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Abstract— We discuss a fault diagnosis scheme for analog
integrated circuits. Our approach is based on an assemblage
of learning machines that are trained beforehand to guide us
through diagnosis decisions. The central learning machine is a
defect filter that distinguishes failing devices due to gross defects
(hard faults) from failing devices due to excessive parametric de-
viations (soft faults). Thus, the defect filter is key in developing a
unified hard/soft fault diagnosis approach. Two types of diagnosis
can be carried out according to the decision of the defect filter:
hard faults are diagnosed using a multi-class classifier, whereas
soft faults are diagnosed using inverse regression functions. We
show how this approach can be used to single out diagnostic
scenarios in an RF low noise amplifier (LNA).

I. INTRODUCTION

The design of integrated circuits (ICs) typically passes
through many silicon iterations before it is finalized. Diag-
nosing the sources of failure in the first IC prototypes in a
timely fashion is very critical to meet the time-to-market goal.
Failure at this stage is related to the incomplete simulation
models and the aggressive design techniques that are being
adopted to exploit the maximum of performance out of the
current technology.

A second application of fault diagnosis is in high-volume
production where it can assist the designers in gathering
information regarding the underlying failure mechanisms. This
information constitutes valuable feedback to enhance yield in
future product generations.

A comprehensive fault diagnosis method is also needed in
cases where the IC is part of a larger system that is safety-
critical (e.g. automotive, aerospace). During its lifetime, an IC
might fail due to aging, wear-and-tear, harsh environments,
overuse, or due to defects that are not detected by the
production tests and manifest themselves later in the field of
operation. Here, it is important to identify the root-cause of
failure so as to repair the system if possible, gain insight about
environmental conditions that can jeopardize the system’s
health, and apply corrective actions that will prevent failure
reoccurrence and, thereby, expand the safety features.

Fault diagnosis is a severe challenge nowadays that calls for
immediate solutions. Amongst the factors that inhibit diagnosis
are the limited controllability and observability of internal
blocks of ICs, the difficulty to de-embed internal components
of blocks (i.e. reverse engineering), the difficulty to deal with
unanticipated faults, the limited diagnostic information (only
one/few IC samples showing the same erroneous behavior are
available), and the fault ambiguity (i.e. different faults having

the same influence on the IC behavior) which does not permit
case-based reasoning.

In this paper, we propose a course of action for fault
diagnosis in analog ICs. The key characteristic of our method
is the use of a defect filter that offers a unified hard/soft
fault diagnosis approach. Furthermore, soft fault diagnosis is
achieved down to the transistor level, i.e. conclusions can be
made as to which circuit branch, transistor or passive compo-
nent is affected. The following section reviews previous work
on analog circuit fault diagnosis. Section III describes our
approach to answering the principal fault diagnosis questions.
More specific diagnosis rules can be derived on a circuit by
circuit case. This is illustrated with an example in section IV.

II. PREVIOUS WORK

Various types of fault diagnosis techniques have been pro-
posed to date for analog circuits (a comprehensive review of
techniques covering other circuits and systems can be found
in [1]). They can be broadly categorized as rule-based, fault-
model-based and behavioral-model-based.

A. Rule-based diagnosis

Rule-based diagnostic systems represent the experience of
skilled diagnosticians in the form of rules which generally
take the form “IF symptom(s) THEN fault(s)” [2]. The main
disadvantage of this approach is that it can only locate the
faulty block in a larger system or an assembly fault (i.e. broken
interconnect), but it cannot diagnose faulty components down
to the transistor level.

B. Fault-model-based diagnosis

Fault-model-based techniques require the a priori genera-
tion of fault hypotheses. In this step, an inductive fault analysis
is combined with historical defect data to define a list of hard
and soft fault hypotheses at the circuit netlist level.

Perhaps the most well-known fault-model-based technique
is the fault dictionary [3], [4], [5]. A fault dictionary con-
tains fault hypothesis/diagnostic measurement pattern pairs,
which are generated by sequentially simulating the circuit,
inserting each time a single fault in the netlist. The same
diagnostic measurement pattern is obtained during diagnosis
and is compared to those in the faulty dictionary using a
similarity measure. The diagnosed fault is the one that pairs
up with the most similar diagnostic measurement pattern.
This is in essence a pattern recognition (e.g. classification)
approach. As such, it is mostly suitable for catastrophic faults
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since parametric fault clusters tend to overlap when they are
projected in a space of diagnostic measurements.

Soft faults can be diagnosed based on explicit nonlinear
diagnosis equations of the form F (p,m) = 0, where F
is a matrix with elements that are nonlinear functions of
the circuit parameters p and diagnostic measurements m.
Diagnosis equations can be derived analytically using a com-
bination of component connection models, component transfer
functions, and composite circuit transfer functions [6], [7].
Alternatively, they can be derived using statistical learning
and regression [5], [8]. The solution p∗ to these equations
can be reached using a Newton-Raphson iteration scheme,
namely, JF

(
pk

) (
pk+1 − pk

)
= F

(
pk,m

)
, where pk is the

k-th estimate of the solution and JF is the Jacobian of
F (p). This formulation goes along with diagnosability tests
(i.e. ambiguity tests) to examine whether p can be uniquely
determined given m; however, no automated method exists to
select diagnostic measurements that satisfy the diagnosability
criterion. Moreover, it is not always guaranteed that the
Newton-Raphson scheme will converge to a solution.

Soft faults can also be diagnosed based on linear error
models [9], [10] of the form ∆m = S (∆p/p), where ∆p/p
is the normalized vector of parameter deviations, ∆m is
the vector of diagnostic measurement deviations, and S is
a sensitivity matrix evaluated at the nominal p. Thus, we
can write ∆p/p =

(
ST S

)−1
ST ∆m, provided that

(
ST S

)−1

exists. However, in the presence of fault ambiguity, ST S is
not full rank. Secondly, even with numerically full rank, ST S
may still be nearly singular, in which case the solution will be
unstable. Several algorithms have been proposed to determine
fault ambiguity in this formulation resulting in a column-
reduced sensitivity matrix with full rank [9], [11]. Clearly,
linear error models are inadequate for substantial deviations of
p. To address this issue, an iterative procedure is implemented
that requires to update the sensitivity matrix at each step
[9], [10]; however, there is no formal proof that guarantees
convergence.

C. Behavioral-model-based diagnosis

Behavioral-model-based techniques rely on generating an
approximate behavioral model of the circuit [12], [13]. During
fault diagnosis, this reference model is perturbed until its
response matches the faulty response of the circuit. When a
match is found, then a component which may have caused the
failure is identified. The main difficulty with this approach
is that the search towards a match can be computationally
intensive.

D. Test stimuli, diagnostic measurements extraction and se-
lection

The generation of test stimuli and the extraction of di-
agnostic measurements are circuit-specific problems. Many
proposals can be found in the literature for alternative test
stimuli, including white noise [14] and power supply ramping
[3]. Examples of alternative diagnostic measurements include
identification curves [15] and wavelet decomposition [16]. In

Fig. 1. Proposed fault diagnosis flow.

addition, several algorithms exist for selecting a minimal set of
diagnostic measurements that covers all presumed faults [17],
[18], [19].

III. PROPOSED METHOD

The proposed fault diagnosis method belongs to the fault-
model-based category. It relies on an assemblage of learning
machines that must be tuned in a pre-diagnosis learning
phase. Learning machines have also been used in the past
to implement an adaptive go/no go test [20]. A high-level
description of the proposed method is illustrated in Fig. 1.

The diagnosis starts by obtaining the diagnostic measure-
ments specified in the pre-diagnosis phase. At first, we can
reside on a subset of the standard specification-based tests.
If the diagnostic accuracy is not sufficient, the complete
specification-based test suite can be used or additional special
tests can be crafted to target undiagnosed parameters or to
resolve ambiguity groups.

The central learning machine is a defect filter that is trained
in the pre-diagnosis phase to distinguish devices with hard
faults from devices with soft faults. Thus, the defect filter
enables a unified hard/soft fault diagnosis approach without
needing to specify in advance the fault type. We reuse here
the defect filter proposed recently in the context of alternate
test [21]. This filter relies on a non-parametric estimate f̃ (m)
of the joint probability density function f (m), where m is
the diagnostic measurements vector. By construction, it is
parameterized with a single parameter α, namely f̃ (m,α),
which can be tuned in the pre-diagnosis learning phase to
control the extent of the filter, i.e. how much lenient or strict



it is in filtering out devices. The interested reader is referred
to [21] for more details.

The defect filter forwards the device to the appropriate diag-
nosis tier according to the fault type that has been detected. If
f̃ (m,α) = 0, then the device is inconsistent with the statistical
nature of the bulk of the data that was used to estimate the
density, thus it is considered to contain a hard fault. In this
case, the device is forwarded to a classifier that is trained in
the pre-diagnosis phase to map any diagnostic measurement
pattern to the underlying hard fault. Thus, in this step we
follow a fault dictionary approach that employs a multi-class
classifier with N outputs, where N is the number of modeled
catastrophic faults in the pre-diagnosis phase.

If f̃ (m,α) > 0, the device is considered to contain
process variations, i.e. a soft fault has occurred. For soft
fault diagnosis, we use nonlinear regression functions that
are trained in the pre-diagnosis phase to map the diagnostic
measurement pattern m to the values of all internal circuit
parameters of interest pj , j = 1, ..., n [22]. In particular, we
train n regression functions fj : m 7→ pj . This approach
allows to specify implicitly the unknown dependency between
m and all pj using statistical data and domain-specific knowl-
edge. Thus, it avoids the complications related to an explicit
formulation (i.e. diagnosability, convergence, problems with
large deviations of p, etc.; see section II-B). The main goal is
to construct regression models with generalization capabilities
that can accurately diagnose future devices.

The defect filter is always tuned to filter out devices with
catastrophic faults. However, this could inadvertently result
in some devices with soft faults being also screened out
and forwarded to the classifier. To correct this leakage, the
classifier is trained during the pre-diagnosis phase to include
detection of devices with process variations as well, i.e. an
additional output is added, raising the number of outputs to
N + 1. Thus, in the unlikely case where a device with a soft
fault is presented to the classifier, the classifier kicks it back
to the regression tier.

IV. CASE STUDY

A. Low noise amplifier and its diagnostic measurements

Our case study is a 2.4 GHz LNA designed with the 0.25 µm
BiCMOS7RF ST Microelectronics technology. The topology
is shown in Fig. 2 and the specification requirements are listed
in Table I. We have chosen the four scattering parameters
as our initial diagnostic measurements (a DC diagnostic test
will be added later to resolve one ambiguity that we found).
Each scattering parameter is sampled at 41 frequency points
between 1 GHz and 5 GHz with a step of 100 MHz. Thus, in
total, we have 4× 41 = 164 diagnostic measurements.

B. Fault model

In a production environment (likewise in IC prototypes)
global parametric deviations can be readily detected at wafer-
level using process monitors in the scribe lines. Thus, for the
purpose of diagnosis, our fault model includes (a) hard faults
in the form of short and open circuits and (b) soft faults that

Bias circuit

Fig. 2. Schematic of LNA under test.

TABLE I
PERFORMANCES AND SPECIFICATIONS FOR THE LNA UNDER TEST.

NF (dB) S11 (dB) S12 (dB) S21 (dB) S22 (dB) 1-dB CP (dBm) IIP3 (dBm)

≤ 0.7 ≤ −8 ≤ −35 ≥ 11.5 ≤ −8.1 ≥ −3 ≥ 2.8

account for location-dependent process deviations. Without
doubt, the main disadvantage of fault-model-based diagnosis
is that it cannot deal with unanticipated faults (see section II-
B). Nevertheless, the set of simulated faults may be adequate
for most diagnostic purposes. The definition of analog fault
models is an on-going research topic and, certainly, success
with this respect will also greatly benefit diagnosis tools.

We model short circuits in passive components and tran-
sistor terminals pairs with a 1 Ω resistor. Open circuits in the
metal and polysilicon lines are modeled with a 10 MΩ resistor
(an open at the gate of M3 is modeled by a broken trace since
M3 operates in DC). In total, there are 23 hard faults, which
are listed in Table II. In the abbreviation term x XX yz, x
denotes the hard fault type (x=s for short circuit and x=o for
open circuit), XX denotes the affected component, and yz
concerns only the transistors and denotes the terminals pair
(g=gate, d=drain, and s=source).

We model soft faults as large deviations in the passive
components and in the low-level transistor parameters (i.e.
oxide thickness, substrate doping concentration, surface mo-
bility, flatband voltage, etc.). Large parametric deviations in
passive components are imposed by simply distorting their
fault-free distribution to have a larger standard deviation. With
respect to low-level transistor parameters, they are typically
parameterized with a single variable t with nominal value
t = 0. Thus, denoting these parameters by q1, ..., qk, the
transistor model consists of intricate functions of the form
qi = fi (t, q1, ..., qi−1, qi+1, ..., qk). A Monte Carlo simulation
is then enabled by simply varying t uniformly around t = 0
with standard deviation σt. This observation allowed us to
generate realistic faulty transistor models by assigning a larger
standard deviation βt · σt, βt > 1. Intuitively, deviations in
low-level transistor parameters will be reflected in the small-



TABLE II
LIST OF CATASTROPHIC FAULTS.

Fault Faulty Component
F1 s M3 gs, s M3 ds
F2 s M1 ds
F3 s M1 gs
F4 s M1 gd
F5 s M2 ds
F6 s M2 gd, s L3, s R3, s C1
F7 s M2 gs
F8 o M3 d
F9 o M3 g
F10 o M3 s
F11 o M1 g, o L2
F12 o M1 s, o L1
F13 o M1 d, o M2 s
F14 o M2 g
F15 o M2 d
F16 s R1
F17 s R2
F18 s L2
F19 s L1
F20 o R1, o R2
F21 o L3
F22 o R3
F23 o C1

TABLE III
LIST OF CIRCUIT PARAMETERS UNDER DIAGNOSIS.

RMSParameter Nominal Fault-free Distorted
predictionvalue distribution distribution

error
C1 500 fF -5...5% -40...40% 3.6%
L1 700 pH -5...5% -40...40% 3%
L2 8 nH -5...5% -40...40% 2%
L3 6 nH -5...5% -40...40% 2.7%
R1 2 KΩ -5...5% -40...40% 22.5%
R2 3 KΩ -5...5% -40...40% 19.7%
R3 100 Ω -5...5% -40...40% 1%

Cgs1 347 fF -20.3...23% -44.4...27.7% 2.7%
gm1 84 m -20.3...42.6% -94.1...79.7% 2%
Cgs2 358 fF -13.8...17.7% -34.5...20.8% 2.7%
gm2 87 m -18.8...34.5% -94...70.6% 2%
Cgs3 52 fF -19.2...22.4% -22.1...24.4% 3%
gm3 10 m -13.1...16.3% -26.1...42.3% 11.5%

signal parameters. To this end, we deemed efficient to monitor
deviations in gm and Cgs.

The first column of Table III summarizes the circuit param-
eters that we diagnose in our experiment (13 in total). The
second column lists their nominal values. The third column
shows minimum and maximum parameter variations observed
over 5000 Monte Carlo simulations using nominal standard
deviations. The forth column shows the corresponding param-
eter variations after having increased the standard deviations.
It should be noted that the distortions that we have imposed in
the parameters distributions are illustrative and can be changed
to accommodate any fault model of this type.

C. Classifier and regression functions

We use a support vector machine (SVM) classifier [23]. In
contrast to other type of classifiers (i.e. neural networks, near-
est neighbors, etc.), SVMs allocate the separation boundaries

Fig. 3. Projection of training devices in the top three principal components.

such that they traverse the middle of the distance between
the fault clusters. Now, as will be shown later, our fault
clusters are cleanly separated when they are projected in
the diagnostic measurement space, i.e. there are large empty
subspaces amidst the fault clusters. This means that SVMs will
be insensitive to measurement noise or even equipment drifts.
In addition, SVMs ensure that complexity is controlled inde-
pendently of the number of diagnostic measurements. SVMs
can be adapted for regression as well [23]. In this experiment,
we used the Kernel-based Machine Learning Lab package [24]
in the R Project (www.r-project.org) to implement both the
classifier and the regression functions based on SVMs.

D. Pre-diagnosis learning phase

We generate the following data sets to train and validate
the learning machines (e.g. defect filter, classifier, regression
functions) of the diagnosis flow:

• The set S1 contains 10000 LNA instances generated by
Monte Carlo simulation where all circuit parameters are
sampled from their distorted distributions in Table III.
The hint here is to model larger component variations
in the pre-diagnosis phase than those expected in reality.
This way, we minimize the probability that the defect
filter will screen out devices with excessive parametric
deviations and we ensure that future devices will fall
in regions where the regression functions are valid, i.e.
in regions where there were enough samples during the
pre-diagnosis phase to carry out the regression. In other
words, S1 must be information-rich such that the learning
machines can generalize for every possible fault scenario.

• The set S2 contains 23 subsets S2j , j = 1, ..., 23,
corresponding to the 23 fault classes in Table II. Each
subset S2j contains 100 LNA instances generated by
inserting the hard fault j in the netlist and subsequently
running 100 Monte Carlo simulations where the rest of
the circuit parameters are sampled from their fault-free
distributions. Thus, the size of S2 is 23× 100 = 2300.

To gain some insight about the structure of the data,
we perform a Principal Component Analysis (PCA) on the
(10000+2300)×164 matrix whose rows correspond to the



diagnostic measurement patterns of the devices in S1 and
S2. Fig. 3 shows the projection of these devices in the top
three principal components. Fault clusters are represented
with different colors, whereas the largely populated “process
variation” class is represented with black dots. As can be
observed, even in this primitive visualization, fault clusters
are cleanly separated.

The set S1 is split in two equal sets St
1 and Sv

1 uniformly
at random. Similarly, S2 is split in St

2 and Sv
2 .

St
1 is used to built the defect filter, i.e. to generate the

density estimate f̃ (m,α). Sv
1 and S2 are used to validate the

defect filter. We tested a defect filter with α = 0 (this value
of α implements a rather strict defect filter, see [21]) which
gave optimal filtering: devices in S2 have a zero density while
devices in Sv

1 have a nonzero density.
The regression models are trained using St

1 and are validated
using Sv

1 . The result is shown in the fifth column of Table III
in terms of the RMS prediction error. As can be observed, the
regression models can predict accurately multiple parameter
variations with the exception of the resistors R1, R2 and the
transistor M3 in the bias circuit. In retrospect, this could have
been anticipated because the bias circuit operates in DC, thus it
is not excited by the high-frequency diagnostic measurements.
As we will see later, this results in an ambiguity, which calls
for additional diagnostic measurements.

The classifier is trained using St
1 and St

2 and is validated us-
ing Sv

1 and Sv
2 (S1 constitutes the “process variations” class).

The only misclassification occurred between fault classes F8
and F9. Looking at the LNA schematic, it can be observed
that faults F8 and F9 have the same effect: the transistor M3
is off. Thus, these two fault classes can be collapsed in one,
resulting in an overall 100% classification rate. This example
illustrates that the classifier can help us to identify ambiguous
hard faults in the pre-diagnosis phase that we missed out by
just looking at the schematic with the naked eye.

E. Diagnosis phase

The efficiency of the proposed diagnosis flow to predict
multiple parameter variations is verified by the fifth column of
Table III. Next, we evaluate the generalization of the diagnosis
flow for the case of single faults. We use the following data
sets:

• The set S3 is generated independently in the same way as
S2. This set corresponds to 23 single hard fault scenarios.

• The set S4 contains 20 subsets S4j , j = 1, ..., 20, corre-
sponding to the 20 single soft fault scenarios shown in the
first column of Table IV. For the passive components, we
consider ±30% deviations. For the transistors, we distort
the mean value of t in two directions (for transistor MX,
MX+ means positive direction and MX- means negative
direction) such that the inflicted (excessive) variations
on gm and Cgs are still within the ranges of the fourth
column of Table III. Each subset S4j contains 100 LNA
instances generated by inserting the j-th single soft fault
and running 100 Monte Carlo simulations where the rest

TABLE IV
SINGLE SOFT FAULT SCENARIOS.

Single fault Number of faulty RMS error of
scenarios circuits /100 estimated values
C1+30% 69 1.9%
C1-30% 0 -
L1+30% 74 1.5%
L1-30% 0 -
L2+30% 17 1.9%
L2-30% 81 1.9%
L3+30% 88 1.5%
L3-30% 0 -
R1+30% 0 -
R1-30% 0 -
R2+30% 0 -
R2-30% 0 -
R3+30% 100 0.6%
R3-30% 42 1.3%

M1+ 19 cgs1 : 2.4%
gm1 : 1.2%

M1- 4 cgs1 : 1%
gm1 : 1%

M2+ 0 -
M2- 0 -
M3+ 16 cgs3 : 1.9%

gm3 : 5%
M3- 94 cgs3 : 3.2%

gm3 : 3%
Total 604/2000 -

of (unaffected) parameters are sampled from their fault-
free distribution. Thus, the size of S4 is 20×100 = 2000.

The devices in S3 and S4 undergo specification-based
testing, according to Fig. 1. All devices in S3 violate at least
one specification and as such are labeled as faulty. However,
this is not the case for devices in S4, as shown in the second
column of Table IV. Faulty devices are next forwarded to the
diagnosis phase where they are first subjected to the defect
filter. The defect filter fails to characterize correctly a single
device with parametric fault L2+30%, which is erroneously
screened out and forwarded to the classifier. However, the
classifier maps it to the “process variation” class and kicks
it back to the regression tier as indicated by the dashed arrow
in Fig. 1. The rest of devices with catastrophic faults are all
correctly classified, thus we conclude that catastrophic fault
diagnosis succeeds 100%.

All faulty devices in S4 are forwarded to the regression
tier. The third column of Table IV shows the RMS prediction
error of the parameters that deviate in each fault scenario and
Fig. 4 plots the situation for L2 and R3. Notice that the RMS
prediction error of the “fault-free” parameters (not shown here
due to lack of space) is similar to this of Table III (in general
it is even smaller since large errors typically correspond to
excessive deviations).

The following observations are useful in building soft fault
diagnosis rules: (a) the deviations of gm1 and gm2 are not
necessarily due to a fault in M1 or M2. Indeed, gm1 and gm2

depend on the current flowing through M1 and M2, which, in
turn, depends on all passive components in the same branch,
as well as on the bias circuit. Thus, a fault in any passive
component or in the bias circuit will also impact gm1 and
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Fig. 4. Comparison between target and predicted values. Each scatter point
corresponds to a faulty instance. Ideally these points should fall on the 45o

line.

gm2. (b) A soft fault in M2 does not render the circuit faulty
(see zero M2 entries in Table IV). (c) Recall from section IV-D
that the components of the bias circuit cannot be diagnosed by
high-frequency measurements; hence, the predicted deviations
of R1, R2, or M3 are not genuine and, thereby, are disregarded.
(d) The probability of two soft faults occurring at the same
time is negligible.

Based on the above observations, we define the following
diagnosis rules: (a) if both gm1 and gm2 deviate and at the
same time a passive component deviates, then the passive
component is faulty. (b) If only gm1 and gm2 deviate, then
the faulty component is M1 or is located in the bias circuit.
The latter rule leads to the only ambiguity so far. Now, notice
that the LNA fails if a fault within the bias circuit results in a
dramatic decrease of the DC bias point of M1 and/or the input
impedance of the bias circuit. Thus, this ambiguity can be
resolved in part by measuring the gate-source voltage Vgs3 of
M3 (the gate of M3 is not an RF sensitive node). Two follow-
up rules to rule (b) above are: (c) if gm1 deviates and Vgs3

is outside its tolerance, then M3 is faulty, (d) if gm1 deviates
and Vgs3 is within its tolerance, then the faulty component is
M1 or is located in the bias circuit. Using rule (c), we were
able to diagnose correctly 49 out of the 16+94=110 circuits
with faulty M3.

V. CONCLUSIONS

We presented a fault diagnosis method that relies on learn-
ing machines to answer the principal questions posed in a
branching diagnosis flow. A defect filter detects the type of
fault (hard or soft) and forwards the faulty device to the
appropriate tier. Devices with hard faults are diagnosed using
a multi-class classifier. If the fault that occurred is soft, then
inverse regression functions are used to predict simultaneously
a set of predefined design and transistor-level parameters, in
order to locate the faulty parameter and identify its value. In
general, some auxiliary circuit-specific fault diagnosis rules
are required to resolve ambiguities. This was demonstrated
with an LNA example with high overall diagnosis success.
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