
High-Speed Clock Recovery for Low-Cost FPGAs

István Haller

Computer Science Department

Technical University of Cluj-Napoca

Cluj-Napoca, Romania

haller@student.utcluj.ro

Zoltan Francisc Baruch

Computer Science Department

Technical University of Cluj-Napoca

Cluj-Napoca, Romania

Zoltan.Baruch@cs.utcluj.ro

Abstract—High speed serial interfaces represent the new trend

for device-to-device communication. These systems require clock

recovery modules to avoid clock forwarding. In this paper we

present a high-speed clock recovery method usable with low-cost

FPGAs. Our proposed solution features increased speed and

reduced size compared to existing designs. The method allows a

maximum throughput of 400Mbps compared to the vendor

supplied solution capable of only 160Mbps. The module was also

integrated and tested within a serial transceiver system. Although

the implementation is specific to a given vendor, the idea can also

be applied to others devices because it uses only generally

available components from most vendors.

Keywords-clock recovery, serial communication, FPGA

I. INTRODUCTION

An important issue for embedded system designers is the
task of high speed device-to-device communication.
Traditionally synchronization between the devices was ensured
by the use of a common clock for both the transmitter and the
receiver modules. This required either a common clock source,
or the transmission of a synchronization signal along with the
data. The first solution is called a system-synchronous setup
and it has the problem of requiring the designer to take into
account the delays of both devices for the transmission. The
second method is called a source-synchronous setup. Its
advantage is simplicity and ease of use. The disadvantages of
this method are due to the extra transmission lines required.
The clock line also has more stringent constraints than the data
line concerning noise, and the phase difference between the
two lines is required to be kept at a minimum to ensure
synchronization. Due to these problems operating frequency is
limited and the production costs are increased.

By embedding the clock signal inside the data line the
number of transmission lines can be reduced and the
synchronization ensured while providing greater immunity to
noise[1]. This technique has allowed the creation of the multi-
gigabit serial communication protocols but can also help
reduce power consumption and cost in embedded systems
where device-to-device bandwidth is important.

The task to perform the extraction of the synchronization
information from the data line is called clock and data
recovery. It represents the most critical task in modern high

performance serial communication systems as its capabilities
limit the transmission bandwidth.

Literature presents three main types of clock and data
recovery methods: PLL-based[2], optical[3], and over-
sampling based[4]. PLL based methods use a phase locked
loop controlled by a phase detector which is sampling the input
sequence. Frequent changes are required for the lock to be
achieved, but these are guaranteed by the communication
protocols. The method is mainly dependent on the phase
detection methodology. Currently published phase detection
methods require two samples for every bit of data[5-7]. The
disadvantage of this solution is the requirement of a
controllable oscillator. Optical clock recovery based methods
are a variation to the basic PLL based method, but they are
applied directly on the optical stream. Although this method
can operate at very high speeds, it can only be used over
optical-fiber transmission. Over-sampling based methods use a
higher clock frequency to sample the signal in multiple
position. This method doesn't recover the clock signal, but it is
able to recover the data. The usual over-sampling rate is 4-5 for
high speed circuits and 3 for circuits used in gigabit
transmission. The method is simple and robust, but it requires a
higher frequency clock. This method is usually used in
programmable devices when no dedicated hardware blocks are
available, due to the fully digital design.

Currently two types of implementations are available for
FPGAs. High-end models implement clock recovery in
dedicated hardware components part of configurable multi-
gigabit transceivers[1]. Low-end models have no such
hardware blocks, but the vendors offer reference designs using
on-board logic[4]. These designs use a 4-5X oversampling
method to data recovery. Our proposed solution is a novel
method to implement a PLL based clock recovery method
inside an FPGA using only integrated components. By using
the user controllable phase shift feature of the clock managers
available also on low-cost FPGAs, we are able to provide clock
recovery at twice the speed of the existing reference designs.
Generally the clock recovery feature is provided by PLL
devices, but it is not the case for FPGAs. Thus we were
required to implement a user defined PLL digital loop around
the existing components. The implementation is based on
Xilinx technologies, but similar technologies are available also
from the other major FPGA vendors such as Altera, Actel and
Lattice.

978-3-9810801-6-2/DATE10 © 2010 EDAA

II. RELATED WORK

As presented previously, the vendors recommend
oversampling based methods for low-cost FPGAs. We have
selected the reference design proposed by Xilinx[4] due to our
available hardware. The method uses simple oversampling
based on 4 clock phases. The design requires 21 flip-flops and
approximately 25 LUTs. The combinational logic requirements
were approximated based on the number of inputs required for
each separate combinational line. The architecture also requires
multiple logic levels between registers, reducing the maximum
operating frequency to 160MHz as noted in the documentation.
As the figure was supplied by the vendor itself, we will take it
as the reference maximum operating speed. Currently no faster
method was found to be available for this family of chips.

III. CLOCK RECOVERY LOOP ARCHITECTURE

The architecture is a basic feedback loop containing a
sensor and an actuator. The phase detecting block acts as a
sensor for the current setup, while the oscillator control module
modifies the phase of the clock signal (Fig.1). The main
difference from the classic PLL is that the system doesn't act on
the oscillator itself, but it acts on the clock manager placed
between the oscillator and the system. As a result the control
interface is simplified and the other blocks from the loop are
not required anymore.

Figure 1. Loop architecture

A. Oscillator control

The novelty of our approach is the use of dynamic
oscillator control using only integrated components. Both
major FPGA vendors include a dynamic phase shift possibility
in their clock manager. This feature is available in both the
low-cost and high-end series, but it is not commonly used
because it is not required in traditional designs. It has a
maximum resolution of 20-100ps depending on model and
operating frequency. For our research we have selected to use a
Spartan3E chip, a low-cost solution from Xilinx. This chip
features a dynamic phase shift resolution of 20-30ps
independent of operating frequency. As all Xilinx FPGAs this
model also uses a delay-locked-loop instead of a PLL for clock
management. This has the advantage of a simple phase model
based on time-steps. The phase shift also affects all of the clock
manager outputs, thus enabling phase shifted quadrature clocks
using a single component[8].

The phase adjustment operation requires multiple clock
cycles for the clock manager. The amount is not know in
advance, but the end of the operation is signaled on a dedicated
output. A controller was designed to handle with this issue. A
reduced complexity is preferred for this component for
increased operating frequency. The implementation is a Mealy
automaton, Fig. 2, with two states, one for sampling the phase
detector and one for waiting after the clock manager. Sampling
is performed into registers controlled by the automaton to
ensure that no residual data remains from the transition phase.
The final structure requires a total of 4 flip-flops and 5 LUTs.

Figure 2. State machine

B. Phase detection

The phase-detection component provides the feed-back in
the locking loop, thus its performance directly affects the clock
recovery. Traditionally analog phase-detectors, are used which
generate a command with the amplitude directly correlated to
the measured phase-shift. This allows for a faster locking
mechanism and a smoother operation once locking has been
achieved[2]. The method requires analog components which
are unavailable on FPGAs. Due to the technology constraints,
we were required to use a fully digital phase detector. These
are also called bang-bang type phase detectors as they only
provide information on direction, but not on amplitude.
Consequently this method can never provide perfect alignment,
the system will operate with a continuous jitter around the
phase lock.

For our work we have selected a slight variation[6] of the
basic Alexander phase detector[5] using only half the sampling
frequency. This method is called a half-rate binary phase
detector and it enables support for double-data-rate
transmission. It uses quadrature clocks for sampling the data
line in three positions to gather data about the transitions on the
data line. Note that although the oversampling methods
presented in reference designs also use quadrature clocks, they
are capable of providing only single-data-rate data recovery,
thus having half the bandwidth of our approach. The phase
detector is robust and simple requiring only three flip-flops and
two XOR gates. The transition diagram is presented on Fig. 3.
The main disadvantage of this method is that locking is
achieved when the data line is phase locked with the second
sampling edge. This violates the setup and hold times of the
second register leading to metastability. As suggested by Xilinx
literature[4] we are using a second row of registers to buffer the
data and to limit the load on the metastable register. The
structure of the detector can be seen on Fig. 4. The direct
register-to-register transfer allows us to bring the data from the
falling edge of the clock to the rising edge using a single step.
Experiments prove that this solution is adequate and the system
operates as required. The data recovery function is performed
by the first and third registers which sample the two bits of data
when the system is locked.

Figure 3. Transition diagram for original half-rate phase detector

Figure 4. Original half-rate phase detector and new structure

C. Phase lock detection

Besides detecting the phase shift, an additional control
component is required in the feed-back loop to signal phase
lock. In our solution we have chosen to use a condition based
on the recent phase-difference direction. This approach is
searching for changes in direction which indicates that the
second edge has passed over the data line edge. Using an ideal
flip-flop model the transition suggests that the perfect locking
position is between the current and the previous setup. In the
real case setup and hold times are violated and the results are
not predictable. We consider that the first and third registers are
able to read accurate data when the timing constraints are
violated for the middle register. This model is accurate as the
setup and hold times are not overlapping for the three registers.
Due to the bang-bang behavior of our detector the middle
register should be kept in the non-deterministic region and its
output should not be constant while locking is maintained.
Currently the phase correction is maintained also after locking
was achieved in order to have instantaneous response to
temporary disturbances.

During our experiments we have discovered that a history
of 16 consecutive states is required from the phase detector due
to the real register behavior. This can be handled either by a
shift register or a counter with custom control circuitry. The
first method has the advantage of simplicity, requiring only
direct register-to-register transfers and two logic levels for
detecting the monotonous patterns. It requires a total of 16 flip-
flops and 5 LUTs. The second method reduces size while using
more complicated logic. It uses a 4bit counter and a state bit.
The state stores the previous phase-difference and the counter
counts the number of occurrences. The counter stops at 15 and
is reset only on a change of direction. This method has the
same behavior as the shift-register based approach while
requiring only 5 flip-flops and 5 LUTs. The combinational

paths are also reduced to a single level between registers. Both
methods require an additional status bit and logic gate to handle
initialization.

If continuous operation is trusted and the system is required
to be simplified than a basic edge detector can be used to check
for the first change of direction. This method requires only two
flip-flops and a single LUT. This component will not affect the
system's capability to perform clock recovery, just the
possibility to detect and signal sudden changes due to which
locking is temporarily lost.

IV. RESULTS

A. Experimental setup

For our experiments we are using a Spartan3E-500 chip, a
medium capacity low-cost FPGA from Xilinx. The architecture
is based on 4 input look-up tables and single-bit configurable
flip-flops/latches. The chip also includes 4 digital clock
managers, each of which is capable of providing dynamic
phase shift with a resolution of 20ps independent of the
operating frequency. The device also provides LVDS and DDR
support for high speed inter-chip communication. The logic
capacity of the chip is of 9312 flip-flops and an equal number
of LUTs. This platform was used to test and compare our
solution with the reference design suggested by the vendor.
The tests used DDR transmission at the highest frequencies
possible for the system. The receiver and the transmitter were
implemented on a single chip using an external loop-back for
transmission.

B. Comparison of methods

The solution presented in this paper is also using the same 4
phases, but due to its half-rate design it is capable of recovering
two bits of information for every clock cycle. Thus the
transmission rate is double compared to the reference design
when the operating frequencies are equal. Our design is also
smaller, requiring only 16 flip-flops, 13 LUTs. Both methods
require the additional clock manager for multiple-phase
clocking thus no overhead is added for the dynamic phase shift.
The difference is more significant for the combinational logic
which helps reduce delay times in the design. The design also
uses a single combinational level between successive registers,
increasing maximum operating frequency. By using the Xilinx
tool-chain the reported maximum frequency was 200MHz. As
a result the transmission rate was increased by a factor of 2.5
compared to the reference design. The main disadvantage of
our method is that it requires an initialization time. While the
reference design is able to immediately locks onto the data
stream, our method requires an initial locking procedure. As
the phase shift can only be modified in increments of 20ps our
method may require a large number of steps before phase-lock
is achieved. Our test case used a clock frequency of 100MHz
and a data line of 200Mbits with the external loop-back. The
initialization phase required approximately 125 steps compared
to 250, the maximum number possible for this setup. During
experiments the total number of cycles required to performs
these steps was on average around 500, with rare peaks of
around 1000 cycles. For 100MHz these numbers represent a
time-delay of 5us, respectively 10us. As the frequency

increases, the number of cycles required will decrease due to
the fixed phase shift step. This step is required every time
communication is stopped and restarted. This is due to the
possible desynchronization of the transmitter and receiver. It is
also a problem PLL based systems and it is usually avoided by
transmitting idle signals when no data is present. As a result
our method is recommended mainly for systems requiring a
high continuous bandwidth while the reference design is better
suited for small bursts of data. The results are summarized in
Table 1.

TABLE I. COMPARISON OF SOLUTIONS

FF LUT Frequency Data-rate Initialization

Xilinx 21 25 160MHz 160Mbps none

Proposed 16 13 200MHz 400Mbps 5-10us

C. System integration

The module presented in this paper is not just a stand-alone
component, it was designed as part of a high speed serial
transceiver. The system is simplified implementation of the
Gigabit-Ethernet protocol. It uses double-data-rate LVDS
signaling to achieve maximum speed. The main limitation of
system bandwidth was due to the clock recovery method.
Thanks to our newly developed solution we were able to
achieve a theoretical maximum transmission speed of 400Mbps
instead of 160Mbps using the vendor proposed design. As a
result the transmission throughput increased by a factor of 2.5.
The transceiver uses 8b/10b encryption to ensure the
requirements for the data line behavior are met. This encryption
provides only 80% real data for the bandwidth, but it also
provides numerous control symbols. Thus real bandwidth is
reduced to 360Mbps. The system also features word-alignment
based on the same control symbols as Gigabit-Ethernet. The
symbol features a unique sequence of bits required to locate the
word boundaries. Finally buffers are included both for the
transmitter and the receiver to handle the different clocking
domains and temporary data storage. A basic block-diagram of
the system is presented on Fig. 5.

Figure 5. System architecture

The system is fully integrated into low-end FPGAs and has
low resource requirements, under 4% of the logic blocks and
20% of the memory elements for our setup. The resource usage
is also flexible as the 8b/10b encoder and decoder could be
implemented using logic instead of the current memory based
approach. When compared to clock recovery based methods,
our system is faster due to DDR support. Also compared to
clock forwarding based approaches it is slightly slower, as they
can achieve 666Mbps of real data, but it has the advantage of
simplicity and reduced power due to the reduction in the
number of interconnecting wires.

The transceiver was tested at speeds up to 200MHz,
400Mbps, using the same experimental setup. The received
data was also verified for correctness to ensure that the system
operates flawlessly. A fixed byte pattern was sent to the
transmitter and was compared with the data received. During
our tests the system was stable and didn't exhibit any errors
even when operated at speeds up to 200MHz. Also phase lock
was achieved after every reset and was never lost.

V. CONCLUSIONS

We have presented a new method to provide high speed
clock recovery for low-cost FPGAs. The method provides a
considerable increase in speed compared to reference designs
provided by the vendors. Compared to clock-forwarding
transmission, our solution provides similar speeds while
maintaining the advantages of clock embedding.

The design was also integrated into a transceiver system.
The implementation proved to be robust and reliable, capable
of operating at 400Mbps. Our transceiver can also be easily
integrated into a larger system due to its small size and simple
interface. This enables System-on-Chip designs to use high
speed serial communication even on low cost FPGA chips.

REFERENCES

[1] Abhijit Athavale and Carl Christensen, “High-Speed Serial I/O Made
Simple A Designer’s Guide, with FPGA Applications” , Edition 1.0,
Xilinx Connectivity Solutions, 2005.

[2] Gardner, Floyd M., “Phaselock Techniques “, 3rd Ed., New Jersey, John
Wiley & Sons Inc, 2005.

[3] Min Yong Jeon, Young Ahn Leem, Dong Churl Kim, Eundeok Sim,
Sung-Bock Kim, Hyunsung Ko, Dae-Su Yee, and Kyung Hyun Park,
“40 Gbps All-Optical 3R Regeneration and Format Conversion with
Related InP-Based Semiconductor Devices,” ETRI Journal, vol.29, no.5,
pp.633-640, Oct. 2007.

[4] Nick Sawyer, “Data to Clock Phase Alignment” , Xilinx Application
Note XAPP225 (v1.2), 2007.

[5] J. D. H. Alexander., “Clock recovery from random binary data,”
Electron. Lett., vol. 11, pp. 541–542, Oct. 1975.

[6] Behzad Razavi, “Challenges in the Design of High-Speed Clock and
Data Recovery Circuits” , IEEE Communications Magazine Vol 40, Nr:
8, Page: 94-101, 2002.

[7] Shao-Hung Lin, Shen-Iuan Liu, “Full-Rate Bang-Bang Phase/Frequency
Detectors for Unilateral Continuous-Rate CDRs“, IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 55, nr. 12, pp. 1214-1218,
2008.

[8] “Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs”, Xilinx
Application Note XAPP462 (v1.1) 2006.

	Main
	DATE'10
	Front Matter
	Table of Contents
	Author Index

