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ABSTRACT

An efficient algorithm based on the Extended Hamiltonian Pencil

was proposed in [1] for systems with hybrid representation. Here

we further extend the Extended Hamiltonian Pencil method to sys-

tems described with scattering representation, i.e. S-parameter sys-

tems. The derivation of the Extended Hamiltonian Pencil for S-

parameter systems is presented. Some properties that allow pas-

sivity enforcement based on eigenvalue displacement are reported.

Experimental results demonstrate the effectiveness of the proposed

method.

1. INTRODUCTION

Rational fitting and vector fitting have been widely used in gen-

erating macro-models for passive systems such as spiral inductors,

baluns, SAW filters, etc. The major concern in such techniques is

the passivity issue.

Passivity of a system indicates the inability of the system to gen-

erate energy. From a mathematical point of view, passivity requires

that the transfer matrix under investigation be positive real (in the

case of hybrid representations) or bounded real (in the case of scat-

tering representations). Existing techniques for passivity test in-

clude frequency sampling methods [2], which only test passivity

on discrete frequencies and are very difficult to be complete. SDP

based methods [3] provide global optimality, but they are too ex-

pensive.

Recently, methods based on the Hamiltonian matrix [4, 5, 6, 7,

8, 9] became more attractive. However, they still need to solve

the eigenvalues of a dense matrix with high dimensionality. While

heuristic methods exist to compute only a subset of the eigenval-

ues, it is very difficult (theoretically impossible) to avoid the risk of

missing important ones in some extreme cases.

The method based on the Extended Hamiltonian Pencil [1] pro-

vides an efficient and reliable way to tackle this problem. The

method is based on dealing with an equivalent and sparse form of

the Hamiltonian matrix, called the Extended Hamiltonian Pencil

(EHP). The sparse pencil allows very efficient eigensolving for all

the eigenvalues, thus avoiding the risk inherent in traditional meth-

ods.

The method proposed in this work is an extension of the EHP

method described in [1] in that it applies to systems described with

scattering representation, while [1] only deals with systems with

hybrid representation. It follows that the resulting pencils from

both methods are non-trivially different. We also report in this pa-

per some properties of the EHP, which allows passivity enforce-

ment that is consistent to those in traditional Hamiltonian methods.
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The rest of this paper is organized as follows. In Section 2 we

introduce the mathematical background of the problem, and review

the derivation of Hamiltonian matrix. In Section 3, we propose the

extended Hamiltonian pencil for the scattering case and discuss its

properties in contrast to the regular Hamiltonian matrix. In Sec-

tion 4, we describe how to do the passivity enforcement with the

extended Hamiltonian matrix. Results and conclusions are given in

Sections 5 and 6.

2. BACKGROUND

In this section we review some of the main procedures for pas-

sivity test. Here we consider both hybrid case and scattering case.

The linear system under investigation is governed by the following

state space equations.

ẋ = Ax + Bu (1)

y = Cx + Du (2)

where A, B, C, D are system matrices, and u ∈ Rm is the input

to the system, y ∈ Rm is the output of the system and x ∈ Rn is

the internal state. Generally m ≪ n.

In this paper we assume that the system is strictly stable, and

matrix A is diagonal. The first assumption is easily preserved and

the second assumption is not generally true. However, if we focus

only on systems generated from rational fitting or vector fitting,

then it holds true naturally.

The frequency domain transfer function of the linear system is

H(s) = C(sI − A)−1
B + D (3)

where s = jω is the Laplace variable.

2.1 Passivity Conditions

Passivity means a system does not generate energy. For hybrid

representation, mathematically it requires that the Hermitian part

of the transfer function is always positively defined.

H(s) + H
H(s) ≥ 0, s = jω (4)

For scattering representation, it requires that the transfer matrix

be bounded real.

I − H(s)HH(s) ≥ 0, s = jω (5)

2.2 HamiltonianMatrix and ExtendedHamil-
tonian Pencil

Passivity conditions requires that the system satisfies (4) or (5)

in the whole frequency domain. Thus a naive passivity test is to

verify the positive realness or bounded realness at discrete frequen-

cies. However, such test has been proven to be incomplete. A more

preferable way is to do it in an algebraic way.



Hamiltonian matrix is one of the algebraic tool to assess the pas-

sivity of a system. Given a Hamiltonian matrix of a system, the

passivity of the system can be tested by verifying the existence of

purely imaginary eigenvalues of the Hamiltonian matrix.
For hybrid representation, the traditional Hamiltonian matrix is

written as follows [5]

M =

»

A + BR−1C BR−1BH

CHR−1C −AH + CHR−1BH

–

(6)

and the Extended Hamiltonian Pencil [1] has been given as

Mv = sNv (7)

where

M =

2

4

A B

−AH −CH

C BH D + DH

3

5 , N =

2

4

I

I

3

5 (8)

It has been proven that (6) and (7) have the same eigenvalues thus

they can both be used to assess the passivity of a system.
For scattering representation, traditional Hamiltonian matrix is

written as
»

A + BR−1C BR−1BH

CHR−1C −AH + CHR−1BH

– »

v1

v2

–

= s

»

v1

v2

–

(9)

Intuitively there should be a parallel version of EHP for scatter-

ing representation, however, this is not shown in literature. And it

will be presented in the following sections.

3. EHP FOR SCATTERING SYSTEMS

In this section we will first give the derivation of the EHP for

scattering systems. And then we will study some useful properties

that builds the connections between the EHP and regular Hamilto-

nian matrices. And then we will discuss efficient eigenvalue com-

putation for the EHP.

3.1 Derivation

In this section we will derive the Extended Hamiltonian Pencil

for scattering systems. For a stable scattering system, the bounded

real condition (5) implies that theH∞ norm of the transfer function

never exceed 1, where the H∞ norm is defined as [10]

||H||∞ = sup
ω∈R

σmax(H(jω) (10)

where σmax(·) denotes the maximum singular value of a matrix.

Suppose the singular value decomposition (SVD) of H(jω) can
be written as

H(jω) = UΣV
H

(11)

and u = Uk, and v = Vk are the k-th columns of U and V , and

σ = Σkk is the k-th singular value, where k is an arbitrary index,

then we have

H(jω)v = UΣV
H

v = σu (12)

H
H(jω)u = V ΣU

H
u = σv (13)

Substituting matrices A, B, C, D into the above equations and

letting s = jω will result in
ˆ

C(sI − A)−1
B + D

˜

u = σv (14)
h

B
H(−sI − A

H)−1
C

H + D
H

i

v = σu (15)

Let

r = (sI − A)−1
Bu (16)

t = (−sI − A
H)−1

C
H

v (17)

and substitute (16-17) into (14-15), resulting in

Cr + Du = σv (18)

B
H

t + D
H

v = σu (19)

Multiplying (16-17) by sI−A and−sI−AH respectively leads

to

(sI − A)r = Bu (20)

(−sI − A
H)t = C

H
v (21)

Then (18-21) can be written in matrix as
2

6

4

A B

−AH
−CH

BH
−σI DH

C D −σI

3

7

5

2

6

4

r

t

u

v

3

7

5
= s

2

6

4

I

I

3

7

5

2

6

4

r

t

u

v

3

7

5
(22)

It is readily seen that this becomes a generalized eigenvalue prob-

lem.

Mx = sNx (23)

where

M =

2

6

6

4

A B

−AH −CH

BH −σI DH

C D −σI

3

7

7

5

, N =

2

6

6

4

I

I

3

7

7

5

(24)

The pencil {M, N} is called the extended Hamiltonian pencil

(EHP) for S-parameter system. In [1] we have the parallel version

of the EHP for hybrid system.

Given the definition of EHP, the passivity can be tested as stated

in the following theorem:

THEOREM 3.1. The scattering system S = {A, B, C, D} is

non-passive if and only if the EHP {Mσ=1, N} has purely imagi-

nary eigenvalue.

PROOF. Follows straightforward derivation.

It would be interesting to see that if we introduce an auxiliary hy-

brid system Sa = {Aa, Ba, Ca, Da} with system matrices written

as

Aa = A (25)

Ba = [B 0] (26)

Ca =

»

0
C

–

(27)

Da =

»

−σI DH

D −σI

–

(28)

then the EHP of the original scattering system S is the same as the

EHP of the auxiliary hybrid system Sa. On the other word, the

bounded realness of the original scattering system is equivalent to

the positive realness of the auxiliary hybrid system.

3.2 Properties

It is clear that in constructing M a singular DDT − I is not

an issue, since there is no need to invert DDT − I , so this is an

advantage compared to regular Hamiltonian matrix, where it can

only deal with systems for which DDT − I is non-singular.

Following we will show that the Extended Hamiltonian Pencil

shares many properties with the regular Hamiltonian matrix, among

which the most important one is the eigenvalues, and thus it can

be used for passivity assessment in the same way as the regular

Hamiltonian matrix is.

Besides this, some other properties of the regular Hamiltonian

matrix still hold for the Extended Hamiltonian Pencil. The follow-

ing theorem reveals the J-symmetry property of the matrix M



THEOREM 3.2.

MJ = (MJ)T
(29)

where the matrix J is defined as

J =

2

6

6

4

−I

I

I

I

3

7

7

5

(30)

PROOF. The proof is straightforward, since

MJ =

2

6

6

4

−A B

−AH −CH

−C −σI D

BH DH −σI

3

7

7

5

(31)

is symmetric.

Parallel relation has been used in [5] to derive the passivity enforce-

ment in the method based on regular Hamiltonian matrix, and it is

used in Section 4 to derive the passivity enforcement with EHP.

The following theorem reveals the relations between the left- and

the right-eigenvectors of EHP. These relations are also key to derive

the passivity enforcement scheme.

THEOREM 3.3. Suppose v is the left eigenvector as shown in (7)

and w is the right eigenvector, i.e.

M
T
w = sN

T
w (32)

then there exists the following relation

w+ = J
T
v− (33)

where v− is the left eigenvector for eigenvalue −s.

PROOF. Applying (29) to (32) and considering N is symmetric,

J
−T

MJw = sNw (34)

Now multiply both sides by JT , and consider JT J = I

MJw = s(JT
NJ

T )Jw (35)

and considering JT NJT = −N , we have

MJw = −sNJw (36)

It is easily seen that Jw = v−, and thus w = JT v−.

In particular, when s is purely imaginary, i.e. s = jω, then

−s = s∗ and v− = v∗. Thus we have

w = J
T
v
∗

(37)

This relation is similar to the one derived for regular Hamiltonian

matrix in [5].

3.3 Eigensolving for ExtendedHamiltonian Pen-
cil

In [1], an efficient algorithm based on Laguerre’s method [11]

has been proposed for solving the following generalized eigenval-

ues problem

Mx = λNx (38)

where the non-zero patterns of M and N satisfy the following

structure

in which λ is any scalar number, matrixP is diagonal, and matrix

Q ∈ Cn×m, S ∈ Cm×n, R ∈ Cm×m, and m ≪ n.

In this case, the eigensolving problem can be recast as the poly-

nomial rooting finding problem for the determinant

p(λ) = |M − λN | (39)

The computational cost for solving all the eigenvalues is prov-

ably O(n2). For details please refer to [1].
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4. PASSIVITY ENFORCEMENT

The passivity enforcement with EHP is similar to the enforce-

ment with regular Hamiltonian matrix. Following is a derivation for

the passivity enforcement for EHP, which is similar to that of [5], in

which the passivity enforcement scheme based on regular Hamil-

tonian matrix is given.

Consider perturbing the system by modifying only the C matrix

by C1 = C + δC. This corresponds to a perturbation to matrix M

by M1 = M + δM , where

δM =

2

6

6

4

δCT

δC

3

7

7

5

(40)

Suppose the eigenvalue and eigenvector are perturbed by δλ and

δv respectively, then the equation becomes

(M + δM)(v + δv) = (λ + δλ)N(v + δv) (41)

Expanding both sides, and dropping high order terms δMδv and

δλδv, and considering the cancellation due to (7), we have

Mδv + δMv ≈ λNδv + δλNv (42)

Let w be the left eigenvectors and left-multiply both sides by wT ,

we have

w
T
Mδv + w

T
δMv ≈ λw

T
Nδv + δλw

T
Nv (43)

SincewT Mδv = λwT Nδv by definition ofw, (43) can be reduced

to (for the sake of simplicity, we change the symbol “≈” to “=”)

w
T
δMv = δλw

T
Nv (44)

Thus

δλ =
wT δMv

wT Nv
(45)

Considering (37), w can be replace by JT v∗, and the formula can

be recast as

δλ =
vHJδMv

vHJNv
(46)

Suppose v is partitioned as

v =

2

6

6

4

v1

v2

v3

v4

3

7

7

5

(47)

and consider JδM is

JδM =

2

6

6

4

δCH

δC

3

7

7

5

(48)



The numerator of (46) can be written as

v
H

jδMv = (v4 − v
∗

4)T
δC(v∗

1 − v1) (49)

= (v∗

1 − v1)
T ⊗ (v4 − v

∗

4)vec(δC) (50)

Thus we have

δλ = Z · vec(δC) (51)

where

Z =
(v∗

1 − v1)
T ⊗ (v4 − v∗

4)

vHJNv
(52)

The remainder procedure of the enforcement scheme would be

the same as the one in [5]. We omit it here and interested readers

may refer to [5] for details.

5. RESULTS

This section illustrates the performance of the passivity check

and enforcement using the proposed algorithms.
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Figure 1: Eigenvalues of the EHP and regular Hamiltonian ma-

trix for a DIP14 package. λ(M, N) are the eigenvalues of the

EHP, and λ(Mh) are the eigenvalues of the Hamiltonian ma-

trix.

The first example is done for a state space model generated for

a DIP14 package. The number of ports of the system is 14. The

total number of poles is 280. Fig. 5 shows the eigenvalues of the

EHP as well as the eigenvalues of the regular Hamiltonian matrix.

The eigenvalues of the EHP are identical to the eigenvalues of the

Hamiltonian matrix.

The second example is a two-port system for a long transmission

line. The eigenvalues of the EHP and the Hamiltonian matrix are

shown in Fig. 5. Due to the distributed nature, the transmission line

system requires many poles in order to capture the wide band be-

havior. Thus although the number of ports of the systems is small,

the size of the system is still large. In this case, there are 200 poles,

and thus the size of the Hamiltonian matrix is 400, and the size of

the EHP is 404.

In the next experiment, the proposed method is tested for a set of

large scale problems. The size of the problems are summarized in

Table 1, where the number of poles of the tested problems n varies

from 600 to 8000. The number of ports m varies from 3 to 20.

The sizes of the Hamiltonian matrix and the extended Hamiltonian

pencil are 2n and 2n+2m respectively. The Hamiltonian matrices

are solved by eigensolver from Lapack [12], while the extended

Hamiltonian pencil is solved by the Laguerre’s method proposed

in [1].
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Figure 2: Eigenvalues of the EHP and regular Hamiltonian ma-

trix for a transmission line system. λ(M, N) are the eigenvalues
of the EHP, and λ(Mh) are the eigenvalues of the Hamiltonian

matrix.

The comparison of CPU times is shown in Table 2. It is shown

that the proposed method possesses a 24X∼45X speed-up over the

general-purpose eigensolver from LAPACK, and the speed-up in-

creases as the size of the problems grows. For large problems, e.g.

#4, #7, #8, the general-purpose eigensolver failed to return the an-

swer, while the Laguerre’s method computes all the eigenvalues in

a few minutes.

Table 1: Summary of Test Cases

Problem #poles #ports problem size

#1 600 3 1206

#2 1000 5 2010

#3 2000 10 4020

#4 4000 20 8040

#5 1200 3 2406

#6 2000 5 4010

#7 4000 10 8020

#8 8000 20 16040

We have to emphasize that although the algorithm from [6, 7]

is also much faster than direct eigensolver, they do not guarantee

finding all the eigenvalues, thus they may potentially give inaccu-

rate results in passivity assessment.

6. CONCLUSIONS

This paper enriches the theory of Extended Hamiltonian Pencil

(EHP), in that it applies EHP to S-parameter systems, in contrast

to existing literature that deals only with hybrid systems [1]. Also

reported are several useful properties of EHP, which allows effi-

cient passivity enforcement that is consistent with methods based

on regular Hamiltonian matrix.



Table 2: Comparison of CPU time for LAPACK and this work.

Problem #Iter LAPACK This work Speed-up

#1 6 20 0.82 24X

#2 6 87 3.14 28X

#3 7 594 23.9 25X

#4 7 – 251 –

#5 6 150 3.28 46X

#6 7 573 13.2 44X

#7 7 – 86 –

#8 8 – 862 –
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