
Bounding the Shared Resource Load for the
Performance Analysis of Multiprocessor Systems

Simon Schliecker, Mircea Negrean, Rolf Ernst
Institute of Computer and Network Engineering,

Technische Universität Braunschweig, D-38106 Braunschweig, Germany
{schliecker|negrean|ernst}@ida.ing.tu-bs.de

Abstract—Predicting timing behavior is key to reliable real-
time system design and verification, but becomes increasingly
difficult for current multiprocessor systems on chip. The inte-
gration of formerly separate functionality into a single multicore
system introduces new inter-core timing dependencies, resulting
from the common use of the now shared resources. In order
to conservatively bound the delay due to the shared resource
accesses, upper bounds on the potential amount of conflicting
requests from other processors are required. This paper proposes
a method that captures the request distances of multiple shared
resource accesses by single tasks and also by multiple tasks that
are dynamically scheduled on the same processor. Unlike previous
work, we acknowledge the fact that on a single processor, tasks
will not actually execute in parallel, but in alternation. This
consideration leads to a more accurate load model. In a final
step, the approach is extended to allow addressing also dynamic
cache misses that do not occur at predefined times but surface
dynamically during the execution of the tasks.

I. TIMING IMPLICATION OF MULTICORE COMPONENTS

Consumer demand is leading to an ever increasing applica-
tion complexity in embedded systems across various domains.
Strong trends towards multicore architectures can be observed
in communication, media-processing, and, more recently, auto-
motive applications, where multicore components are used to
provide new functionality or to cluster previously distributed
applications into a single chip.

But the application of multicore components also introduces
a new level of inter-core dependencies that were previously not
observed in distributed systems. The use of physically shared
hardware (such as the shared memory), or synchronization via
logical resources (i.e. semaphores) introduces dependencies
between task executions on different cores, thus challenging
the real-time behaviour of the entire system.

In single processor systems, the worst-case response time of
a task under static priority preemptive scheduling classically
depends on its worst-case execution time and on the maximum
amount of time the task can be kept from executing due to
preemptions by higher priority local tasks. When the processor
is part of a multiprocessor setup, the tasks are additionally
delayed when waiting for the arrival of the requested data
from a shared resource (for example a shared memory). The
analysis challenge lies in the fact that the access times to the
shared resources are not constant, but may vary depending on
the coinciding requests from other processors.

This problem is illustrated in the following example. As-
sume that two tasks execute on a single processor and perform
requests to a remote memory (Fig. 1a), then the low priority
task is kept from executing by three invocations of a high

priority task. The finishing time of the lower priority task is
delayed due to itself fetching data from the memory, and due
to the prolonged preemptions by the higher priority task.

In a multiprocessor system the remote memory may also
be accessed by tasks mapped on other processors (CPUb
in Fig. 1b). Whenever requests to the now shared memory
coincide with requests by tasks mapped on the other processor,
the waiting time to finish the shared resource operation may
increase. These conflicts contribute to the task’s response time,
which in the example increases so much that the task suffers a
fourth preemption by the high priority task. In effect the shared
resource delay challenges the safety of the task’s deadline.

Fig. 1. a) Tasks on a Single Processor Accessing a Remote Memory b)
Conflicting Accesses from Tasks Mapped on Different Processors

As the timing of the tasks in multiprocessor systems de-
pends on the delay due to shared resource accesses, reliable
and accurate upper bounds of the traffic imposed by tasks on
the shared resources are required. A possible solution to this
dependency is the orthogonalization of the system resources.
For example, the shared resource may be arbitrated according
to a static time-driven schedule, so that the shared resource
delays can be determined without knowledge of the actual load
imposed by the other processors. This method simplifies the
timing dependency problem, but is not generally applicable,
since it is not suitable for dynamic scheduling and tends to
overprovision the system’s resources.

Another solution is given by formal analysis approaches
which can be used to find upper bounds of the timing even
for dynamic system behavior. Depending on the accuracy of
the request model, the analysis of the shared resource delay
can vary significantly, because if larger request distances can
be formally guaranteed, many conflicts can potentially be ruled

978-3-9810801-6-2/DATE10 © 2010 EDAA

out. An accurate model of the shared resource load is therefore
fundamental for obtaining tight performance analysis results.

The contribution of this paper is a method for deriving the
load imposed on shared resources in multiprocessor systems.
The proposed method considers the timing of the task activa-
tions very generally, i.e. it is not constrained to periodic task
models. In contrast to simpler approaches, the influence of
scheduling is accurately captured by considering the exclusive
task execution in computation of the joint shared resource
traffic of multiple tasks. By relying on work from the single-
processor domain, we also extend the approach to cover cache
misses that occur during the execution of a task or due to the
displacement of cache blocks during preemptions.

After presenting the particular challenges that arise in the
presence of shared resource usage in this section, we provide
the related work in Section II. Our procedure for the quantifi-
cation of shared resource traffic is presented in Section III for
the case that shared resource accesses are explicit instructions,
and extended in Section IV to the case where these are cache
misses that implicitly surface during the task execution. We
provide a small example in Section V to show the applicability
of the approach, and summarize our contribution in Section VI.

II. RELATED WORK

To avoid the feedback effect of shared resource timing on
the task execution, an increasingly common counter-measure
is the orthogonalization of system resources [1], for example
through using a system crossbar or time-driven scheduling
of the memory bus (as in [2][3]). By reducing the timing
interdependence, the tasks on each core can then be verified
separately. While this option simplifies the verification proce-
dure, it implies a conservative design with in general increased
resource and possibly also power requirements. In [4] and
[5] the worst-case cost of orthogonalization was significantly
reduced by deriving optimal bus schedules given the memory
access pattern of each task. However, the approaches do not
support local task scheduling and are thus applicable only as
long as the number of tasks in the system does not outgrow
the number of processors.

Modern processor pipelines and memory architectures are
becoming increasingly complex, posing several challenges to
formal analyses [6][1]. To facilitate tight bounds, a certain
degree of timing composability is required to constrain the
state space that needs to be investigated to find tight worst-
case execution time estimates. For the scope of the present
paper, we assume that each processor core has a timing-
compositional architecture, in the sense that any shared re-
source delays are additive to the execution times.

If no orthogonalization measures are in place for the shared
system resources, a model on the run-time load imposed on the
shared resource from different components in the system has
to be established. The derivation of conservative, application
dependent resource request bounds for individual tasks was
the concern of [7] and [8], where the task’s internal control
flow was investigated. The basic assumption is that for each
basic block the execution time is either constant or a minimum
execution time and a maximum number of shared resource

requests is known. Through program path analysis, distances
between multiple requests are derived.

To overcome the problem of mutual dependency between
the response time analyses of tasks on different processors
in the presence of shared resources, the load imposed on
the shared resources can be expressed using the event model
concept [9][10], which has previously been used to model
task activations [11]. Based on this, the analysis of tasks that
perform accesses to a shared resource can then be decomposed
into three major building-blocks: (i) the quantification of the
amount of shared resource operations issued by a task and all
tasks on a processor (this is the focus of the present paper);
(ii) the analysis of the total latency experienced by a set of
such operations on the shared resource; and (iii) the inclusion
of this delay in the response time analysis of each task.

In event-driven multiprocessor systems, this analysis pro-
cedure has various mutual dependencies (between the task
activating event models, the shared resource delays, and the
task response times). As a solution, an iterative approach has
been proposed in [10] that relies on the monotonic properties
of all involved analyses to find a fixed-point that represents a
conservative solution.

III. DERIVING BOUNDS ON THE SHARED RESOURCE
REQUESTS

To express the shared resource load from a given processor,
we rely on the concept of event models. These are described
using the upper and lower event arrival functions η+(∆t) and
η−(∆t) which specify the maximum respectively the mini-
mum number of events that occur in the event stream during
any time interval of length ∆t. Inversely, an event model can
also be specified using the functions δ−(n) and δ+(n) that
represent the minimum and maximum time windows in which
n events can be observed in the stream. Both functions can
be straight-forwardly converted to each other as follows (see
also Figure 2).

δ−(n) = min
0≤∆t,∆t∈R

{∆t | η+(∆t) ≥ n} (1)

η+(∆t) = max
n∈N,n≥1

{n | δ−(n) ≤ ∆t} (2)

Fig. 2. Event Stream Representations.

The shared resource request bound is indicated by a η̃ and
δ̃ to differentiate it from task activating event models. It is
defined as follows:

Definition 1. The Shared Resource Request Bound η̃T→S(∆t)
is the maximum amount of requests that may be issued from a
set of tasks T to a shared resource S within a time window of
size ∆t > 0. The Shared Resource Request Distance δ̃T→S(n)
is the minimum time during which n, n ≥ 1 requests may be
issued from a set of tasks T to a shared resource S.

If T contains only one task (e.g. j), we denote its shared
resource request bound simply with η̃j→S(∆t) and δ̃j→S(n);
also the index S may be omitted for brevity. Task activations
may overlap. If a task is re-activated before a running instance
of the same task is finished, we assume that the concurrent
instances are processed strictly in order.

The remainder of this section provides the resource request
bound of a given task and aggregates individual task traffic to
the joint traffic issued from a processor.

A. Remote Operations Initiated by a Single Task Instance
If shared resource requests are the result of explicit in-

structions in the source code, the amount of requests that
are issued per task instance can be bounded by investigating
the task’s internal control flow. For example, a task may
fetch data each time it executes a for-loop that is repeated
several times. By multiplying the maximum number of loop
iterations with the amount of fetched data, a bound on the
memory accesses can be derived. Focused on the worst-
case execution time problem, previous research has provided
various methods to find the longest execution path through
such a program description with the help of integer linear
programming (see [12]). By modifying the node weights to
the number of resource request, this approach can be adapted
to find the path with the maximum number of requests Nmax

j

per task instance (which may not necessarily be the path with
the maximum execution time).

Depending on the actual system configuration, relying solely
on the upper bound Nmax

j on the number of requests per task
instance may not be sufficiently accurate. In the analysis of the
shared resource contention, this may translate into an assumed
burst of requests that may not occur in practice, resulting in an
overestimated shared resource load. Therefore, it is worthwhile
to identify a minimum time d̃j(n) that a task instance must
execute in order to produce n requests.

A simple bound is given in the following lemma, which
assumes that there is a known minimum distance dsr between
any 2 requests to the shared resource. Refined methods that
consider the task’s control flow have been proposed in [7], [8].

Lemma 1. The minimum request distance d̃j(n) between any
n requests issued by an instance of task j that performs a
maximum of Nmax

j requests per instance is for 2 ≤ n ≤ Nmax
j

bounded by
d̃j(n) = (n− 1) · dsr (3)

where dsr is the minimum distance between any 2 request.

B. Multiple Instances of the Same Task
The shared resource traffic of multiple instances of the same

task will exhibit a hierarchical pattern that follows from the
repetitive activation of the task. The following theorem bounds
the minimum distance between a number n of requests from
different instances of the same task. For this, the distance
between the required number of task instances (as defined by
its activating event model) as well as the distance between the
individual events during each task instance are considered.

Theorem 1. If a task j is allowed to execute in such a way
that each instance finishes earlier than Rj after its arrival, it

will not produce more than n requests to a resource S in a
time interval of size δ̃a

j→S(n):

δ̃a
j→S(n) = min1≤k≤min{n,Nmax

j }{ d̃j(k) (4)

+ δ′j(d(n− k)/Nmax
j e+ 1)

+ d̃j(n− k − (d(n− k)/Nmax
j e − 1) ·Nmax

j) }

where d̃j(k) is the minimum time that an instance of task j
must execute in order to produce k requests to resource S
(e.g. as provided by Lemma 1), and δ′j(n) is the minimum
distance between the execution of n instances of task j as
given by its activating event model and worst-case response
time: δ′j(n) = max{0, δ−j (n)−Rj}.

Proof: Let all shared resource operations issued by task j be
numbered in the order of their request times. Assume two arbitrary
requests m1 and m2 with m2 = m1 + n− 1. Let the task instances
that produce request m1 and m2 be denoted with i(m1) and i(m2),
respectively. Let the instance i(m1) produce k of the n requests. It
then must execute for at least d̃j(k) before it has done so.

The remaining n − k requests involve at least d(n − k)/Nmax
j e

further task activations, because no instance can produce more than
Nmax
j requests. The distance between the activation of instances

i(m1) and i(m2) is constrained by the task’s activating event model
(δ−j (n)). Because i(m1) executes for no longer than Ri, i(m2) can
not be activated sooner than δ−j (d(n− k)/Nmax

j e+ 1))−Rj after
i(m1) has finished, as provided in the second line of (4). Even if
the intermediate instances produce the maximum number of requests
Nmax
j each, then still n−k−(d(n−k)/Nmax

j e−1)·Nmax
j) requests

remain to be produced by instance i(m2). In order to produce the
remaining amount of requests, the task must again execute for at least
as long as demanded by d̃ as stated in the last line of (4).

If the intermediate instances produced less than the maximum
number of requests each, i(m2) would need to produce more re-
maining requests, which would increase the distance between m1

and m2. The arbitrary instance i(m1) may produce any number k
of requests that is smaller than both n and Nmax

j . The minimum of
these scenarios is a lower bound on the actual distances.

Equation 4 provides a minimum distance between any n
requests by instances of the same task. To compute this bound
the response time of the task Rj needs to be known, which
may initially not be the case, because the response times have
only been computed for some tasks in the system. This issue
can be addressed by iteratively computing the shared resource
request bounds and task response times in the system. Such a
procedure has been proposed in [10].

When reasoning about the requests of multiple tasks in the
next section, an important metric is the amount of computation
(i.e. processor occupation) that is involved in order for a task to
produce a certain number of requests. The following theorem
provides a bound on this execution requirement.

Theorem 2. In order to produce n requests to a shared
resource S, instances of a task j with best-case execution times
tBC must execute at least

δ̃e
j→S(n)= min1≤k≤min{n,ẽj(tBC)}{ d̃j(k) (5)

+max{0, (d(n− k)/ẽj(tBC)e − 1)} · tBC

+ d̃j (n− k − (d(n− k)/ẽj(tBC)e − 1) · ẽj(tBC))}

where the maximum number of requests per best-case exe-
cution time ẽj→S(tBC) is derived from the minimum request
distances d̃j→S(n) according to Lemma 1 and Equation (2).

Proof: Follows along the lines of the proof for Theorem 1.
The first, the last and the intermediate instances (lines 1, 3, and 2
of Equation 5) require a certain time to execute in order to provide
the expected amount of requests (ẽj(tBC) requests per tBC results
in the highest possible density of requests).

It is worth noting that Theorem 1 makes no assumptions
about the manner in which the task j is actually scheduled,
while Theorem 2 makes no assumptions about the manner
in which the task is activated. Thus, both theorems deliver
orthogonal and equally valid minimum distances between the
requests of a task.

C. Scheduling Multiple Tasks on the Same Processor
Tasks that share the same processor are executed alternately

as directed by the local scheduling policy. This results in a
combined request traffic δ̃−T→S(n) for all tasks T mapped to
the same processor. In this section we present two orthogonal
lower bounds on the distances between the requests that are
derived from the information per task of the previous section.

1) Minimum Distance Demanded By Task Execution In-
tervals: Theorem 1 has provided bounds on the distance
between any n requests issued by instances of a task j on
the basis of the distance between the task activations and its
worst-case response time, but independently of the amount of
actual processing time that is assigned to the task (as long as
it respects its worst-case response time). Consequently, this
bound is valid for every task j ∈ T for any actual schedule.

A total of n requests can be observed in the smallest time
window, in which the sum of requests is not smaller than n.
This is stated in the following corollary.

Corollary 1. The smallest time window in which n requests
by tasks in a set T can be observed is larger than

δ̃a
T→S(n) = min{∆t |

∑
j∈T

η̃a
j→S(∆t) ≥ n} (6)

with η̃a
j→S(t) derived from δ̃a

j→S(n) according to Theorem 1
and Equation (2).

2) Minimum Distance Demanded By Exclusive Task Exe-
cution: Although Corollary 1 is conservative, it can be an
underestimation of the actual distances, because the tasks
mapped to the same processor do not actually run in parallel,
but rather the scheduler will assign the processor exclusively
to the different tasks over time. The effect of this exclusive
assignment is illustrated in the following example. Assume
a set of tasks T is executing on the same processor and the
tasks perform accesses to a shared resource S. In order for
these tasks to produce a total of n requests, the tasks have to
be scheduled in such a way that the sum of the requests by
each task adds up to n (i.e. if nj is the number of requests
issued by task j, we have

∑
j∈T nj = n). In order to produce

nj requests, task j must execute for a certain amount of time
ej(nj). Because at every point in time, only one task can
be executed on a processor, the total time to produce the nj

requests is thus given by
∑

j∈T ej(nj).
The following theorem exploits that the execution time

required for each task to produce its share of requests is at
least δ̃e

j→S(nj) according to Theorem 2.

Theorem 3. If the tasks in a set T are scheduled alternatingly
on a processor, the smallest time window in which n requests
to a resource S may be observed is bounded by

δ̃e
T→S(n) = min{

∑
j∈T

δ̃e
j→S(nj) |

∑
j∈T

nj = n} (7)

where δ̃e
j→S(nj) is the minimum time that instances of task j

must execute in order to produce nj requests to resource S.

Proof: For a total number of n requests to be issued by the
tasks in the set T , the scheduler must select tasks for execution in
such a way that the sum of the requests of the individual tasks is n.
Thus, the problem is subject to the constraint

P
j∈T nj = n.

The total time that needs to pass in order for the tasks in T to
produce the n requests is given by the sum over the times that the
individual tasks must execute in order to produce their respective
share of the n requests

P
τj∈T δ̃

e
j→S(nj), as bounded by Theorem 2.

Consequently, if the distribution of requests to tasks is such that this
sum is minimized, the amount of time to produce the n requests is
minimized.

Finding the combination of requests per task (nj) that
leads to a minimum overall request distance in (7) is an
instance of the “bounded nonlinear Knapsack problem” [13],
which in general belongs to the class of NP-hard problems.
However, relatively efficient solutions have been proposed e.g.
in [14]. The greedy approach of iteratively taking the smallest
incremental execution time does not lead to conservative
results, because the functions δ̃e

j→S are not necessarily convex
functions (only super-additive).

The individual shared resource request bounds of two tasks
and the joint bound derived on the basis of Theorem 3 are
depicted in Fig. 3. The most critical case is given if the sched-
uler first chooses task 1 for execution until it has produced 4
requests. In order to produce a fifth request however, task 1
would have to execute relatively long, thus executing task 2
becomes more critical. For comparison, the request distances
provided by Corollary 1 (i.e. the horizontal summation of the
shared resource request bounds) are shown as a dotted line.

Fig. 3. Joint Request Bound under Exclusive Execution.

Both bounds from Corollary 1 and Theorem 3 make or-
thogonal assumptions and are equally valid. In the case of
overlapping instances, δ̃e

T→S(n) is more accurate (as seen in
Fig. 3), but when task activations are further apart, δ̃a

T→S(n)
better captures the distances for large n.

IV. IMPLICIT ACCESSES TO A SHARED MEMORY

The aggregation of request traffic in the previous sections
has assumed that the requests are issued within predefined
bounds during the execution of the tasks, and that these bounds
are not affected by the actual scheduling decisions. This is the
case when the requests are the result of explicit instructions
in the source code. However, when requests are the result of
cache misses, their timing is the implicit effect of the current

system state and can heavily vary due to dynamic context
switching.

This challenging scenario can be addressed with the analysis
proposed in the previous sections and a three-step extension:
In a first step, the number of “intrinsic” cache misses of an
undisturbed task execution is bounded. The second step derives
the additional cache misses due to the run-time preemptions.
Based on these values, the total number of cache misses is
considered in the computation of the shared request bound.

A. Bounding Intrinsic Cache Misses

Bounding the tasks’ intrinsic cache misses has been a
heavily researched subject. By so-called abstract interpretation
of the execution binary and an accompanying cache model,
formal methods are able to identify for each basic block the
maximum number of cache misses that may occur during
the execution [12], [15]. The tasks control flow graph is
then annotated with the possible cache miss delays per basic
block, and the task’s worst-case execution time is derived by
searching for the longest path. This procedure is obviously
only possible if the cache miss delay is constant, which is the
case for single processor systems, but does not hold for shared
memories with dynamic arbitration.

Instead, we propose to annotate the basic blocks in this
case only with the amount of potential cache misses that go
to a shared memory M . This then re-enables the analysis
of the maximum number of cache misses per task execu-
tion N intrinsic

j→M and minimum distance between cache misses
d̃intrinsic

j→M (n) with the methods discussed in Section III-A for
explicit accesses. With this, the total number of intrinsic cache
misses by a set of tasks T that is mapped to the same processor
can be computed according to Corollary 1 and Theorem 3. Let
the result of this analysis be denoted with δ̃intrinsic

T→M (n).

B. Preemption-Related Cache Misses

When preemptive scheduling is involved, the preemption
by a prioritised task can cause some useful cache blocks
of a preempted task to be replaced, such that it will suffer
additional cache misses when it resumes execution. This effect
is called the cache-related preemption delay (CRPD) and
is known from single processor systems, which has been
investigated with formal analyses since [16].

The approaches usually consist of two steps: Firstly, the
number of replaced cache blocks per preemption is bounded
as in [16], [17], [18]. This figure is given by the intersection
of cache blocks that are used by the preempting task, and
those that are useful for the preempted task, i.e. those cache
blocks that may be used again when the preempted task
resumes execution. Secondly, the number of preemptions that
may occur during the response time of a task is investigated.
Given a certain scheduling policy, this leads to a total delay
in the response time of a task [17], [19], [20]. Again, these
analyses are not directly applicable due to the variable cache
miss latency, but can be adapted to the given setup as follows.

To facilitate the analysis, an upper bound on the number of
preemption-related cache misses (PRCM) is required per task
pair. These misses are the bare number of cache misses as
derived by the method proposed in [16], but without factoring

in the cache miss penalty. Considering the possible number
of preemptions, the amount of misses is aggregated to find
the total number of misses Nprcm

T→M (wi) of all tasks T on a
processor within a given time window wi. The algorithms in
[19] and [20] provide solutions to this problem for static pri-
ority preemptive scheduling with different trade-offs between
complexity and accuracy. In the multiprocessor context, we
apply these methods on the basis of the bare number of cache
misses (instead of the delays).

C. Overall Bound on Cache Misses

Finally, the total number of cache misses consisting of the
intrinsic cache misses and preemption-related cache misses
can now be considered in the computation of the shared
resource load.

The preemption-related cache misses cause the tasks to
produce more requests in shorter time intervals. The resulting
minimum distance between any n cache misses that go to
a shared memory M can be computed using the bounds on
the intrinsic cache misses δ̃intrinsic

T→M (n) and the additional
scheduling-related cache misses Nprcm

T→M (wi) on a processor
within a time interval wi:

δ̃cache
T→M (n) = min[0, δ̃intrinsic

T→M (n−Nprcm
T→M (wi))] (8)

V. INTEGRATION OF RESULTS AND EXPERIMENTS

To evaluate the proposed method, we integrate shared re-
source request bounds derived in the previous sections into the
worst-case response time analysis for tasks in multiprocessor
systems with shared resources (following [10]). For each task
i, its response time is given by the sum of a) its own worst-case
execution time, b) the possible preemption time due to higher
priority tasks, and c) the delays experienced when waiting
for shared resource requests to be finished (i.e. the processor
is stalled during requests). The latter is computed as the sum
over the duration of i’s requests, the requests of higher priority
preempting tasks, and the requests by tasks on other processors
in the same time window.

We consider a system with 2 processors that are equipped
with local caches (L1) and can access a shared memory that
serves requests first-come-first-served with a constant time of 5
time units per access (i.e. there is no L2 cache). Each processor
is running two tasks as presented in Table I. The tasks
are actual benchmarks taken from [15] investigated with a
modified version of the worst-case execution time analysis tool
[21]. The derived WCET values without cache miss delays are
listed in Table I. A different number of intrinsic cache misses
and preemption-related cache misses is obtained for various
cache configurations (cache size between 64 and 1024 Byte;
direct mapped; replacement strategy least-recently-used). It
can be observed that the development is not monotonic, but
that there is a general tendency that the intrinsic cache misses
decrease with larger cache sizes. A different tendency can be
observed for the preemption-related cache misses for which
the cost of a single preemption is listed in Table I. The PRCMs
increase with growing cache size, because more useful cache
blocks can be replaced upon a preemption. When the cache is
sufficiently large, the displacement is again reduced.

TABLE I
EXPERIMENTAL SETUP AND COMPUTED CACHE MISSES

Task Pro- Pri- Period WCET Nmax
j→M

cessor ority [64,128,256,512,1024]B
countsort CPU0 1 20000 168 [55,98,80,12,60]
whetstone CPU0 2 75000 57253 [790,790,790,550,50]

FIR CPU1 1 20000 2083 [155,110,8,35,8]
exchangesort CPU1 2 40000 11011 [1115,710,710,710,710]

Preemption Scenario 64B 128B 256B 512B 1024B
“countsort preempts whetstone” 8 15 32 46 25
“FIR preempts exchangesort” 8 15 31 63 15

These values are now used to derive the load imposed from
each processor to the shared memory according to Equation 8,
and the delays and response times are computed as described
in the first paragraph of this section.

Fig. 4. Resulting Worst-Case Response Times (WCRT) for whetstone task
on CPU0.

Fig. 4 shows the resulting response times of the whetstone
task for the different cache configurations. As can be expected,
the response time is influenced by both the local cache
configurations and that of the other processor, as either misses
will cause an execution delay. The result is not monotonic with
respect to cache size, as the intrinsic and the preemption-
related cache misses develop in different directions. One
configuration has lead to a response time that was beyond
the task deadline (64B cache on CPU0, and 512B cache on
CPU1). The most economical configuration is a cache size of
128B on CPU0 and 64B on CPU1, as larger cache sizes do
not deliver a dramatically improved performance.

VI. CONCLUSION

In this paper, we have highlighted the need for accurate
models for shared resource load in multiprocessor systems.
An analysis was presented to derive a shared resource request
bound for single tasks, and also for task sets scheduled on
the same processor. The joint bound explicitly considers the
distance between successive task activations and the alternat-
ing execution of tasks on the same processor. Based on single
processor cache analyses, we have provided extensions of this
approach to cover the effects of intrinsic and preemption-
related cache misses. The applicability was shown in an
experimental section using actual benchmarks.

ACKNOWLEDGMENTS

The authors would like to thank Axel von Engel for building
a prototype implementation and performing the experiments.

REFERENCES

[1] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand, “Memory hierarchies, pipelines, and buses for future ar-
chitectures in time-critical embedded systems,” Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, vol. 28, no. 7,
pp. 966–978, July 2009.

[2] P. Paulin, C. Pilkington, and E. Bensoudane, “StepNP: a system-
level exploration platform for network processors,” Design & Test of
Computers, IEEE, vol. 19, no. 6, pp. 17–26, 2002.

[3] M. Bekooij, O. Moreira, P. Poplavko, B. Mesman, M. Pastrnak, and
J. van Meerbergen, “Predictable embedded multiprocessor system de-
sign,” Proceeding of the SCOPES workshop, September, 2004.

[4] A. Andrei, P. Eles, Z. Peng, and J. Rosen, “Predictable Implementation
of Real-Time Applications on Multiprocessor Systems-on-Chip,” 21st
Intl. Conference on VLSI Design, 2008.

[5] M. Schoeberl and P. Puschner, “Is Chip-Multiprocessing the End of
Real-Time Scheduling?” in Proceedings of the 9th International Work-
shop on Worst-Case Execution Time (WCET) Analysis. Dublin, Ireland:
OCG, July 2009.

[6] R. Kirner and P. Puschner, “Obstacles in worst-case execution time
analysis,” in 11th IEEE International Symposium on Object Oriented
Real-Time Distributed Computing (ISORC), May 2008, pp. 333–339.

[7] S. Schliecker, M. Ivers, and R. Ernst, “Memory Access Patterns for
the Analysis of MPSoCs,” Circuits and Systems, 2006 IEEE North-East
Workshop on, pp. 249–252, 2006.

[8] K. Albers, F. Bodmann, and F. Slomka, “Hierarchical Event Streams and
Event Dependency Graphs: A New Computational Model for Embedded
Real-Time Systems,” Proceedings of the 18th Euromicro Conference on
Real-Time Systems, pp. 97–106, 2006.

[9] T. Henriksson, P. van der Wolf, A. Jantsch, and A. Bruce, “Network
Calculus Applied to Verification of Memory Access Performance in
SoCs,” in Workshop on Embedded Systems for Real-Time Multimedia
(ESTIMEDIA), Salzburg, Austria, October 2007.

[10] S. Schliecker, M. Negrean, and R. Ernst, “Response time analysis in
multicore ecus with shared resources,” IEEE Transactions on Industrial
Informatics, vol. 5, no. 4, November 2009.

[11] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System Level Performance Analysis - The SymTA/S Approach,” IEE
Proceedings Computers and Digital Techniques, vol. 152, no. 2, pp.
148–166, March 2005.

[12] R. Wilhelm et al., “The worst-case execution-time problem—overview
of methods and survey of tools,” Trans. on Embedded Computing Sys.,
vol. 7, no. 3, pp. 1–53, 2008.

[13] S. Martello and P. Toth, Knapsack problems: algorithms and computer
implementations. John Wiley and Sons Ltd., 1990.

[14] D. Li, X. Sun, J. Wang, and K. Mckinnon, “Convergent lagrangian and
domain cut method for nonlinear knapsack problems,” Comput. Optim.
Appl., vol. 42, no. 1, pp. 67–104, 2009.

[15] J. Staschulat and R. Ernst, “Scalable precision cache analysis for real-
time software,” ACM Trans. Embedded Comput. Syst., vol. 6, no. 4,
2007.

[16] J. Busquets-Mataix, J. Serrano, R. Ors, P. Gil, and A. Wellings, “Adding
instruction cache effect to schedulability analysis of preemptive real-time
systems,” in Proc. Real-Time Technology and Applications Symposium
(RTAS). IEEE Computer Society Washington, DC, USA, 1996.

[17] C. Lee, K. Lee, J. Hahn, Y. Seo, S. Min, R. Ha, S. Hong, C. Park,
M. Lee, and C. Kim, “Bounding cache-related preemption delay for
real-time systems,” IEEE Transactions on software engineering, vol. 27,
no. 9, pp. 805–826, 2001.

[18] S. Altmeyer and C. Burguière, “A new notion of useful cache block
to improve the bounds of cache-related preemption delay,” in Proc.
Euromicro Conference on Real-Time Systems (ECRTS), July 2009.

[19] S. Petters and G. Farber, “Scheduling analysis with respect to hardware
related preemption delay,” in In Workshop on Real-Time Embedded
Systems, London, United Kingdom, December, vol. 3, 2001.

[20] J. Staschulat, S. Schliecker, and R. Ernst, “Scheduling Analysis of Real-
Time Systems with Precise Modeling of Cache Related Preemption
Delay,” in Proc. Euromicro Conference on Real-Time Systems (ECRTS),
2005, pp. 41–48.

[21] J. Staschulat, “Symta/p - performance verification for complex embed-
ded systems v1.2,” http://sourceforge.net/projects/symtap/, August 2005.

	Main
	DATE'10
	Front Matter
	Table of Contents
	Author Index

