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Abstract— The task scheduler of an energy harvesting wireless 
sensor node (WSN) must adapt the task complexity and maximize 
the accuracy of the tasks within the constraint of limited energy 
reserves. Structural Health Monitoring (SHM) represents a great 
example of such an application comprising of both steady state 
operations and sporadic externally triggered events. To this end, 
we propose a task scheduler based on a Linear Regression Model 
embedded with Dynamic Voltage and Frequency Scaling (DVFS) 
functionality. Our results show an improvement in the average 
accuracy of a SHM measurement, setting it at 80% of the maxi-
mum achievable accuracy. There is also an increase of 50% in the 
number of SHM measurements. 

Keywords - Energy harvester (EH); Task manager; 
Structural Health Monitoring (SHM); DVFS;  

I.  INTRODUCTION 

HE process of monitoring structures for the purpose of 
damage identification is known as structural health moni-
toring (SHM). Structural health monitoring requires know-

ledge of the undamaged state of the structure as a means of 
comparison, as well as continual comparison of periodic mea-
surements. This can be separated into two basic categories: 
rapid event assessment and periodic lifetime monitoring. While 
rapid event assessment or External Request addresses the need 
to obtain data from a structure immediately following a signifi-
cant event (such as an earthquake); periodic lifetime monitoring 
or steady state operation seeks to identify damage that accu-
mulates over long periods of time [1]. 

The SHM is an excellent sample application for an energy 
harvesting wireless sensor network (WSN). The adoption of 
wireless sensor networks in advanced Structural health moni-
toring (SHM) systems has proliferated in the last few decades 
[2] due to their ability to operate reliably without human inter-
vention in inaccessible areas. This has been made possible by 
the usage of wireless communication and environmental energy 
harvesters (EH) [3]. However, adopting an EH as the main 
energy supply limits the device's level of activity to the availa-
bility of energy in the environment. The most common energy 
source suited to outdoor SHM applications is solar energy, 
which is often inconsistent in its availability. 

A significant challenge in this type of system is the man-
agement and conservation of energy while maintaining the 
minimum level of QoS required by the particular deployment. 
The embedded SHM system must consume only as much ener-

gy as the energy harvester can collect from the environment 
[4]. Therefore, the task scheduler must ensure that task alloca-
tion is matched to the available energy. 

In order to achieve behavior, Kansal et al.[4] present a har-
vesting theory that uses duty cycling to account for changes in 
the harvested energy. But for many applications, duty cycling 
alone is not sufficient. Systems containing a variety of interde-
pendent tasks require a more detailed task model. 

Moser et al. [5] present a simulation work in power man-
agement in EH systems using discrete service levels associated 
with specific rewards. The energy harvesting rate in the future 
K 'frames' is calculated using a predictor algorithm, and a defi-
nite set of "service levels" are formulated for a hypothetical 
workload. They use dynamic programming to select the optim-
al service level. While optimal, [5] demonstrate their solution 
with only one constraint (i.e. energy constraint) and not for a 
number of constraints acting upon the scheduler at the same 
time. Also, this work has not been extended to any practical 
application. 

The work presented by J.Steck et al. [6] also uses the con-
cept of “discrete service levels”, where each level is associated 
with a “utility” value. This scheduler was applied for a Struc-
tural Health Monitoring (SHM) system. They designed an 
“iterative search” algorithm to meet the task deadlines with 
multiple performance constraints acting simultaneously. Dif-
ferent service thresholds are set and the energy availability is 
checked against these thresholds in order to vary task schedul-
ing. The main limitation by setting discrete service levels is the 
under-utilization of the available energy. 

In this paper, we developed a linear regression based algo-
rithm that relates the energy consumption, execution time and 
data accuracy to the number of tasks and their complexity. This 
model is then used to maximize the system performance with 
the constraint of energy availability. By using a linear regres-
sion based model, we utilize all the available energy to improve 
the task accuracy and number of measurements performed. We 
also incorporate a Dynamic Frequency and Voltage Scaling 
(DVFS) methodology to increase the efficiency of system 
energy utilization. 

In our results, we demonstrate the superiority of our linear 
regression algorithm based task scheduler over the iterative 
search based task scheduler [6] in terms of average accuracy of 
a measurement, number of performed measurements and num-
ber of external requests that can be serviced. 
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The rest of the paper is organized as follows. Section II 
provides a description of SHiMmer, the SHM device adopted 
as target system for the task scheduler, and an overview of the 
considered SHM tasks. The proposed algorithm for tasks man-
agement is described in Section III. Section IV shows the simu-
lation results obtained by implementing the algorithm with and 
without the DVFS capability. Finally, the conclusions are pre-
sented in Section V. 

II. SHIMMER: AN EMBEDDED SYSTEM  
FOR STRUCTURAL HEALTH MONITORING 

SHiMmer is a standalone embedded system designed for 
active structural health monitoring. The implemented active 
SHM consist in analyzing a structure through the application of 
ultrasonic waves and the acquisition of the wave propagation 
response of the structure. Collecting information about wave 
propagation allows detecting and localizing structural damages 
based on the Lamb Waves method [7]. 

SHiMmer platform comprises three boards: a digital board 
based on a ADI BlackFin DSP [8] for data analysis and wire-
less networking, running a custom Linux-based OS; an analog 
board that manages 16 independent channels and generates 
high-voltage active SHM pulse for the lead-zirconate-titanate 
(PZT) sensors; and a power manager board that collects energy 
from a solar energy harvester, stores the energy into a Superca-
pacitor, generates the required power supply rails and manages 
a Li-Ion battery acting as back-up energy reservoir. Figure 1 
shows SHiMmer development board for preliminary laboratory 
tests. 

SHiMmer allows performing ultrasonic SHM analysis 
stimulating the structure with high-voltage pulses applied 
through 16 independent PZT sensors. The main advantage of 
active SHM measurement is the flexibility to adjust the 
stimulation process to the particular structure conditions.  

SHiMmer implements the active SHM measurement fol-
lowing two procedures, Actuation and Sensing, which are per-
formed recursively over all the possible pairs of PZT sensors. 
During the Actuation, the adopted SHM pulses are custom gen-
erated by the DSP, amplified by the analog board up to 30 Vpp, 
and transmitted to the structure selecting 1 of the 16 PZT sen-
sors. 

During the Sense, the structure response is selectively col-
lected through each of the remaining 15 sensors, filtered 
through an anti-aliasing block, amplified by the analog board 
up to ±1V, and acquired by the digital board up to 25 MSPS. 
Due to the high-voltage amplification and high sampling-rate 
acquisition, Actuation and Sense procedures are high energy 
consuming activities, representing a significant and irreducible 
part of the overall SHiMmer power requirement. 

SHM data analysis consists of three main steps: reducing 
the correlated and uncorrelated noises from the SHM signal, 
extracting the amplitude and frequency information of the mea-
surements, and finally correlating the data provided by the se-
lected set of PZT sensors to detect the presence of damage in 
the structure. Figure 2 shows the list of tasks involved in the 
SHM analysis and the accuracy provided by each set of tasks. 

The first set of task that is performed is Actuation and Sens-
ing, which consists of the iterative measurement with ultrasonic 
waveform through all the combinations provided by the 16 
PZT sensors. The next stages of tasks are responsible for  

 

 
Figure 1. SHiMmer development board for laboratory SHM tests. 
 

 
Figure 2. The Structural Health Monitoring task graph shows the relation 
between the tasks and the accuracy of each path, n, for all steps of analysis. 

 
reducing the noise during measurement. These are averaging 
and filtering. The former reduces the uncorrelated noise by 
calculating the average over multiple sequences of samples in 
each path. The latter filters the signal in the frequency domain 
by means of a FFT computation of the acquired SHM response 
and subsequently eliminating the unwanted frequency compo-
nents, which correspond to noise.  

The amplitude and frequency are obtained from a SHM re-
sponse by convolving the filtered set of data with a set of refer-
ence SHM responses, called baseline signals. This task is called 
feature extraction. To detect the presence of damage in the 
structure, all the SHM data is combined using a damage corre-
lation function, thereby obtaining a map showing the current 
structure health. 

The selection of the ADI BlackFin represents the optimum 
trade-off between high-performance and low-power characte-
ristics. The former is due to a very efficient design of the core 
targeted to high speed complex data analysis; the latter is due 
to the native dynamic voltage and frequency scaling (DVFS) 
algorithm, which allows reducing both the core voltage and 
frequency. 



Based on the DVFS capability, the system has been de-
signed to select one of three different working modes: Active 
High, f1, where the core is running at 1.2V@300MHz, Active 
Low, f2, where the core runs at 0.85V@150MHz, and a low-
power idle mode where the core is set at 0.85V@75MHz, the-
reby reducing the system power consumption to 50mW. The 
reduction of BlackFin core voltage and frequency between the 
two active modes, allows savings of 30% in the energy con-
sumption.  

Table I shows the comparison of energy consumption and 
computational time of the BlackFin core performing a basic 
operation of sum and multiplication under the two active mod-
es. The adoption of DVFS and the two active modes, High – f1 
and Low – f2, will be described in detail in Section III. 

 
TABLE I. ADI BLACKFIN ENERGY CONSUMPTIONS WITH DVFS 

DVFS 
mode 

Sum (Integer value) Multiply (Integer value) 

EEX [nJ] TEX [µs] EEX [nJ] TEX [µs] 

Active High 274 0.751 336 0.892 

Active Low 192 0.932 235 1.098 

III. TASK SCHEDULER IMPLEMENTATION 

The primary goal of the proposed task scheduler is to max-
imize the accuracy and number of SHM measurements with 
respect to the energy consumption and the execution time con-
straints. In particular, since each measurement has several tasks 
to be executed, maximizing accuracy and number of SHM 
measurements consists of performing the maximum number of 
tasks accordingly to system constraints. 

The proposed scheduler maximizes the system performance 
adopting a set of linear regressions that relate the energy con-
sumption, the execution time and the data accuracy. Indeed, 
SHiMmer prototype behavior has shown that SHM algorithms’ 
energy consumption, execution time and accuracy are linearly 
dependent on the amount of analyzed data provided by the set 
of executed tasks. For this reason, adopted linear regression 
allows the scheduler to adjust number of task and their com-
plexity to the available energy. Furthermore, in order to im-
prove the efficiency of the energy utilization the proposed task 
scheduling algorithms uses the DVFS policy provided by the 
DSP to optimize both the system computation capability and 
energy consumption. 

The task scheduler algorithms manage the allocation of 
sequences of tasks according to the amount of available 
energy. At each time interval, the scheduler determines the 
energy available in the system buffer by tracking the energy 
collected by the EH as well as the energy consumed by system 
activities, as expressed by (1). 𝐸஻௨௙௙௘௥ห௧ = 𝐸஻௨௙௙௘௥ห௧ିଵ + 𝐸ாு|௧ − 𝐸஼௢௡௦௨௠௘ௗ|௧ (1) 

where EConsumed is calculated at run time by the task scheduler, 
and EEH refers to the amount of energy collected by the energy 
harvester during the time elapsed since last time interval. EEH 
takes into account the efficiency of the photovoltaic panels and 
the leakage of the systems, as shown in (2). 𝐸ாு|௧ = 𝐸௉௏ ௣௔௡௘௟ห௧ ∙ 𝜂௦௬௦௧௘௠ − 𝐸௅௘௔௞௔௚௘ห௧  (2) 

 
Figure 3. Block diagram of the steady state algorithm, which automatically 
selects the DVFS working mode and maximize the SHM task allocation. 
 
where EPV panel is the energy provided by the photovoltaic panel, 
ηsystem is the efficiency of the power supply sub-system and 
ELeakage is the sum of the energy leakage of the system, e.g. the 
supercapacitor self-discharge rate. The proposed task scheduler 
algorithm exploits the linear regression model and the DVFS 
functionality in both the Steady State and the External Request 
operations. 

A. Steady State Algorithm: 

Steady state operation is typical of sensor nodes; data is ga-
thered, processed, and transmitted according to a predefined 
schedule over a long period of time. The goal of steady state 
operation is to periodically execute a set of tasks at the highest 
possible accuracy and also to maximize the number of mea-
surements that can be done while maintaining a desired level of 
energy. The block diagram describing the developed algorithm 
is shown in Fig. 3. 

The methodology of this algorithm is to ascertain a rela-
tionship between the number of paths, n, frequency, fi, and the 
energy, Et , time consumed, Tt,, Accuracy, At,. Using curve-
fitting, we obtained three linear regression expressions to esti-
mate both the energy consumed and the execution time re-
quired to analyze different workloads, as shown in (3). 

ቐ𝐸௧(𝑓௜, 𝑛) = 𝑒஽ௌ௉(𝑓௜, 𝑛) ∙ 𝑛𝑇௧(𝑓௜, 𝑛) = 𝑡஽ௌ௉(𝑓௜, 𝑛) ∙ 𝑛𝐴௧(𝑓௜, 𝑛) = 𝑎஽ௌ௉(𝑓௜, 𝑛) ∙ 𝑛   (3) 



 
 

 
Figure 4.  Block diagram of the external request algorithm, which adopts the 
linear approach to meet the constraint requested by the external device. 
 
where eDSP refers to the amount of energy consumed to analyze 
a single SHM path, tDSP refers to the execution time for a single 
SHM analysis and aDSP refers to the achievable accuracy for a 
single SHM analysis. These linear relations between energy or 
time with the amount of SHM analysis allow the proposed task 
scheduler to maximize the number of measurement with re-
spect to the available energy Eavail. 𝐸௔௩௔௜௟|௧ = 𝐸஻௨௙௙௘௥ห௧ − 𝐸௠௜௡   (4) 

where Emin is the minimum energy the system needs to guaran-
tee external request response capability. Typically the interval 
between the two SHM measurements is denoted as Ttotal. How-
ever, external trigger requests take a finite amount of time to 
execute, TER, thereby effectively reducing the time available for 
performing the steady state operations. This effective time 
available is denoted as TSlot. 𝑇ௌ௟௢௧ = 𝑇௧௢௧௔௟ − 𝑇ாோ    (5) 

To calculate the maximum number of paths that can be ex-
ecuted within the specified time limit, TSlot, for the operating 
frequencies f1 and f2, the energy availability is checked against 
various pre-defined thresholds to determine the optimal (Nopt , 
fopt) pair. The thresholds are calculated using (6) and (7). 𝐸௧(𝑓௜) = 𝑒஽ௌ௉(𝑓௜) ∙ 𝑇ௌ௟௢௧/𝑡஽ௌ௉(𝑓௜)   (6) 

If the energy available exceeds Ef1, then the tasks are ex-
ecuted at the frequency f1 with a maximum of TSlot / tDSP (f1) or 
Nmax-f1 number of paths. If the energy available is less than Ef2, 
then the tasks are executed at the frequency f2 with Nopt number 
of paths, obtained from (7). 𝐸௧(𝑓௜, 𝑛) = 𝑒஽ௌ௉(𝑓௜, 𝑛) ∙ 𝑁௢௣௧   (7) 

Since f2 consumes less energy than f1 for performing the task 
with the same accuracy level, we choose f2 for lower energy 
available. 
On the other hand, if the Eavail falls between Ef1 and Ef2, then 
tasks are executed at a frequency f2 at TSlot / tDSP (f2) or Nmax-f2 
number of paths. In this manner, the scheduler selects the op-
timal number of paths Nopt (fi) and frequency fi. 

Depending on the Nopt calculated, the scheduler generates 
the corresponding task priority values, P. The Et (Nopt , fopt) is 
calculated for this set of P  values by executing the tasks as per 
the SHM task graph Fig.2. The buffer energy for the next time 
instant is updated into the energy buffer using (1). 

B. External Request Algorithms : 

The external request mode provides direct control of SHiM-
mer's capabilities to an external device. Because the relative 
importance of each task may change depending on the system’s 
current conditions, the task’s priority is expected to change in a 
system over time. By doing so, the algorithm dynamically se-
lects the proper workload to accomplish energy neutrality, 
while satisfying the performance constraints. The block dia-
gram describing the developed algorithm is shown in Fig. 4. 

We have modeled our external request scheduler algorithm 
around two different performance constraints. First, the algo-
rithm determines the maximum accuracy given that it needs to 
complete the task within a time limit (time constraint). Second, 
the algorithm can execute tasks at a specified accuracy value 
(accuracy constraint). 

This algorithm determines the set of task utilities based on a 
constraint limit. The heuristic consists of two basic steps: 1) In 
the case of Time constraint: Finding the maximum number of 
paths executable within the time limit. In the case of Accuracy 
constraint: Finding number of paths that guarantee the re-
quested accuracy 2) Satisfying the energy constraint. 

Just as in the steady state algorithm, the external request al-
gorithm also pre-computes the parameters such as energy con-
sumed Etask (n, f), accuracy A(n) and time consumed Ttask (n, f) 
for a number of data paths, n, and frequency, f, associated with 
a node. By curve-fitting, we obtained two linear regression 
expressions to estimate the time and energy required to analyze 
different workloads. These are represented in (3). 

a) Time Constraint Algorithm (TC): When an external 
device sets a maximum execution time limit, TC, optimal 
number of paths, Nopt,TC (fi) is calculated by extending 
inferences from (3) into (8) as shown. 



𝑁௢௣௧,்஼(𝑓௜, 𝑛) = 𝑇𝐶/𝑡஽ௌ௉(𝑓௜, 𝑛)   (8) 

The energy Etask (n, f) corresponding to Nopt,TC (fi) is calculated 
from (9). 𝐸௧௔௦௞(𝑓௜, 𝑛) = 𝑒஽ௌ௉(𝑓௜, 𝑛)  ∙  𝑁௢௣௧,்஼(𝑓௜, 𝑛)  (9) 

The time constraint algorithm tries to maximize the accura-
cy of the measurement by servicing the request at the higher 
DVFS active mode. This allows the algorithm to maximize the 
number of external request that can be successfully served. It 
first checks if the energy required by the f1 fits the energy 
budget. If not, f2 is selected. 

b) Time Constraint Algorithm (TC): When an external 
device sets a maximum execution time limit, AC, optimal 
number of paths, Nopt,AC (fi) is calculated by extending 
inferences from (3) into (10) as shown. 𝑁௢௣௧,஺஼(𝑓௜, 𝑛) = 𝐴𝐶/𝑎஽ௌ௉(𝑓௜, 𝑛)   (10) 

The energy Etask (n,f) corresponding to Nopt,AC (fi) is calculated 
from (10). 𝐸௧௔௦௞(𝑓௜, 𝑛) = 𝑒஽ௌ௉(𝑓௜, 𝑛)  ∙  𝑁௢௣௧,஺஼(𝑓௜, 𝑛)  (11) 

Unlike the time constraint algorithm, the accuracy con-
straint algorithm tries to maximize the energy savings of the 
measurement by servicing the request at the lower DVFS active 
mode. It first checks if the energy required by the f2 fits the 
energy budget. If not, f1 is selected. This is done since the accu-
racy is directly dependent on the number of path. Hence, reduc-
ing the DSP working mode allows performing the same analy-
sis with lower energy. 

IV. SIMULATION RESULTS 

To validate the proposed algorithms, a full SHM task sche-
duler has been implemented and simulated. The input to the 
system is a real distribution of solar energy, comprising sunny, 
cloudy and variable weather conditions. The various measure-
ment thresholds of the Supercapacitor and the DVFS active 
frequency mode values were obtained from the SHiMmer de-
velopment board, shown in Table I. The task sequence listed in 
the SHM task graph in Fig.2 was also given as an input to the 
scheduler. 

Figure 5 shows the simulated solar energy distribution over 
ten days. The proposed algorithm based on linear regression 
and DVFS is compared against the iterative search algorithm of 
Steck et al. [6]. In addition, the usefulness of DVFS is also 
demonstrated. 

A. Steady State Results 

Figure 6 shows the comparison of the task scheduler algorithms 
in terms of total number of SHM measurements performed in a 
day. By implementing a linear task allocation to vary the num-
ber of task paths, the scheduler is able to maximize the usage of 
the available energy. It is note-worthy that this method per-
forms 50% more number of SHM measurements as compared 
to the iterative approach. Moreover, as shown in Fig. 6, the 
adoption of DVFS policy allows a further increase of 15-20% 
in the number of SHM measurements. This is due to the versa-
tility of the system to select the low power active mode during  

 

 
Figure 5. Input solar energy distribution over a simulation duration of 10 days. 
 

 
Figure 6. Comparison of the maximum number of SHM measurements be-
tween the three algorithms over 10 days of SHM activity. 
 

 
Figure 7. Comparison of the normalized daily average SHM accuracy between 
the three algorithms over 10 days of SHM activity. 
 

 
low energy conditions, such as night, to allocate a higher num-
ber of measurements. 

Figure 7 shows the comparison between the normalized dai-
ly average SHM accuracy of the three schedulers. The normali-
zation adopted in these simulations consists of scaling the aver-
age accuracy with the maximum accuracy achievable. These 
results are in line with the results for the number of SHM mea-
surements. The adoption of a linear task allocation allows the 
execution of tasks with a higher accuracy, which in turn leads 
to a higher daily average accuracy. We also observe that the 
adoption of DVFS policy increases the performance by another 
10%, thereby fixing the average SHM accuracy at 70-80% of 
the maximum achievable accuracy. 



 
Figure 8. Comparison of the number of served external request and energy 
consumption for the proposed algorithms in external request operative mode. 

 

B. External Request Results 

In order to examine the behavior of the algorithms for the 
external request operation, the three schedulers have been si-
mulated considering two metrics: the number of external re-
quests the system can service and the amount of energy con-
sumed to service the requests. 

 Figure 8 shows the behavior of the three algorithms for an 
average number of 25 external requests per day. It can be seen 
that the iterative search algorithm can service only between 15-
30% of the requests, due to its discrete service level classifica-
tion. On the other hand, our linear algorithm can adjust the 
system performance to optimize its capability to allocate extra 
measurements. In particular, our linear model (with and with-
out DVFS) can service up to 95% of the requests. It is also seen 
from Fig.8 that by adopting the DVFS policy into the schedu-
ler, the system can reduce the amount of energy needed to ser-
vice the same external constraints, thereby, lowering the system 
energy requirement. 

V. CONCLUSIONS 

In this paper we proposed a task scheduler for SHM appli-
cations designed to maximize both the number and the accura-
cy of SHM measurements on the energy harvested wireless 
embedded device. The proposed scheduler uses a Linear Re-
gression based algorithm along with DVFS to adjust system 
workload and energy consumption to both available environ-
ment energy and desired SHM measurements QoS.  

The simulation results of the implemented linear algorithm 
show an increase of more than 50% in the number of daily 
SHM measurements over the iterative search method [8]. The 
linear algorithm with DVFS can get within 20% of the maxi-
mum achievable daily average accuracy. Finally, our proposed 
scheduler can satisfy up to 95% of the external requests and, 
using the DVFS feature, is able to significantly reduce the 
amount of energy needed to perform the additional requested 
measurements. 
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