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Abstract 

This paper proposes a novel software Transaction-Level Mod-
eling (TLM) approach for efficient HW/SW co-simulation. In 
HW/SW co-simulation, timing synchronization should be involved 
between the hardware and software simulations for keeping their 
concurrency. However, improperly handling timing synchroniza-
tion either slows down the simulation speed or scarifies the simu-
lation accuracy. Our approach performs timing synchronization 
only at the points of HW/SW interactions, so the accurate simula-
tion result can be achieved efficiently. Furthermore, we define 
three abstraction levels of software TLM models based on the type 
of interactions captured. Given the target software, the software 
TLM models can be automatically generated in multiple abstrac-
tion layers. The experimental results show that our software TLM 
models attain 3 million instructions per second (MIPS) for low-
level abstraction and go as high as 248 MIPS for higher level 
abstraction. Therefore, designers can have efficient co-simulation 
by selecting a proper layer according to the abstraction of cor-
responding hardware components. 

1. Introduction 
As the design complexity of SoC grows, HW/SW co-

simulation becomes more and more crucial for early-stage 
system verification. To simplify the simulation efforts on 
RTL designs, the concept of Transaction-Level Modeling 
(TLM) [1] for hardware was introduced. By adopting high-
er abstraction modeling, hardware simulation can be greatly 
accelerated while key operational information is maintained 
at the same time. Nevertheless, software is an essential sys-
tem component, and it also requires proper abstraction 
models to be compatible with hardware TLM models for 
efficient HW/SW co-simulation. In particular, industrial 
studies show that the complexity of embedded software is 
rising 140 percent per year, which is greater than that of 
hardware at 56 percent per year [6]. Obviously, abstraction 
for software is an urgent subject for investigation, but un-
fortunately very few publications have addressed this issue. 
The main contribution of this paper is to propose a syste-
matic and practical approach for abstracting software TLM. 

TLM is formally defined as a high-level approach to 
model digital systems where the communication among 
modules is separated from the functional units [1]. Howev-
er, a conventional software abstraction approach emphasiz-
es different granularities of timing annotation, i.e., cycle 
level, instruction level, basic-block level, function level, and 

so on. Such a timing granularity approach is inadequate to 
model the communication among hardware and software. 

Based on our observation, to efficiently achieve accurate 
HW/SW co-simulation results, timing synchronization is 
required between the hardware and software simulations 
for keeping their interactions executed in order. The points 
where interactions may occur (named interaction point) can 
be different, dependent on the modeling abstraction. More 
interactions would introduce more synchronization efforts. 
According to the type of interaction points of interest, we 
propose three levels of software TLM. At each particular 
abstraction layer, the execution order of given interactions 
is ensured by our timing synchronization so that the accu-
rate simulation can be guaranteed. Figure 1 summarizes the 
correlation between the abstraction degree and simulation 
speed for the three proposed models. 
● Instruction-Level Model (I-LM): Since a processor 

interacts with other components via memory access, hard-
ware I/O, or interrupts, which may occur at any instruction, 
each instruction should be considered an interaction point.  
● Data-Level Model (D-LM): In fact, a program’s ex-

ecution result can be influenced by other components only 
via data input/output. In other words, a program’s interac-
tions go through data accesses, so each data access instruc-
tion is an interaction point. 
● Shared-Variable-Level Model (SV-LM): The data of 

a program can be further classified into shared variables 
and local variables. Logically, a program interacts with 
others only through shared variables so that shared variable 
access instructions should be taken as interaction points.  

Figure 1: The correlation between the degree of abstraction 
and simulation speed for the three proposed software TLM 
models.
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Obviously, as the degree of abstraction rises, some irrele-
vant interactions are filtered out, so the number of interac-
tion points decreases. With less synchronization overheads, 
a higher abstraction layer offers better simulation perfor-
mance. Most importantly, it disregards detailed interactions 
and mulls over only those interactions of concerns to this 
layer. Thus, if a proper software TLM model is chosen, 
then both the desired accuracy and simulation performance 
of co-simulation can be accomplished. 

In order to help designers efficiently create multiple ab-
straction layers of software TLM, we further devise an au-
tomatic generation method. Given target binary codes, the 
three proposed software TLM models can be automatically 
generated into corresponding SystemC [1] modules, which 
can easily be integrated with the hardware TLM models. 
Conventionally, an instruction-set simulator (ISS) is used 
for software simulation, but its maximum simulation speed 
is only few million instructions per second (MIPS). When 
cooperating with the hardware simulator, the timing syn-
chronization between them would further slow down the 
simulation to less than one MIPS. On the contrary, our 
software TLM models (including synchronization over-
heads) attain 3 MIPS for I-LM and go as high as 248 MIPS 
for SV-LM as reported by the experimental results. This 
can demonstrate the effectiveness of our approach for 
HW/SW co-simulation. 

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Our timing synchronization 
is introduced in Section 3. Section 4 formally defines three 
abstraction layers for software TLM. The automatic genera-
tion is described in section 5. The experimental results are 
shown in section 6. Finally, our conclusion is in section 7. 

2. Related Work 
For HW/SW co-simulation, a conventional approach in-

tegrates an ISS and SystemC. To enable the communication 
between the two different simulators, Séméria and Ghosh 
[2] employed a bus functional model as a bridge. Similarly, 
Fummi et al. [3] adopted a wrapper to do so. However, the 
ISS is quite slow (few MIPS only), and the expensive 
communication cost further downgrades the simulation 
speed. In general, the performance of ISS-SystemC co-
simulation is unsatisfactory. Even the high speed ISS like 
binary translation [7] would be significantly slowed down 
due to the heavy communication. 

Rather than running on an ISS, the target source program 
is taken as a SystemC module to achieve native execution 
speed for software simulation. Then the two different simu-
lations can be integrated smoothly, and the communication 
cost between them is greatly reduced. As an example, 
Schnerr et al. [4] proposed a timing back-annotation tech-
nique to produce a timed source program. Furthermore, 
Yoo et al. [5] employed delay functions onto the target 
source program for timing synchronization with SystemC. 
Nevertheless, this approach compiles target source codes 
by the host compiler, so target instructions are unavailable. 

It would make HW/SW interaction points unable to be ac-
curately distinguished. Thus, the source-level software 
model is incapable of supporting HW/SW co-simulation 
comprehensively. 

Obviously, the above mentioned approaches cannot meet 
the need of efficient and accurate timing synchronization in 
HW/SW co-simulation. Moreover, as far as we know, these 
approaches are insufficient to fully support the multiple 
abstraction layers for software models. This paper proposes 
a novel approach for multiple abstraction layers of co-
simulation. To explicate the idea, the timing synchroniza-
tion issue is first elaborated. 

3. Timing Synchronization 
To have accurate HW/SW co-simulation, it is necessary 

to simulate the concurrency of hardware and software so 
that timing synchronization is required between hardware 
and software for keeping their time consistent. To handle 
synchronization, a simulator like SystemC provides a tim-
ing synchronization function (i.e., wait function). When 
this function is called, a scheduler will be invoked to select 
a proper simulated component to execute. Therefore, the 
concurrency of simulated components can be cooperatively 
performed. 

Ideally, timing synchronization should be performed at 
each cycle as shown in Figure 2(a). In each period of time, 
the simulations of hardware and software can be executed 
in order. However, the weighty synchronization overheads 
would significantly slow down the simulation, so how to 

Figure 2: (a) timing synchronization by each cycle, (b) an 
improper granularity of timing synchronization, (c) timing 
synchronization before each interaction points. 
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reduce synchronization overheads becomes crucial. 
Yet, if the granularity of timing synchronization is en-

larged improperly, the simulation will be incorrect as illu-
strated in Figure 2(b). We know that any two different si-
mulated components influence each other through mutual 
interactions (e.g., interaction a and b in Figure 2). Assume 
that the interaction b of the hardware obtains a value pro-
duced by the interaction a of the software in Figure 2(a). 
Then their out-of-order execution in Figure 2(b) would let b 
obtain the value not produced by a, which leads to incorrect 
simulation results. 

To overcome this issue, we define the precedence of in-
teractions based on their time ordering. By keeping the 
precedence, the influence from interactions must be main-
tained, and the correct simulation results are guaranteed 
thereby. To do so, we perform timing synchronization be-
fore each interaction point where an interaction may occur, 
as illustrated in Figure 2(c). In this way, part of the simula-
tion in between interaction points may be executed out of 
order. For example, as depicted by the shaded regions in 
Figure 2(c), the second cycle of the software simulation, 
supposed to be executed later than the first cycle of the 
hardware simulation, is actually completed earlier. Never-
theless, since no other operations, except interactions, can 
directly influence (or be influenced by) other simulated 
components, the execution order of such operations makes 
no difference to the results. 

In conclusion, a transaction can be defined as a sequence 
of operations, starting from an interaction, including suc-
ceeding operations, until the next interaction. Essentially, 
each transaction can be regarded as an atomic action, and 
the end of a transaction is a sync point. Because the number 
of interaction points is considerably smaller than the num-
ber of cycles, the synchronization overheads are greatly 
reduced. As a result, our synchronization scheme allows 
better simulation performance without sacrificing accuracy.  

4. Software Abstraction 
Based on the previous discussion, we know that the inte-

raction point is the key to synchronization. Moreover, ac-
cording to the software abstraction, there can be different 
types of HW/SW interactions, so the interaction points ac-
tually to be considered are also different. Therefore, we 
further propose three levels of software TLM correspond-
ing to different abstraction layers of HW/SW interactions. 

4.1 Instruction-Level Model (I-LM) 
Considering a software component executes on a proces-

sor, interactions of a processor are introduced by memory 
accesses, hardware I/O accesses, and interrupts.  

Memory accesses and hardware I/O accesses are the two 
ways for a processor to trigger an interaction. Typically, a 
memory access is via a memory load/store instruction. On 
the other hand, hardware I/O has two common mechanisms, 
memory-mapped I/O (MMIO) and port-mapped I/O 
(PMIO). For MMIO, hardware I/O accesses are also acti-

vated through memory load/store instructions to particular 
addresses (which are actually mapped onto hardware regis-
ters), whereas for PMIO, they are through I/O specified 
instructions instead. 

Correspondingly, hardware components issue interrupts 
to interact with a processor (software). Since interrupts may 
occur at any processor instruction, to capture interrupts in 
correct order, timing synchronization has to be performed 
at each instruction. Therefore, for this model, each instruc-
tion is an interaction point and is also treated as a transac-
tion, as depicted in Figure 3(a). Accordingly, it is named 
instruction-level model (I-LM). This fine-grained model 
intends to handle interrupts precisely, but the excessive 
synchronization effort would dominate the simulation per-
formance. To accelerate the simulation, the interactions 
need to be considered in a higher abstraction layer. 

4.2 Data-Level Model (D-LM) 
For this model, data accesses, issued by either memory 

load/store instructions or I/O specific instructions, are con-
sidered interaction points. In terms of the program execu-
tion, only data accesses can directly influence the execution 
result. Hence, they are appropriate interaction points.  

Interrupts from hardware are not treated as interactions 
points here since they do not change the program results 
immediately. Indeed, they may influence program execu-
tion, but their influence is implicitly through the data ac-
cesses issued by the interrupt service routine (ISR) or the 
other program they trigger. Therefore, as long as the order 
of data accesses is guaranteed, the program execution re-
sults must be correct. Accordingly, we define a data-level 
model (D-LM), in which timing synchronization is per-
formed before each data access. 

Figure 3: Illustration of the relation between transactions and 
interrupts respectively in (a) I-LM, (b) D-LM, and (c) SV-LM. 

Note: the shaded instructions are interaction points. 
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To illustrate the effectiveness of this model, Figure 3(b) 
depicts an example of various interrupt timings to the pro-
gram execution results. When a processor receives an inter-
rupt, it will suspend the current program and invoke the 
corresponding ISR. The ISR can only influence (or be in-
fluenced by) the suspended program through its data access. 
Since the instructions within a transaction (such as i2 (add) 
and i3 (div)) access registers only, invocation of an ISR 
cannot affect their results. Consequently, when an interrupt 
that arrives at time point inta or intb is deferred to the end of 
Tran1 (i.e., intc), the execution result of the transaction re-
mains the same. Meanwhile, the ISR will not be affected by 
instruction i2 and i3 as well, so the deferred handling does 
not affect the result of the ISR either. On the contrary, 
when an interrupt is handled in a different transaction, it 
may introduce erroneous simulation results. For instance, if 
both instruction i4 (store) and the ISR of a particular inter-
rupt access a same data address, then handling the interrupt 
at time point intc or intd would lead to different results. Ac-
cordingly, the handling of interrupts must be synchronized 
before data accesses.  

In summary, D-LM has a higher abstraction layer on 
HW/SW interactions in contrast to I-LM. Since D-LM re-
quires less synchronization efforts, it allows better simula-
tion performance. Most importantly, D-LM can perform the 
same simulation results (including the interrupt effect) as I-
LM does. Hence, it is a preferable model. 

4.3 Shared-Variable-Level Model (SV-LM) 
For this model, only data accesses to share variables are 

considered interaction points. In general, the data of a pro-
gram can be further classified into shared variables and 
local variables. Logically, the value changes of local va-
riables of a program do not affect the behaviors of others 
since programs interact with each other only through shared 
variables. Hence, focusing on shared variables, we define a 
shared-variable-level model (SV-LM), in which timing is 
synchronized before each shared variable access.  

An example is shown in Figure 3(c), where Tran1 and 
Tran2 are separated by the shared access instruction i6. If D-
LM is applied, Tran1 will be further divided into two trans-
actions by the local access instruction i4. Now with SV-LM, 
since i4 accesses a local variable, whether an interrupt ar-
rives before i4 (inta) or after i4 (intb) would make no differ-
ence to the program execution results.  

Comparing with D-LM, SV-LM is even more efficient 
while it ensures the accuracy of logical interactions. How-
ever, this further abstraction of interactions ignores the lo-
cal variable accesses. Although these accesses are logically 
irrelevant to others, they still share the same data bus with 
the shared variable accesses physically. Once the bus con-
tention happens, the latency of the shared variable access 
can be affected by a local variable access. Consequently, 
SV-LM is proper to those who employ an ideal memory 
model without contention.  

5. Automatic Generation 
The three levels of software TLM have been decribed. 

Furthermore, in order to help designers efficiently create 
the software models in multiple abstraction layers, an au-
tomatic generation method is devised. We first establish the 
timed model. Then we identify the interaction points given 
different abstraction layers and annotate the timing syn-
chronization function before them. 

5.1 Input 
Since we need the complete information of the target 

software to generate the software models in different ab-
straction layers, the target binary codes are ideal to be our 
input. Comparing with source codes, the binary codes con-
tain the details about both the target instructions and the 
data layout in the target memory space, which allow us to 
identify the HW/SW interactions precisely. In addition, 
target binary codes are supposed to be available because 
the target processors are usually determined at co-
simulation phase. Hence, the target binary can be easily 
generated by target cross compilers.  

5.2 Timed Model 
First, we generate the functional model of software by 

decompiling the target binary codes into C codes as illu-
strated in Figure 4, where each target instruction is trans-
lated into a corresponding C function. In addition, each 
basic block of the control flow graph (CFG) from the target 
binary codes is generated as a switch case. Then a switch 
statement is used to select proper blocks to execute based 
on the value of program counter (PC) during simulation. In 
this way, the generated model can execute the correct ex-
ecution flow. Compared with an ISS which simulates an 
instruction by performing three steps, fetching, decoding, 
and executing, our method finishes fetching/decoding at the 
de-compilation stage. Only executing is required at the si-
mulation stage so that the simulation performance is greatly 
improved. This is similar to static compiled simulation 
techniques [8][9]. 

Figure 4: The de-compilation for the functional model. 
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The timed software model is needed for accurate timing 
synchronization. In order to have the timed model, we 
adopt the timing annotation technique [10], by which the 
timing information can be obtained without considerably 
downgrading the simulation performance. To do so, the 
essential execution time of each basic block is estimated in 
advance. Then during simulation, the overall execution 
time will be calculated by summing up the time of every 
executed block. Besides, some dynamic behaviors may also 
influence the execution time, such as cache hit/miss, branch 
prediction. To deal with these cases, we should further em-
ploy the corresponding correction codes to dynamically 
adjust the execution time. Consequently, the timed model is 
obtained. 

5.3 Synchronization Model 
In this stage, we identify sync points according to each 

different abstraction layer and respectively annotate them 
into the timed model. 

5.3.1 I-LM & D-LM 
For I-LM, the sync point is annotated in front of each in-

struction, whereas for D-LM, the sync point is annotated in 
front of each memory access instruction and each I/O spe-
cific instruction.  

5.3.2 SV-LM 
It is more complex to identify SV-LM’s sync points 

since we are not always able to pre-determine whether a 
data access is for a shared variable. Thus, we mark those 
undetermined ones as potential sync points. A potential 
sync point contains an extra procedure to check if the point 
is an actual sync point during simulation. For further dis-
cussion, we classify shared variables into two types: 
SW/SW share and HW/SW share. 

SW/SW Share: Programs share data with each other via 
memory. The SW/SW shared variable access is issued by a 
memory access instruction. However, memory access in-
structions typically adopt the indirect address mode (i.e. 
memory address indicated by a register instead of an im-
mediate). Consequently, the exact accessed address cannot 
be known until the instruction is ready for execution, so we 
use the check procedure to see if their accessed address 
belongs to the shared data segment. Then during simulation, 
the SW/SW shared variable access can be identified. 

HW/SW Share: The shared variables between hardware 
and software are located in either memory or hardware reg-
isters. For those in memory, the space they store is usually 
pre-defined. Similarly, a check procedure can be applied to 
distinguish them. On the other hand, when the shared va-
riables are in hardware registers, I/O specified instructions 
used for PMIO are pre-determinable. As for MMIO, normal 
memory access instructions are used, so a check procedure 
is needed again.  

Based on the above principles, the shared variable access 
can be correctly identified, so the sync points of SV-LM 

are determined. Accordingly, the three proposed abstraction 
software TLM models are generated. 

5.4 Limitations 
Our automation method inherits the restrictions of the 

static compilation technique i.e., the target program must 
be run-time static and have no indirect jump. If the pro-
gram goes against them, an extra interpretive simulator can 
be used to handle such special cases. Fortunately, since 
these cases are only a small portion of the program, the 
simulation performance is not greatly affected. 

6. Experimental Results 
To evaluate the proposed software TLM, we did two ex-

periments. The first demonstrates the simulation speed of 
our software TLM models; the second tests a real case of 
HW/SW co-simulation. The setup of both experiments is as 
follows: the testing machine is equipped with Intel Xeon 
3.4 GHz quad-core and 2GB ram. Our target processor 
adopts Andes instruction-set architecture [12]. The generat-
ed models are simulated on the SystemC 2.2.0 kernel. 

6.1 Performance of Software TLM 
The first experiment evaluates the simulation speed of 

the three different software TLM models. A wait function 
is annotated for the SystemC scheduler to do timing syn-
chronization. Without any synchronization, the ideal speed 
of generated software TLM models attains hundreds of 
MIPS. Table 1 makes a comparison with a typical ISS [13] 
which is also without synchronization. The speed of the ISS 
is only about hundreds of KIPS to few MIPS as reported. 
This is because an ISS has to perform fetching, decoding, 
and executing for each time of the execution of one instruc-
tion while we only perform once of fetching/decoding for a 
same instruction no matter how many times it is executed. 
Since there are a lot of loops within common programs, the 
time spent on fetching/decoding is greatly reduced in our 
model. Therefore, we can outperform the ISS by two to 
three orders of magnitude in simulation speed.  

Table 1. The ideal speed comparison with ISS 
Our software TLM  ISS [13] 
136 ~ 248 MIPS 200+KIPS ~ 4+ MIPS 

 
The simulation speeds of our software TLM in different 

abstraction layers are shown in Figure 5. Here we tested 
them by five different benchmarks. FFT, LU, and RADIX 
are parallel programs from SPLASH-2 benchmarks [10] 
while Micro-benchmark and Fibonacci are sequential pro-
grams. The simulation performance of I-LM dominated by 
the synchronization overheads is consistently at around 3 
MIPS despite different benchmarks. As for D-LM, syn-
chronization is just required at data accesses, so it can acce-
lerate up to 6 ~ 13 MIPS. Moreover, since SV-LM only 
synchronizes at shared variable accesses, the simulation 
speed is further raised to 37 ~ 248 MIPS. Especially for the 
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