

Automatic Generation of Software TLM in Multiple
Abstraction Layers for Efficient HW/SW Co-simulation

Meng-Huan Wu, Wen-Chuan Lee, Chen-Yu Chuang, and Ren-Song Tsay

Department of Computer Science
National Tsing Hua University, HsinChu, Taiwan
{mhwu, wclee, cychuang, rstsay}@cs.nthu.edu.tw

Abstract

This paper proposes a novel software Transaction-Level Mod-
eling (TLM) approach for efficient HW/SW co-simulation. In
HW/SW co-simulation, timing synchronization should be involved
between the hardware and software simulations for keeping their
concurrency. However, improperly handling timing synchroniza-
tion either slows down the simulation speed or scarifies the simu-
lation accuracy. Our approach performs timing synchronization
only at the points of HW/SW interactions, so the accurate simula-
tion result can be achieved efficiently. Furthermore, we define
three abstraction levels of software TLM models based on the type
of interactions captured. Given the target software, the software
TLM models can be automatically generated in multiple abstrac-
tion layers. The experimental results show that our software TLM
models attain 3 million instructions per second (MIPS) for low-
level abstraction and go as high as 248 MIPS for higher level
abstraction. Therefore, designers can have efficient co-simulation
by selecting a proper layer according to the abstraction of cor-
responding hardware components.

1. Introduction
As the design complexity of SoC grows, HW/SW co-

simulation becomes more and more crucial for early-stage
system verification. To simplify the simulation efforts on
RTL designs, the concept of Transaction-Level Modeling
(TLM) [1] for hardware was introduced. By adopting high-
er abstraction modeling, hardware simulation can be greatly
accelerated while key operational information is maintained
at the same time. Nevertheless, software is an essential sys-
tem component, and it also requires proper abstraction
models to be compatible with hardware TLM models for
efficient HW/SW co-simulation. In particular, industrial
studies show that the complexity of embedded software is
rising 140 percent per year, which is greater than that of
hardware at 56 percent per year [6]. Obviously, abstraction
for software is an urgent subject for investigation, but un-
fortunately very few publications have addressed this issue.
The main contribution of this paper is to propose a syste-
matic and practical approach for abstracting software TLM.

TLM is formally defined as a high-level approach to
model digital systems where the communication among
modules is separated from the functional units [1]. Howev-
er, a conventional software abstraction approach emphasiz-
es different granularities of timing annotation, i.e., cycle
level, instruction level, basic-block level, function level, and

so on. Such a timing granularity approach is inadequate to
model the communication among hardware and software.

Based on our observation, to efficiently achieve accurate
HW/SW co-simulation results, timing synchronization is
required between the hardware and software simulations
for keeping their interactions executed in order. The points
where interactions may occur (named interaction point) can
be different, dependent on the modeling abstraction. More
interactions would introduce more synchronization efforts.
According to the type of interaction points of interest, we
propose three levels of software TLM. At each particular
abstraction layer, the execution order of given interactions
is ensured by our timing synchronization so that the accu-
rate simulation can be guaranteed. Figure 1 summarizes the
correlation between the abstraction degree and simulation
speed for the three proposed models.
● Instruction-Level Model (I-LM): Since a processor

interacts with other components via memory access, hard-
ware I/O, or interrupts, which may occur at any instruction,
each instruction should be considered an interaction point.
● Data-Level Model (D-LM): In fact, a program’s ex-

ecution result can be influenced by other components only
via data input/output. In other words, a program’s interac-
tions go through data accesses, so each data access instruc-
tion is an interaction point.
● Shared-Variable-Level Model (SV-LM): The data of

a program can be further classified into shared variables
and local variables. Logically, a program interacts with
others only through shared variables so that shared variable
access instructions should be taken as interaction points.

Figure 1: The correlation between the degree of abstraction
and simulation speed for the three proposed software TLM
models.

Simulation
Speed

I-LM

D-LM

SV-LM

Logical
Interaction

Program
Interaction

Processor
Interaction

Degree of
Abstraction

978-3-9810801-6-2/DATE10 © 2010 EDAA

Obviously, as the degree of abstraction rises, some irrele-
vant interactions are filtered out, so the number of interac-
tion points decreases. With less synchronization overheads,
a higher abstraction layer offers better simulation perfor-
mance. Most importantly, it disregards detailed interactions
and mulls over only those interactions of concerns to this
layer. Thus, if a proper software TLM model is chosen,
then both the desired accuracy and simulation performance
of co-simulation can be accomplished.

In order to help designers efficiently create multiple ab-
straction layers of software TLM, we further devise an au-
tomatic generation method. Given target binary codes, the
three proposed software TLM models can be automatically
generated into corresponding SystemC [1] modules, which
can easily be integrated with the hardware TLM models.
Conventionally, an instruction-set simulator (ISS) is used
for software simulation, but its maximum simulation speed
is only few million instructions per second (MIPS). When
cooperating with the hardware simulator, the timing syn-
chronization between them would further slow down the
simulation to less than one MIPS. On the contrary, our
software TLM models (including synchronization over-
heads) attain 3 MIPS for I-LM and go as high as 248 MIPS
for SV-LM as reported by the experimental results. This
can demonstrate the effectiveness of our approach for
HW/SW co-simulation.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Our timing synchronization
is introduced in Section 3. Section 4 formally defines three
abstraction layers for software TLM. The automatic genera-
tion is described in section 5. The experimental results are
shown in section 6. Finally, our conclusion is in section 7.

2. Related Work
For HW/SW co-simulation, a conventional approach in-

tegrates an ISS and SystemC. To enable the communication
between the two different simulators, Séméria and Ghosh
[2] employed a bus functional model as a bridge. Similarly,
Fummi et al. [3] adopted a wrapper to do so. However, the
ISS is quite slow (few MIPS only), and the expensive
communication cost further downgrades the simulation
speed. In general, the performance of ISS-SystemC co-
simulation is unsatisfactory. Even the high speed ISS like
binary translation [7] would be significantly slowed down
due to the heavy communication.

Rather than running on an ISS, the target source program
is taken as a SystemC module to achieve native execution
speed for software simulation. Then the two different simu-
lations can be integrated smoothly, and the communication
cost between them is greatly reduced. As an example,
Schnerr et al. [4] proposed a timing back-annotation tech-
nique to produce a timed source program. Furthermore,
Yoo et al. [5] employed delay functions onto the target
source program for timing synchronization with SystemC.
Nevertheless, this approach compiles target source codes
by the host compiler, so target instructions are unavailable.

It would make HW/SW interaction points unable to be ac-
curately distinguished. Thus, the source-level software
model is incapable of supporting HW/SW co-simulation
comprehensively.

Obviously, the above mentioned approaches cannot meet
the need of efficient and accurate timing synchronization in
HW/SW co-simulation. Moreover, as far as we know, these
approaches are insufficient to fully support the multiple
abstraction layers for software models. This paper proposes
a novel approach for multiple abstraction layers of co-
simulation. To explicate the idea, the timing synchroniza-
tion issue is first elaborated.

3. Timing Synchronization
To have accurate HW/SW co-simulation, it is necessary

to simulate the concurrency of hardware and software so
that timing synchronization is required between hardware
and software for keeping their time consistent. To handle
synchronization, a simulator like SystemC provides a tim-
ing synchronization function (i.e., wait function). When
this function is called, a scheduler will be invoked to select
a proper simulated component to execute. Therefore, the
concurrency of simulated components can be cooperatively
performed.

Ideally, timing synchronization should be performed at
each cycle as shown in Figure 2(a). In each period of time,
the simulations of hardware and software can be executed
in order. However, the weighty synchronization overheads
would significantly slow down the simulation, so how to

Figure 2: (a) timing synchronization by each cycle, (b) an
improper granularity of timing synchronization, (c) timing
synchronization before each interaction points.

interaction point precedence

(a)

sync by cycle

a

invoke scheduler

1st cycle 2nd cycle

HW

SW

…

b

Simulation Time

a

b

out of order

(b)

HW

SW

sync before interactions

2nd cycle
1st cycle

a

b
(c)

HW

SW

Simulation Time

Simulation Time

reduce synchronization overheads becomes crucial.
Yet, if the granularity of timing synchronization is en-

larged improperly, the simulation will be incorrect as illu-
strated in Figure 2(b). We know that any two different si-
mulated components influence each other through mutual
interactions (e.g., interaction a and b in Figure 2). Assume
that the interaction b of the hardware obtains a value pro-
duced by the interaction a of the software in Figure 2(a).
Then their out-of-order execution in Figure 2(b) would let b
obtain the value not produced by a, which leads to incorrect
simulation results.

To overcome this issue, we define the precedence of in-
teractions based on their time ordering. By keeping the
precedence, the influence from interactions must be main-
tained, and the correct simulation results are guaranteed
thereby. To do so, we perform timing synchronization be-
fore each interaction point where an interaction may occur,
as illustrated in Figure 2(c). In this way, part of the simula-
tion in between interaction points may be executed out of
order. For example, as depicted by the shaded regions in
Figure 2(c), the second cycle of the software simulation,
supposed to be executed later than the first cycle of the
hardware simulation, is actually completed earlier. Never-
theless, since no other operations, except interactions, can
directly influence (or be influenced by) other simulated
components, the execution order of such operations makes
no difference to the results.

In conclusion, a transaction can be defined as a sequence
of operations, starting from an interaction, including suc-
ceeding operations, until the next interaction. Essentially,
each transaction can be regarded as an atomic action, and
the end of a transaction is a sync point. Because the number
of interaction points is considerably smaller than the num-
ber of cycles, the synchronization overheads are greatly
reduced. As a result, our synchronization scheme allows
better simulation performance without sacrificing accuracy.

4. Software Abstraction
Based on the previous discussion, we know that the inte-

raction point is the key to synchronization. Moreover, ac-
cording to the software abstraction, there can be different
types of HW/SW interactions, so the interaction points ac-
tually to be considered are also different. Therefore, we
further propose three levels of software TLM correspond-
ing to different abstraction layers of HW/SW interactions.

4.1 Instruction-Level Model (I-LM)
Considering a software component executes on a proces-

sor, interactions of a processor are introduced by memory
accesses, hardware I/O accesses, and interrupts.

Memory accesses and hardware I/O accesses are the two
ways for a processor to trigger an interaction. Typically, a
memory access is via a memory load/store instruction. On
the other hand, hardware I/O has two common mechanisms,
memory-mapped I/O (MMIO) and port-mapped I/O
(PMIO). For MMIO, hardware I/O accesses are also acti-

vated through memory load/store instructions to particular
addresses (which are actually mapped onto hardware regis-
ters), whereas for PMIO, they are through I/O specified
instructions instead.

Correspondingly, hardware components issue interrupts
to interact with a processor (software). Since interrupts may
occur at any processor instruction, to capture interrupts in
correct order, timing synchronization has to be performed
at each instruction. Therefore, for this model, each instruc-
tion is an interaction point and is also treated as a transac-
tion, as depicted in Figure 3(a). Accordingly, it is named
instruction-level model (I-LM). This fine-grained model
intends to handle interrupts precisely, but the excessive
synchronization effort would dominate the simulation per-
formance. To accelerate the simulation, the interactions
need to be considered in a higher abstraction layer.

4.2 Data-Level Model (D-LM)
For this model, data accesses, issued by either memory

load/store instructions or I/O specific instructions, are con-
sidered interaction points. In terms of the program execu-
tion, only data accesses can directly influence the execution
result. Hence, they are appropriate interaction points.

Interrupts from hardware are not treated as interactions
points here since they do not change the program results
immediately. Indeed, they may influence program execu-
tion, but their influence is implicitly through the data ac-
cesses issued by the interrupt service routine (ISR) or the
other program they trigger. Therefore, as long as the order
of data accesses is guaranteed, the program execution re-
sults must be correct. Accordingly, we define a data-level
model (D-LM), in which timing synchronization is per-
formed before each data access.

Figure 3: Illustration of the relation between transactions and
interrupts respectively in (a) I-LM, (b) D-LM, and (c) SV-LM.

Note: the shaded instructions are interaction points.

(a) store add div sub …
i1 i2 i3 i4 i5

load

add

i6 i7

store

int int int int int int int

Each instruction as a transaction

Time

(b) store add div sub …
i1 i2 i3 i4 i5

Tran1 Tran2

intc intd

load

add

i6 i7

store

inta intb

Tran3 Time

(c) shared
store add div sub …

i1 i2 i3 i4 i5

Tran1 Tran2

inta intb

shared
load

add

i6 i7
local
store

Time

To illustrate the effectiveness of this model, Figure 3(b)
depicts an example of various interrupt timings to the pro-
gram execution results. When a processor receives an inter-
rupt, it will suspend the current program and invoke the
corresponding ISR. The ISR can only influence (or be in-
fluenced by) the suspended program through its data access.
Since the instructions within a transaction (such as i2 (add)
and i3 (div)) access registers only, invocation of an ISR
cannot affect their results. Consequently, when an interrupt
that arrives at time point inta or intb is deferred to the end of
Tran1 (i.e., intc), the execution result of the transaction re-
mains the same. Meanwhile, the ISR will not be affected by
instruction i2 and i3 as well, so the deferred handling does
not affect the result of the ISR either. On the contrary,
when an interrupt is handled in a different transaction, it
may introduce erroneous simulation results. For instance, if
both instruction i4 (store) and the ISR of a particular inter-
rupt access a same data address, then handling the interrupt
at time point intc or intd would lead to different results. Ac-
cordingly, the handling of interrupts must be synchronized
before data accesses.

In summary, D-LM has a higher abstraction layer on
HW/SW interactions in contrast to I-LM. Since D-LM re-
quires less synchronization efforts, it allows better simula-
tion performance. Most importantly, D-LM can perform the
same simulation results (including the interrupt effect) as I-
LM does. Hence, it is a preferable model.

4.3 Shared-Variable-Level Model (SV-LM)
For this model, only data accesses to share variables are

considered interaction points. In general, the data of a pro-
gram can be further classified into shared variables and
local variables. Logically, the value changes of local va-
riables of a program do not affect the behaviors of others
since programs interact with each other only through shared
variables. Hence, focusing on shared variables, we define a
shared-variable-level model (SV-LM), in which timing is
synchronized before each shared variable access.

An example is shown in Figure 3(c), where Tran1 and
Tran2 are separated by the shared access instruction i6. If D-
LM is applied, Tran1 will be further divided into two trans-
actions by the local access instruction i4. Now with SV-LM,
since i4 accesses a local variable, whether an interrupt ar-
rives before i4 (inta) or after i4 (intb) would make no differ-
ence to the program execution results.

Comparing with D-LM, SV-LM is even more efficient
while it ensures the accuracy of logical interactions. How-
ever, this further abstraction of interactions ignores the lo-
cal variable accesses. Although these accesses are logically
irrelevant to others, they still share the same data bus with
the shared variable accesses physically. Once the bus con-
tention happens, the latency of the shared variable access
can be affected by a local variable access. Consequently,
SV-LM is proper to those who employ an ideal memory
model without contention.

5. Automatic Generation
The three levels of software TLM have been decribed.

Furthermore, in order to help designers efficiently create
the software models in multiple abstraction layers, an au-
tomatic generation method is devised. We first establish the
timed model. Then we identify the interaction points given
different abstraction layers and annotate the timing syn-
chronization function before them.

5.1 Input
Since we need the complete information of the target

software to generate the software models in different ab-
straction layers, the target binary codes are ideal to be our
input. Comparing with source codes, the binary codes con-
tain the details about both the target instructions and the
data layout in the target memory space, which allow us to
identify the HW/SW interactions precisely. In addition,
target binary codes are supposed to be available because
the target processors are usually determined at co-
simulation phase. Hence, the target binary can be easily
generated by target cross compilers.

5.2 Timed Model
First, we generate the functional model of software by

decompiling the target binary codes into C codes as illu-
strated in Figure 4, where each target instruction is trans-
lated into a corresponding C function. In addition, each
basic block of the control flow graph (CFG) from the target
binary codes is generated as a switch case. Then a switch
statement is used to select proper blocks to execute based
on the value of program counter (PC) during simulation. In
this way, the generated model can execute the correct ex-
ecution flow. Compared with an ISS which simulates an
instruction by performing three steps, fetching, decoding,
and executing, our method finishes fetching/decoding at the
de-compilation stage. Only executing is required at the si-
mulation stage so that the simulation performance is greatly
improved. This is similar to static compiled simulation
techniques [8][9].

Figure 4: The de-compilation for the functional model.

BB for basic block

Functional Model

} // end of while

addi(31, 31, -48);
swi(28, 31, 36);
addi(28, 31, 32);
lwi(5, 28, 16);
sltsi(5, 5, 2);
beqz(5, 0x2a);
break;

swi(5, 28, 8);
j(0x42);
break;

…

case 0x20:

case 0x0:
switch (PC) {

} // end of switch

while (!END) {

addi $sp,$sp,#-48

swi $fp,[$sp+#36]

addi $fp,$sp,#32

lwi $r5,[$fp+#16]

sltsi $r5,$r5,#2

beqz $r5,2a

swi $r5,[$fp+#8]

j 42

 0:

 4:

 8:

14:

18:

1c:

20:

24:

51 ff ff d0

15 cf 80 09

51 cf 80 20

04 5e 00 04

5e 52 80 02

4e 52 00 07

14 5e 00 02

d5 15

…

B
B

-1
B

B
-2

Target Binary Code

The timed software model is needed for accurate timing
synchronization. In order to have the timed model, we
adopt the timing annotation technique [10], by which the
timing information can be obtained without considerably
downgrading the simulation performance. To do so, the
essential execution time of each basic block is estimated in
advance. Then during simulation, the overall execution
time will be calculated by summing up the time of every
executed block. Besides, some dynamic behaviors may also
influence the execution time, such as cache hit/miss, branch
prediction. To deal with these cases, we should further em-
ploy the corresponding correction codes to dynamically
adjust the execution time. Consequently, the timed model is
obtained.

5.3 Synchronization Model
In this stage, we identify sync points according to each

different abstraction layer and respectively annotate them
into the timed model.

5.3.1 I-LM & D-LM
For I-LM, the sync point is annotated in front of each in-

struction, whereas for D-LM, the sync point is annotated in
front of each memory access instruction and each I/O spe-
cific instruction.

5.3.2 SV-LM
It is more complex to identify SV-LM’s sync points

since we are not always able to pre-determine whether a
data access is for a shared variable. Thus, we mark those
undetermined ones as potential sync points. A potential
sync point contains an extra procedure to check if the point
is an actual sync point during simulation. For further dis-
cussion, we classify shared variables into two types:
SW/SW share and HW/SW share.

SW/SW Share: Programs share data with each other via
memory. The SW/SW shared variable access is issued by a
memory access instruction. However, memory access in-
structions typically adopt the indirect address mode (i.e.
memory address indicated by a register instead of an im-
mediate). Consequently, the exact accessed address cannot
be known until the instruction is ready for execution, so we
use the check procedure to see if their accessed address
belongs to the shared data segment. Then during simulation,
the SW/SW shared variable access can be identified.

HW/SW Share: The shared variables between hardware
and software are located in either memory or hardware reg-
isters. For those in memory, the space they store is usually
pre-defined. Similarly, a check procedure can be applied to
distinguish them. On the other hand, when the shared va-
riables are in hardware registers, I/O specified instructions
used for PMIO are pre-determinable. As for MMIO, normal
memory access instructions are used, so a check procedure
is needed again.

Based on the above principles, the shared variable access
can be correctly identified, so the sync points of SV-LM

are determined. Accordingly, the three proposed abstraction
software TLM models are generated.

5.4 Limitations
Our automation method inherits the restrictions of the

static compilation technique i.e., the target program must
be run-time static and have no indirect jump. If the pro-
gram goes against them, an extra interpretive simulator can
be used to handle such special cases. Fortunately, since
these cases are only a small portion of the program, the
simulation performance is not greatly affected.

6. Experimental Results
To evaluate the proposed software TLM, we did two ex-

periments. The first demonstrates the simulation speed of
our software TLM models; the second tests a real case of
HW/SW co-simulation. The setup of both experiments is as
follows: the testing machine is equipped with Intel Xeon
3.4 GHz quad-core and 2GB ram. Our target processor
adopts Andes instruction-set architecture [12]. The generat-
ed models are simulated on the SystemC 2.2.0 kernel.

6.1 Performance of Software TLM
The first experiment evaluates the simulation speed of

the three different software TLM models. A wait function
is annotated for the SystemC scheduler to do timing syn-
chronization. Without any synchronization, the ideal speed
of generated software TLM models attains hundreds of
MIPS. Table 1 makes a comparison with a typical ISS [13]
which is also without synchronization. The speed of the ISS
is only about hundreds of KIPS to few MIPS as reported.
This is because an ISS has to perform fetching, decoding,
and executing for each time of the execution of one instruc-
tion while we only perform once of fetching/decoding for a
same instruction no matter how many times it is executed.
Since there are a lot of loops within common programs, the
time spent on fetching/decoding is greatly reduced in our
model. Therefore, we can outperform the ISS by two to
three orders of magnitude in simulation speed.

Table 1. The ideal speed comparison with ISS
Our software TLM ISS [13]
136 ~ 248 MIPS 200+KIPS ~ 4+ MIPS

The simulation speeds of our software TLM in different

abstraction layers are shown in Figure 5. Here we tested
them by five different benchmarks. FFT, LU, and RADIX
are parallel programs from SPLASH-2 benchmarks [10]
while Micro-benchmark and Fibonacci are sequential pro-
grams. The simulation performance of I-LM dominated by
the synchronization overheads is consistently at around 3
MIPS despite different benchmarks. As for D-LM, syn-
chronization is just required at data accesses, so it can acce-
lerate up to 6 ~ 13 MIPS. Moreover, since SV-LM only
synchronizes at shared variable accesses, the simulation
speed is further raised to 37 ~ 248 MIPS. Especially for the

s
th

ti
s

6

s
e
c
f
r
im
c
T
in
th
s
ti

th
p
p
m
d
b
c

7

m
H
i

sequential ben
he simulation s

It is obvious
ion points, hig

simulation perf

6.2 HW/SW
In this exper

simulation. As
embedded into
cache, is co-sim
form of the tim
runs a driver f
mages from th

comprehensive
TLM, we com
nterrupt-driven
hat in both mo

straction layer
ime is shorter.

Table 2

Model Trans

I-LM 14,25
D-LM 6,25

SV-LM 1,38

Compared w
hree times the

polling mode s
pletion of the h
mode requires
driven mode. W
be automaticall
co-simulation e

7. Conclusi
In this paper

modeling in
HW/SW co-sim
s determined

0

50

100

150

200

250

FF

Si
m
ul
at
io
n
 S
pe

ed
 (M

IP
S)

Figure 5: Sim
models.

nchmarks (with
speed can be a
s that by decre
gher abstractio
formance.

W Co-simula
riment, we use
shown in Figu

o a processor
mulated with a
med TLM mod
for the JPEG
he encoder and
ely demonstrate
mpare two com
n, for HW/SW
odes, a softwar

has fewer tra

2. Co-simulati
Polling

. Count Sim. Tim

54,971 4.30
6,378 2.08
1,914 0.72

with the interr
e amount of in
ince it has to d
hardware enco

more simula
With our appro
ly generated a
environment.

ion
, we have prop
multiple abst

mulation. The
by the softw

FT
LU

RADIX

3.4
3.4

3.4

13.5
6.1 12

47.3

175.0
163.4 17

Benchmarks

mulation speeds i

hout shared-v
s high as the id
easing the con
on would grea

ation
a real case to t

ure 6, our softw
module with
hardware JPEG

del. The target
encoder, mov

d then decodes
e the behaviors
mmon scenari

W interactions.
re TLM model
ansactions, and

ion result com
Int

me (s) Trans. Cou

09 4,240,65
89 1,965,22
20 1,381,76

rupt-driven m
nstructions is s
do busy waitin
der. Conseque

ation time than
oach, the softw
and be easily i

posed automati
traction layer
performance o

ware modeling

I‐LM

FIB
MICRO

3.6
3.5

2.7
8.2

10.4

37.4

136.7

248.2 76.4

146.7
136.7

2

n different softwa

variable access
deal one.
nsidered intera
atly improve th

test HW/SW c
ware TLM mod

a MMU and
G encoder in th
software, whic

ves the encode
s the images. T
s of our softwa
ios, polling an
 Table 2 show
l in a higher ab
d the simulatio

mparison
terrupt-driven
unt Sim. Time (s

57 1.352
28 0.685
65 0.584

ode, more tha
simulated in th

ng until the com
ently, the pollin
n the interrup

ware models ca
integrated into

ic software TLM
rs for efficie
of co-simulatio
g, the hardwa

M

D‐LM

SV‐LM

IDEAL

48.2

are abstraction

s),

ac-
he

o-
del,

a
he
ch
ed
To
are
nd
ws
b-
on

s)

an
he
m-
ng
pt-
an
 a

M
ent
on
are

model
work c
synchr
softwa
port o
of bet
heads

8. A
This

(Grant
cation

REFE
[1] T.

wi
[2] L.

wa
20

[3] F.
iss
pr

[4] J.
"H
wa

[5] S.
els
ro

[6] P.
na

[7] M
niz
tio

[8] J.
se

[9] M
sp

[10] S.
"T
co

[11] J.
rat
pr

[12] An
[13] Si

Figu
and

ing, and the s
contributes to t
ronization. As
are TLM allow
f multiple abs
tter performan
while maintain

cknowledge
s work was su
t No. NSC96-2
of Andes ISA

ERENCES
 Grötker, S. Lia
ith SystemC, Klu
 Séméria and A
are co-verificatio
000.

Fummi, S. Mar
s-systemc integ
rocessor soc," in

Schnerr, O. B
High-performanc
are," in DAC '08
Yoo et al., "Bui

s based on hardw
nment abstractio
Magarshack an

anometer wall," i
M. Wu, C. Fu, P.

zation approach
on-set simulation
Zhu and D. Ga
t simulator," in D

M. Burtscher and
peed processor si

C. Woo, M. O
The splash-2 pro
onsiderations," in

Schnerr, O. Bri
te binary transl

rototyping of soc
ndes, available a
mpleScalar, ava

ure 6: The co-s
d a hardware JPE

 Generated
Software TLM

MMU

Memory Load/S
Interface

Cach

Processor Mod

synchronization
the efficiency o

the experime
ws high speed s

traction layers
ce by reducin
ns desirable acc

ements
upported by N
2628-E-007-14
was provided

ao, G. Martin, an
uwer Academic P

A. Ghosh, "Meth
on in c/c++," in

rtini, G. Perbellin
gration for the
DATE '04. pp. 5

Bringmann, A. V
ce timing simu
8. pp. 290-295, 2
ilding fast and a
ware abstraction
on layer," in DA
d P. G. Paulin, "
in DAC '03. pp.
Wang, and R. T

h for fast and a
n," in EMSOFT
ajski, "A retarge
DATE '99. pp. 6
I. Ganusov, "A

imulators," in MI
hara, E. Torrie,
grams: character
n ISCA '95. pp. 2
ingmann, and W
lation for simul
cs," in DATE '05
at www.andestec
ailable at www.si

simulation of a g
EG encoder.

M

Store

he

dule In

B
us Interface

n between the
of software mo
ents show, the
simulation. Th
s provides the
ng synchroniza
curacy.

National Scienc
44-MY3) and t
by Andes Tech

nd S. Swan, Sys
Publishers, 2002
odology for hard
ASP-DAC '00. p

ni, and M. Ponci
e co-simulation
564-569, 2004.
Viehl, and W.

ulation of embe
2008.
accurate sw simu
n layer and simu
TE '03. pp. 550-
"System-on-chip
419-424, 2003.

Tsay, "An effecti
accurate multi-c
'09, pp. 197-204
etable, ultra-fast
2-69, 1999.

Automatic synthe
MICRO ‘04. pp. 5

J. P. Singh, and
rization and met
24-36, 1995.
W. Rosenstiel, "C
lation accelerati
5. pp. 792-797, 2
ch.com
implescalar.com

generated softw

 Main
Memory

 JPE
Encod

nterrupt

B
usInterface

 two. This
odeling and
 generated

he full sup-
possibility

ation over-

ce Council
the specifi-
hnology.

stem Design
2.
dware/ soft-
pp. 405-408,

ino, "Native
n of multi-

Rosenstiel,
edded soft-

ulation mod-
ulation envi-
-555, 2003.
p beyond the

ive synchro-
ore instruc-

4, 2009.
t instruction

esis of high-
55-66, 2004
d A. Gupta,
thodological

Cycle accu-
ion in rapid
2005.

m

are TLM

y

G
der

	Main
	DATE'10
	Front Matter
	Table of Contents
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

