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Abstract—We present a set of modeling constructs accom-
panied by a high performance simulation kernel for accuracy
adaptive transaction level models. In contrast to traditional, fixed
accuracy TLMs, accuracy of adaptive TLMs can be changed
during simulation to the level which is most suitable for a
given use case and scenario. Ad-hoc development of adaptive
models can result in complex models, and the implementation
detail of adaptivity mechanisms can obscure the actual logic
of a model. To simplify and enable systematic development of
adaptive models, we have identified several mechanisms which are
applicable to a wide variety of models. The proposed constructs
relieve the modeler from low level implementation details of
those mechanisms. We have developed an efficient, light-weight
simulation kernel optimized for the proposed constructs, which
enables parallel simulation of large models on widely available,
low-cost multi-core simulation hosts. The modeling constructs
and the kernel have been evaluated using industrial benchmark
applications.

I. INTRODUCTION AND MOTIVATION

Transaction level modeling (e.g. [1]) is an increasingly pop-

ular simulation-centric modeling paradigm for development

of system-level models of complex embedded systems and

systems-on-chip. Previous research in system level simulation,

even prior to the popularity of transaction level modeling (e.g.

[2], [3]) has shown that in many use cases, the accuracy of

a simulation model is only required in some intervals during

simulation and in other intervals the chosen level of accuracy

is not necessary. Hence, use of fixed accuracy models can

result in unnecessary loss of simulation performance. One

approach to address this problem is use of accuracy-adaptive

models. Our experience [4], [5] has shown that development

of ad-hoc adaptive models can result in complex models

whose model-specific adaptivity mechanisms are not easily

reusable in other contexts. In such models, implementation of

adaptivity mechanisms can obscure the actual logic of a model.

However, some adaptivity mechanisms are quite general and

can be used in a wide variety of models. One example is a

mechanism for modeling preemptable behaviors in buses and

operating systems. Our aim in this work has been providing

modelers with a reusable set of constructs which, while hiding

the implementation details of adaptivity mechanisms, enable

systematic development of adaptive TLMs.
Currently, languages such as SystemC [6] are the basis of

most TLM frameworks. These languages have a general and
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rich set of features suitable for models ranging from functional

models to synthesizable RTL models. These languages are

accompanied by general, sequential discrete event simulation

(SDES) kernels similar to those used in traditional RTL

simulators. This generality results in unnecessary simulation

performance loss in many use cases. For example, in [7]

the authors address this issue for simulation of heterogenous

models composed of different models of computation (MoCs).

The authors propose specialized SystemC kernel extensions

for efficient simulation of each MoC. For TLM, often an

additional library is used (e.g. [8]) which is implemented

as a layer on top of SystemC and its general SDES kernel.

To the best of our knowledge, no TLM-specific simulation

kernels have been developed so far. In this paper we show

that a small set of TLM-specific modeling constructs together

with a specialized, light-weight simulation kernel provide the

necessary level of flexibility and performance for most TLM

use cases.

A transaction level model is essentially a network of con-

current behaviors. Although TLMs inherently have a high

degree of concurrency, not all will benefit from parallel sim-

ulation. This is mostly due to the overhead of inter-simulator

communication and synchronization. Without an appropriate

computation to communication and synchronization ratio, par-

allel simulation may even result in slow-down rather speed-

up. However, many TLMs (e.g. hardware/software models of

multiprocessor SoCs) have a coarse-grain concurrency which

makes them suitable for parallel simulation. Currently, most

often these models are simulated using sequential simulators.

Considering the abundance of low cost parallel processing

power on ordinary workstations, this is not justifiable. Our

simulation kernel enables parallel simulation on multicore

machines.

The remainder of this paper is organized as follows. In

section II we give a brief overview of closely related work. In

section III we present our modeling constructs and simulation

kernel. Section IV summarizes the results of our evaluation and

experiments. Section V concludes the paper with a discussion

of the results and our directions for future research.

II. RELATED WORK

Transaction level modeling is used for a wide variety of

use cases such as system-level power and performance estima-

tion, benchmarking, virtual platforms and validation. Although
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originally used for modeling and simulation of traditional bus-

based systems, TLM is being used in a number of emerging

application areas such as Networks-on-Chip (NoCs) (e.g. [9]).

The popularity of TLM is in part due to the very high simu-

lation speed and in part due to the ability to model hardware

and software using a single language such as SystemC [6].

In addition to commercial TLM products and TLM stan-

dards and libraries (e.g. [8]), there exist a growing number

of research projects in this field. The closest of these projects

to our work are the multi-level models [10], adaptive models

[4], [5] and result-oriented models (ROM) [11]. These projects

present ideas which have been applied to specific models, but

they do not provide a set of reusable modeling constructs. Run-

time switching between different abstraction levels has been

mentioned and encouraged in the recent OSCI TLM standard

[8] but no details have been presented. In this work we present

a small but sufficient and reusable set of modeling constructs

for accuracy adaptive TLMs.

There exist a growing number of parallel simulation frame-

works used for transaction level simulation. However, these

are not optimized and specialized for TLM. Most of these

frameworks are based on parallel and distributed discrete event

simulation (PDES/DDES) principles (e.g. [12], [13]) and are

conservative as they strictly avoid causality violations. In [14]

authors present a framework which uses a modified SystemC

kernel. Their framework is for general SystemC models and

deals with low-level communication constructs, which means

the simulators synchronize and exchange information at the

end of every update phase. Another framework which is based

on the same principles but does not require modification of

the SystemC kernel is [15]. Another recent work is [16]

which exploits the properties of temporally decoupled [8]

TLMs to reduce inter-simulator synchronization overhead. Our

simulation kernel enables parallel simulation. However, it is

specialized and optimized for our modeling constructs and

does not deal with low-level communication channels (e.g.

signals) which are not used in TLM.

A much more efficient alternative to instruction-set simu-

lators (ISS) especially when simulating large MPSoCs is the

source-level annotated model of software. In these models,

the software executes on the simulation host but is annotated

at the source level with delays which represent the duration

of execution of code fragments on given targets (e.g. [17],

[18]). In contrast to existing work, we use hierarchical source-

level annotation. This enables modelers to incorporate multiple

levels of accuracy in a single model and dynamically change

the accuracy at simulation time.

III. MODELING CONSTRUCTS AND SIMULATION KERNEL

A. Definitions and Assumptions

Despite recent standardization efforts (e.g. [8]), there does

not exist a unified set of definitions in the TLM community.

To clarify the scope of our work, here we briefly give some

basic definitions. A model is a set of communicating modules
which in object oriented programming terminology are objects

of a certain class, and represent logical or physical entities.

Behavior of the modules is specified in a sequential, imperative

manner. Active modules have a process of their own, which

executes their specified behavior. Passive modules on the

other hand do not have a process and their behavior is

executed by the processes of active modules. Modules can

only communicate via direct, or interface-based calls of their

methods (i.e. no sc_signal-like constructs or shared memory

accesses). Behavior of a module is composed of actions (i.e.

computations), transactions (communication of data between

modules) or synchronizations.

B. Modeling Constructs
The following constructs enable development of accuracy-

adaptive models by providing the means for: incorporating

multiple levels of timing accuracy in a single model, changing

the level of accuracy at runtime, and efficient modeling of

preemptable behaviors.
1) Multiple levels of accuracy: We incorporate timing

information in the behavior of modules using hierarchical (i.e.

nested) source-level annotations. The annotations represent

timing of regions of code which are referred to as single-entry,

single-exit (SESE) regions in the compiler design community.

SESE regions can be individual statements within basic blocks,

basic blocks or larger compound blocks.
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Fig. 1. A hierarchy of SESE regions.

Figure 1 shows the control flow graph of a region of code,

consisting of straight line segments and a loop, which is

annotated at two levels. The two levels of timing annotation

correspond to two levels of abstraction and two levels of timing

accuracy. At the higher abstraction level, regions A,B,C,D and

E are annotated as a whole and at the lower abstraction level

three regions AB, CD and E are annotated.

A B C D C D C E

A B C D C D C E

simulation time

high
abstraction level

low
abstraction level

Fig. 2. Available timing information at different abstraction levels.

By annotating a region with timing, we indicate that we

are interested in the total duration of the enclosed activities.



This also indicates that the individual timing of those activities

is not of relevance at the given abstraction level. Let r be

a region annotated to have a duration of d and assume that

during simulation this region is entered at simulation time t.
The simulation kernel guarantees that the code in the region

is executed between t and t + d but no other assumption can

be made.

Timing accuracy of simulation of the control flow graph

of figure 1 at two levels of abstraction is shown in figure

2. At the higher level of abstraction, individual execution

times of actions A, B, C, D and E are not identifiable. More

timing information is available at the lower abstraction level,

which comes at the price of reduced simulation speed. The

abstraction level of modules can be selected statically at the

start of simulation or dynamically at simulation-time.

Listing 1 shows a code fragment annotated at two levels

using timing annotation macros HTA_BEGIN and HTA_END.

HTA_BEGIN( T1 ) ;
f o r ( i n t i =0 ; i <n ; i ++)
{

HTA_BEGIN( T2 ) ;
C ;
D;
HTA_END ( ) ;

} ;
HTA_END ( ) ;

Listing 1. Timing annotation macros.

The simulation semantics of these macros is best explained

by what occurs upon entering an annotated region and upon

exit from that region, summarized in listing 2. In the following,

G = (RM , E) is the hierarchy tree of annotated SESE regions

RM of module M , with depthr being the depth of a region

r in that tree. Function dM : RM × SM → T ∪ {Ω} assigns

to each region its duration t ∈ T depending on state s ∈ SM

of the module M . T is a totally ordered set of simulation

time values. Ω �∈ T is a special value representing absence of

timing information. levelM is the current chosen abstraction

level of module M and local_timeM ∈ T is the local time

of module M . Operation synchronize synchronizes the local

simulation time of a module with the global simulation time

by halting the execution of the behavior of the module until

the global simulation time reaches local_timeM . Two cases

are differentiated: The first case is when an estimate for the

duration of an SESE region r exists prior to entry to that

region (e.g. the loop in listing 1). This will postpone the

execution of the actions enclosed in r for the annotated amount

of time when the module is at the corresponding abstraction

level (listing 2 lines 4-5). The second case is when such

an estimate does not exist and depends on the execution of

the enclosed actions (e.g. a loop with a complex termination

condition). In this case, the actions enclosed by r are executed

and the local time proceeds according to timing information of

sub-annotations (line 9). The synchronization with the global

simulation time in this case occurs upon exit from region

r (line 14). It should be noted that inconsistencies between

the annotated duration of a region and total duration of its

subregions are allowed (e.g. when no accurate estimates exist).

Whether the resulting inaccuracy is tolerable depends on the

model and the use case.

1 on entry to region r:
2 i f ( levelM = depthr ) {
3 i f (dM (SM , r) �= Ω ) {
4 local_timeM ← local_timeM + dM (SM , r)
5 s y n c h r o n i z e ;
6 }
7 }
8 e l s e i f ( levelM = depthparent(r) )

9 local_timeM ← local_timeM + dM (SM , r)
10
11 on exit from region r:
12 i f ( levelM = depthr ) {
13 i f (dM (SM , r) = Ω ) {
14 s y n c h r o n i z e ;
15 }
16 }

Listing 2. Simulation semantics of annotation macros.

2) Modeling preemptable behaviors: Preemption is a

recurring pattern in system level models of hardware and

software (e.g. operating systems [19] and busses [5]).

Assume a behavior consisting of N atomic actions which

can be preempted upon occurrence of a certain condition.

The simplest approach for modeling this behavior, which

is often used in cycle-based models would be checking

for the occurrence of that condition after each atomic

step and terminating the behavior accordingly. For TLM,

more efficient but equally accurate approaches have been

proposed (e.g. [5], [11], [19]). We provide constructs for

modeling preemptable behaviors based on these approaches

without obscuring the actual logic of the model. Listing

3 shows an example of a preemptable region delineated

by HTA_BEGIN_PREEMPT and HTA_END_PREEMPT

macros. This behavior consists of several sub-regions

each annotated by HTA_BEGIN_P_ACTION and

HTA_END_P_ACTION macros.

HTA_BEGIN_PREEMPT(D, c o n d i t i o n )
HTA_BEGIN_P_ACTION(D1 ) ;
C ;
HTA_END_P_ACTION ( ) ;
/∗ more a c t i o n s ∗ /
HTA_BEGIN_P_ACTION(D2 ) ;
D;
HTA_END_P_ACTION ( ) ;

HTA_END_PREEMPT ( ) ;

Listing 3. Timing annotation macros - preemptable behaviors.

The simulation semantics of the macros is shown in listing

4 which shows entry to preemptable regions and atomic sub-

regions. The preemptable region is annotated with an estimate

for its duration, assuming that it is executed atomically.

Satisfaction of a condition c denotes violation of that assump-

tion at Dc simulation time units after entry to the region.

Operation wait(D,c) resumes the behavior of the module after



min{D,Dc} units of simulation time and returns the amount

of time elapsed since its initiation.

1 on entry to preemptable region r:
2 i f ( levelM = depthr ) {
3 time_budget← wa i t (dM (SM , r) ,c )
4 local_timeM ← local_timeM + time_budget
5 }
6
7 on entry to a sub-region rs:
8 i f ( levelM = depthparent(r) ) {

9 i f ( time_budget− dM (SM , rs) ≥ 0 )
10 time_budget← time_budget− dM (SM , rs)
11 e l s e
12 s k i p ;
13 }

Listing 4. Simulation semantics - preemptable region annotation.

Operation skip causes the enclosed region to be left with-

out executing its enclosed actions. In summary, upon entry

to a preemptable region, its execution is postponed for its

estimated non-preempted duration (listing 4 line 3). If the

non-preemption assumption is not violated, all enclosed sub-

regions are executed. If the non-preemption assumption is

violated after Dc simulation time units, only those subregions

whose total duration is less than Dc are executed and others

will be skipped (lines 9 to 12). If necessary, the constructs

can be used in a loop, to model resumption of the preempted

behavior.

C. Simulation Kernel

We have implemented the aforementioned modeling con-

structs in a C++ modeling library, which borrows some of its

features from the open source SystemC library [6] (exports,

interface method calls and module hierarchy) but is otherwise

developed from scratch. A specialized, discrete event simula-

tion kernel has been developed which is directly based on and

is optimized for the modeling constructs. Special care has been

taken to keep this simulation kernel light and efficient. For

example, instead of a full-fledged, user-level threading package

we have opted for a more efficient coroutine library [20] which

has been used by other researchers in large projects (e.g. [21]).

As another example, for performance reasons shown in section

IV we have decided to use a raw 64 bit integer time base

instead of a more flexible but less efficient sc_time-like object.
A single instance of the simulation kernel can be used

to simulate all modules in a model sequentially on a single

processor core. For parallel simulation of a model on n cores

of a multicore host, n instances of the kernel S1 . . . Sn are

used. The set of modules M in the model is partitioned

into disjoint sets M1 . . . Mn and each set Mi is assigned

to one instance of the kernel. At global simulation time

T , each kernel instance Si simulates its behaviors up to T
and reports the time of the next behavior execution Ti to

a simulator instance Sc which is statically chosen to act as

the synchronizer. Sc calculates the next global simulation

time T ′ = min{T1, . . . , Tn} and reports this value to all

simulators as the next global simulation time, to which the

simulators proceed. This continues until a global simulation

termination condition is reached. In PDES/DDES terminology,

this scheme is sometimes referred to as synchronous parallel

discrete event simulation. The simulation kernel automatically

detects whether it is being used in parallel simulation and

enables the global simulation time synchronization algorithm

accordingly. Communication between modules assigned to

different simulators is handled automatically by the library

using MPI [22] and requires no user code. The partitioning

and load balancing between simulators is currently static and

is done using a module constructor parameter.

IV. EXPERIMENTAL RESULTS

All following experiments have been performed on a 2.5

GHz, Intel Core 2 Quad based machine running 32-bit Linux.

A. Simulation Kernel Performance

Figure 3 compares our kernel (when used for sequen-

tial simulation) with the standard OSCI SystemC kernel. In

this experiment models with increasing number of active

modules were simulated. The modules performed repetitive

synchronizations with each other and the simulation time, with

no computation between synchronizations. The results show

the efficiency of our lightweight coroutine-based concurrency

management and the effect of choosing a raw 64-bit integer

time base. It can be seen that our kernel is almost twice as

fast compared to the standard SystemC kernel.
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Fig. 3. SDES kernel performance.

To measure the efficiency of parallel simulation and the

overhead of global simulation time synchronization, we sim-

ulated models with theoretical maximum achievable speedups

of 2, 3 and 4. The actual speed-up was measured for different

computation to communication/synchronization ratios. Results

are summarized in figure 4, where each unit of computation

corresponds to computation requiring roughly 5 μs of CPU

time on our simulation host. The difference in the break-even

points can be attributed to the fact that on the simulation host

cores share the L2 caches pair-wise.

B. Efficiency of Adaptivity Constructs

To measure the efficiency of hierarchical timing annotations

and dynamic accuracy control, we modelled a vector cross

product operator which could be used at two different ab-

straction levels. At the higher level, only the total duration
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Fig. 4. Parallel simulation performance.

of a complete cross product was known to the outside. At the

lowest level the duration of computation of each element of the

output vector was visible. To do this we annotated the behavior

of the module modeling this operator at two levels. The model

was used in a scenario requiring 107 cross-product operations.

Simulation at the lower level was approximately 30 times

slower than simulation on the higher level. Now assuming the

lower level of detail was only required for some operations,

we varied the percentage of time in which the model was at

the lower abstraction level. The results are shown in Figure

5, which clearly shows the benefit of using dynamic accuracy

control even for a small example.
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For the next experiment, we developed two models rep-

resenting the general pattern of preemptable behaviors. One

was a simple, “traditional” model, which checked for the

preemption condition after each step, and the second one used

the annotation macros presented in section III. We varied the

probability of preemption per one execution of the preemptable

behavior and measured the simulation time of both models.

Figure 6 shows the result where the behavior consists of 64

steps (e.g. a 64-beat burst). The gain in simulation performance

without having to leave out preemption from the model can

clearly be seen here. It should be kept in mind that this

performance gain is application dependent (e.g. depends on

the number of atomic steps of the preemptable behavior).
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C. Realistic Benchmarks

For evaluation under more realistic conditions, we chose two

benchmarks from the commercial EEMBC Multibench Suite

[23]. The first benchmark was RGB to CMYK color space

conversion, running on an eight-core MPSoC. We annotated

the software with timing at three levels of accuracy: processing

of large sub-picture blocks, 64-by-64 pixel blocks and indi-

vidual pixels (abstraction levels 1, 2 and 3). The model was

simulated using one to four cores. The results are summarized

in Table I. The benchmark can be configured to use different

images and repetitions resulting in different simulation times.

For example, simulating conversion of a sequence of 20

800x600 image at abstraction level 1 required approximately

one second. For easy comparison, in the following tables

all simulation times are relative to the sequential simulation

time at the highest abstraction level. In this experiment the

abstraction level of the models was fixed during simulation.

It can be seen that the sequential simulation of the model

at level 3 is almost two order of magnitude slower than

simulation at level 1. Assuming that we are only interested in

exact timing for some of the pixels (e.g. image boundaries),

we can switch the model to a higher level of abstraction

while other pixels are being processed and hence increase

the simulation performance. When simulated at levels 1 and

2, parallel simulation results in noticeable speed up. When

simulated at level 3, parallel simulation results in a slow-down.

This is due to the very fine-granular timing annotations which

result in frequent synchronization between simulator instances.

Abstraction Level Sequential 2 SDES 3 SDES 4 SDES

1 1 0.53 0.4 0.26
2 ≈ 1 0.55 0.4 0.33
3 93 115 108 136

TABLE I
SIMULATION TIMES FOR PARALLEL RGB-CMYK BENCHMARKS

The second benchmark was the MD5 digest algorithm

running on a quad core MPSoC. The central part of this

particular implementation is a function to calculate the digest

for a 64 Byte block of data. We annotated the software at

two levels: processing of large blocks of data, and smaller 64



Abstraction Level Sequential 2 SDES 3 SDES 4 SDES

1 1 0.51 0.51 0.26
2 3.4 4.7 5.4 5.7

Dynamic 1.1 0.74 0.82 0.42

TABLE II
SIMULATION TIMES FOR PARALLEL MD5 DIGEST BENCHMARKS

byte blocks (abstraction levels 1 and 2). Results can be seen in

Table II. We simulated the model with fixed abstraction levels,

and a additionally with dynamic abstraction level to collect

statistical information for 1% of the processed 64 Byte blocks

(approximately 3 ∗ 105 blocks). While delivering the required

level of accuracy for this use case, the simulation speed of

the dynamic accuracy model was only slightly lower than

simulation at level 1. While simulation with fixed, high-level

of detail does not benefit from parallelization, simulation with

dynamic accuracy can be made faster by parallel simulation.

The minimal difference between speedups with two and three

simulators is due to static partitioning and load balancing.

V. CONCLUSIONS AND FUTURE WORK

We have presented a small set of modeling constructs for

systematic development of adaptive transaction level models,

without having to deal with low-level implementation details

of adaptivity mechanisms. These constructs are applicable in

a large number of modeling use cases. Our experiments have

shown the efficiency of the adaptive models developed with

these constructs over their fixed-accuracy counterparts. The

constructs are directly supported by the underlying special-

ized, light-weight simulation kernel. The simulation kernel

can take advantage of the increasing availability of low cost

parallel processing power in development workstations. Mul-

tiple instances of the kernel can be used to easily create a

synchronous PDES simulator. The only additional user code

required in this case would be assignment of modules to kernel

instances (partitioning) by setting a single module attribute

upon construction. Depending on the properties of the model

and its partitioning, parallel simulation can result in significant

speedup on multicore simulation hosts. Extending the parallel

simulation capabilities for clusters and dynamic load balancing

are our planned future work.
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