shift,  an  additional  control
component  is  required in the feed-back loop to signal  phase
lock. In our solution we have chosen to use a condition based
on  the  recent  phase-difference  direction.  This  approach  is
searching  for  changes  in  direction  which  indicates  that  the
second edge has passed over the data line edge. Using an ideal
flip-flop model the transition suggests that the perfect locking
position is between the current and the previous setup. In the
real case setup and hold times are violated and the results are
not predictable. We consider that the first and third registers are
able  to  read  accurate  data  when  the  timing  constraints  are
violated for the middle register. This model is accurate as the
setup and hold times are not overlapping for the three registers.
Due  to  the  bang-bang  behavior  of  our  detector  the  middle
register should be kept in the non-deterministic region and its
output  should  not  be  constant  while  locking  is  maintained.
Currently the phase correction is maintained also after locking
was  achieved  in  order  to  have  instantaneous  response  to
temporary disturbances. 

During our experiments we have discovered that a history
of 16 consecutive states is required from the phase detector due
to the real register behavior. This can be handled either by a
shift  register or a counter  with custom control circuitry.  The
first  method  has  the  advantage  of  simplicity,  requiring only
direct  register-to-register  transfers  and  two  logic  levels  for
detecting the monotonous patterns. It requires a total of 16 flip-
flops and 5 LUTs. The second method reduces size while using
more complicated logic. It uses a 4bit counter and a state bit.
The state stores the previous phase-difference and the counter
counts the number of occurrences. The counter stops at 15 and
is reset  only  on a change  of direction.  This method  has  the
same  behavior  as  the  shift-register  based  approach  while
requiring  only  5  flip-flops  and  5  LUTs.  The  combinational

paths are also reduced to a single level between registers. Both
methods require an additional status bit and logic gate to handle
initialization.

If continuous operation is trusted and the system is required
to be simplified than a basic edge detector can be used to check
for the first change of direction. This method requires only two
flip-flops and a single LUT. This component will not affect the
system's  capability  to  perform  clock  recovery,  just  the
possibility to detect and signal sudden changes due to which
locking is temporarily lost.

IV. RESULTS

A. Experimental setup

For our experiments we are using a Spartan3E-500 chip, a
medium capacity low-cost FPGA from Xilinx. The architecture
is based on 4 input look-up tables and single-bit configurable
flip-flops/latches.  The  chip  also  includes  4  digital  clock
managers,  each  of  which  is  capable  of  providing  dynamic
phase  shift  with  a  resolution  of  20ps  independent  of  the
operating frequency. The device also provides LVDS and DDR
support  for  high  speed  inter-chip  communication.  The  logic
capacity of the chip is of 9312 flip-flops and an equal number
of  LUTs.  This  platform  was  used  to  test  and  compare  our
solution  with  the  reference  design  suggested  by the  vendor.
The tests  used  DDR transmission  at  the  highest  frequencies
possible for the system. The receiver and the transmitter were
implemented on a single chip using an external loop-back for
transmission.

B. Comparison of methods

The solution presented in this paper is also using the same 4
phases, but due to its half-rate design it is capable of recovering
two  bits  of  information  for  every  clock  cycle.  Thus  the
transmission rate is double compared to the reference design
when the operating frequencies are equal.  Our design is also
smaller, requiring only 16 flip-flops, 13 LUTs. Both methods
require  the  additional  clock  manager  for  multiple-phase
clocking thus no overhead is added for the dynamic phase shift.
The difference is more significant for the combinational logic
which helps reduce delay times in the design. The design also
uses a single combinational level between successive registers,
increasing maximum operating frequency. By using the Xilinx
tool-chain the reported maximum frequency was 200MHz. As
a result the transmission rate was increased by a factor of 2.5
compared to the reference design.  The main disadvantage of
our method is that it requires an initialization time. While the
reference  design  is  able  to  immediately  locks  onto  the  data
stream, our method requires an initial  locking procedure. As
the phase shift can only be modified in increments of 20ps our
method may require a large number of steps before phase-lock
is achieved. Our test case used a clock frequency of 100MHz
and a data line of 200Mbits with the external loop-back. The
initialization phase required approximately 125 steps compared
to 250, the maximum number possible for this setup. During
experiments  the total  number  of cycles  required to  performs
these  steps  was  on average  around  500,  with  rare  peaks  of
around 1000 cycles.  For 100MHz these numbers represent  a
time-delay  of  5us,  respectively  10us.  As  the  frequency



increases, the number of cycles required will  decrease due to
the  fixed  phase  shift  step.  This  step  is  required  every  time
communication  is  stopped and restarted.  This is  due to  the
possible  desynchronization of the transmitter and receiver. It is
also a problem PLL based systems and it is usually avoided by
transmitting idle signals when no data is present.  As a result
our  method  is  recommended mainly  for  systems  requiring a
high continuous bandwidth while the reference design is better
suited for small bursts of data. The results are summarized in
Table 1.

TABLE I. COMPARISON OF SOLUTIONS

FF LUT Frequency Data-rate Initialization

Xilinx 21 25 160MHz 160Mbps none

Proposed 16 13 200MHz 400Mbps 5-10us

C. System integration

The module presented in this paper is not just a stand-alone
component,  it  was  designed  as  part  of  a  high  speed  serial
transceiver.  The  system  is  simplified  implementation  of  the
Gigabit-Ethernet  protocol.  It  uses  double-data-rate  LVDS
signaling to achieve maximum speed. The main limitation of
system  bandwidth  was  due  to  the  clock  recovery  method.
Thanks  to  our  newly  developed  solution  we  were  able  to
achieve a theoretical maximum transmission speed of 400Mbps
instead of 160Mbps using the vendor proposed design.  As a
result the transmission throughput increased by a factor of 2.5.
The  transceiver  uses  8b/10b  encryption  to  ensure  the
requirements for the data line behavior are met. This encryption
provides  only  80% real  data  for  the  bandwidth,  but  it  also
provides  numerous  control  symbols.  Thus  real  bandwidth  is
reduced to 360Mbps. The system also features word-alignment
based on the same control symbols as Gigabit-Ethernet.  The
symbol features a unique sequence of bits required to locate the
word  boundaries.  Finally  buffers  are  included  both  for  the
transmitter  and  the  receiver  to  handle  the  different  clocking
domains and temporary data storage. A basic block-diagram of
the system is presented on Fig. 5.

Figure 5. System architecture

The system is fully integrated into low-end FPGAs and has
low resource requirements, under 4% of the logic blocks and
20% of the memory elements for our setup. The resource usage
is also  flexible  as the 8b/10b encoder and decoder  could  be
implemented using logic instead of  the current memory based
approach. When compared to clock recovery based methods,
our  system is  faster  due to DDR support.  Also compared to
clock forwarding based approaches it is slightly slower, as they
can achieve 666Mbps of real data, but it has the advantage of
simplicity  and  reduced  power  due  to  the  reduction  in  the
number of interconnecting wires.

The transceiver was tested at speeds up to 200MHz,
400Mbps,  using  the  same  experimental  setup.  The  received
data was also verified for correctness to ensure that the system
operates  flawlessly.  A  fixed  byte  pattern  was  sent  to  the
transmitter and was compared with the data received. During
our  tests  the system was  stable  and didn't  exhibit  any errors
even when operated at speeds up to 200MHz. Also phase lock
was achieved after every reset and was never lost.  

V. CONCLUSIONS

We have presented a new method to provide high speed
clock recovery for  low-cost  FPGAs.  The method  provides  a
considerable increase in speed compared to reference designs
provided  by  the  vendors.  Compared  to  clock-forwarding
transmission,  our  solution  provides  similar  speeds  while
maintaining the advantages of clock embedding.

The design was also integrated into a transceiver system.
The implementation proved to be robust and reliable, capable
of operating at 400Mbps. Our  transceiver  can also be easily
integrated into a larger system due to its small size and simple
interface.  This  enables  System-on-Chip  designs  to  use  high
speed serial communication even on low cost FPGA chips.
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