
Non-intrusive Virtualization Management
using libvirt

Matthias Bolte, Michael Sievers, Georg Birkenheuer, Oliver Niehörster and André Brinkmann
Paderborn Center for Parallel Computing PC2, University of Paderborn, Fürstenallee 11, 33102 Paderborn, Germany

{photon, msievers, birke, nieh, brinkman}@uni-paderborn.de

Abstract—The success of server virtualization has let to the
deployment of a huge number of virtual machines in today’s data
centers, making a manual virtualization management very labor-
intensive. The development of appropriate management solutions
is hindered by the various management interfaces of different
hypervisors. Therefore, a uniform management can be simplified
by a layer abstracting from these dedicated hypervisor interfaces.

The libvirt management library provides such an interface
to different hypervisors. Unfortunately, remote hypervisor man-
agement using libvirt has not been possible without altering the
managed servers. To overcome this limitation, we have integrated
remote hypervisor management facilities into the libvirt driver
infrastructure for VMware ESX and Microsoft Hyper-V. This
paper presents the resulting architecture as well as experiences
gained during the implementation process.

I. INTRODUCTION

Server virtualization has proven to be a valuable tool to
simplify data center management and to increase resource
efficiency as well as service reliability. The ability of modern
virtual machine managers to run a huge number of virtual
machines on a single physical server enables the consolidation
of multiple under-utilized physical servers inside a single one,
while keeping the property of failure and resource isolation
between the virtual machine instances. Virtualization technol-
ogy further simplifies failure handling, as the virtual machines
can be easily restarted on a different physical machine after
a hardware failure. Load balancing is supported by features
like live-migration, which reduces the downtime required to
move a logical service between different physical servers to
milliseconds, having no measurable effect on many applica-
tions.

Running a few virtual machines has, as discussed, strongly
simplified many administration tasks. This simplification has
encouraged administrators as well as end users to create
hundreds to thousands of virtual machines inside a single in-
frastructure. This explosion of the number of virtual machines
introduces many new management issues. The most obvious
are the question about the physical location, where a virtual
machine is running and the question about the names and
types of virtual machines, which are running on a physical
server. Not having a virtual machine management answering
these questions would, for example, immediately lead to long,
manual recovery phases after physical failures, canceling most
of the virtualizations advantages.

Different requirements concerning supported hardware and
operating systems have triggered the creation of a number of

different virtualization approaches and solutions. Full virtu-
alization uses binary translation to run arbitrary, unmodified
operating systems on top of the hypervisor (also called virtual
machine monitor), while hardware-assisted virtualization uses
CPU traps to handle sensitive instructions. Paravirtualization
also modifies the guest operating system to optimize the inter-
play between virtual machine monitor and the virtual machine
itself. In contrast, operating system-level virtualization runs
different isolated instances of the user environment on top a
single operating system core. These distinctions have let to a
number of different virtualization solutions like VMware ESX,
Xen, KVM, VirtualBox, OpenVZ, or Solaris containers, which
have very different management APIs.

The different management APIs make it very difficult
for developers to build virtualization management solutions,
which are able to support arbitrary virtualization environments.
Commercial providers like VMware and Citrix overcome
this problem by providing management solutions, which are
tailored and restricted to their specific hypervisors, optimizing
the usage of their specific virtual machine monitor. Open
source projects like oVirt, Eucalyptus, or OpenNebula try
to provide a broader support and to stay independent of
a particular hypervisor. This either requires the adaptation
of their internal interfaces to the broad set of hypervisor
management APIs or the usage of an abstraction layer, which
translates from one interface to the different API flavors. Even
if this abstraction layer requires the restriction to a common set
of core functionalities, which are supported by all hypervisors,
it also strongly simplifies the development and maintenance of
management environments.

The libvirt project develops such a virtualization abstraction
layer, which is able to manage a set of virtual machines
across different hypervisors. The goals of libvirt are to provide
a library that offers all necessary operations for hypervisor
management without implementing functionalities, which are
tailored to a specific virtualization solutions and which might
not be of general interest. Additionally, the long-term stability
of the libvirt API helps these management solutions to be
isolated from changes of hypervisor APIs.

Contributions of this paper: Today, there are still no
management solutions, which are able to manage arbitrary
hypervisors. Administrators are either restricted to use open
source management solutions to manage open source hyper-
visors or they can use proprietary management suites for
commercial hypervisors. The libvirt project offers an API that

 

 
 
 
 
978-3-9810801-6-2/DATE10 © 2010 EDAA 
 

 



is able to manage arbitrary hypervisors over a stable interface.
This paper presents the first implementation that integrates the
commercial hypervisors VMware ESX and Microsoft Hyper-V
into the libvirt library. Besides presenting the architecture
of our integration, we discuss issues discovered during the
implementation as well as limitations of API mapping in the
context of virtualization management.

II. RELATED WORK

Server virtualization plays a crucial role in todays IT man-
agement environments, both as foundation for cloud services
as well as in data centers. Popek and Goldberg have analyzed
instruction set properties, which determine the virtualizability
of a processor [1]. Their most important theorem claims that
for an efficiently virtualizable processor, its sensitive instruc-
tions have to be a subset of its privileged instructions. Early
x86 architectures have not been virtualizable in this classical
sense, leading to the creation of very different virtualization
implementations [2].

Full virtualization solutions like VirtualBox or VMware
replace sensitive instructions with binary translated blocks
to run arbitrary operating systems on top of x86 processors
[3]. Paravirtualized solutions like Xen require a modification
of the guest operating systems, enabling them to become
faster, while reducing the universality of the approach [4].
Modern x86 architectures, like Intel VT or AMD’s Pacifica
introduce new running modes, which make the processor
efficiently virtualizable, but restrict it from being recursively
virtualizable [5]. Most modern virtualization solutions, like
VMware ESX, KVM, and Xen support this hardware-assisted
virtualization [6] [7]. Virtualization solutions simplify data
center management by their live-migration support and other
interesting abilities, like the possibility to dynamically change
VM resources during runtime [8] [3] [9]. Nevertheless, the
management concepts and the corresponding APIs differ sig-
nificantly between the different virtualization solutions (see
also Section IV).

Virtualization management suites and cloud environments
like oVirt, VMware vCenter, XenServer, OpenNebula and
Eukalyptus enable system administrators to handle hundreds
and thousands of virtual machines [10] [11] [12]. They help
to manage virtual machines and images, as well as users and
integrate third-party tools like backup support or manage dif-
ferent storage interfaces. The commercial solutions typically
only support their own hypervisor, while open source solutions
try to be as general as possible. The different APIs make it very
difficult to support a broad set of hypervisors without support
from a virtualization abstraction layer. Several projects have
emerged, which try to provide such a uniform interface to the
different hypervisors. The most notables of these projects are
the Common Information Model (CIM)-standardization efforts
of the Distributed Management Task Force (DMTF) and the
libvirt project [13].

III. HYPERVISOR MANAGEMENT USING CIM

CIM in the broadest sense is often used as a synonym for
Web Based Enterprise Management (WBEM), which is in fact
an umbrella term for various technologies specified by the
DMTF targeting administration and remote maintenance of
computer systems. This includes the specification of a data
model, the Common Information Model, which is what CIM
literally stands for. Additionally, WBEM enumerates protocols
and access patterns in order to work with this model in several
DMTF Standard Publications (DSPs), e.g. Representation of
CIM in XML, CIM Operations over HTTP or the CIM Query
Language Specification. It also includes a specification on
how to access CIM in a web service like fashion, called Web
Services for Management, or WSMAN for short.

Often mistaken, WBEM is not an API but an infrastructure
for accessing administrative system data in an uniform way.
Precisely, WBEM states that there are classes, but not how a
class representing a specific resource has to be named. There
are such specifications called schemas provided by the DMTF,
but no vendor is forced to abide. Also, no vendor is forced
to use CIM operations over HTTP as the access protocol.
For example Microsoft’s WBEM implementation WMI uses
a proprietary DCOM based protocol.

It should be clear at this point that just the fact that two
systems use CIM as the data model does not make them
automatically compatible. Both, the schemas and the access
methods have to be intermateable. For example, even if WMI
implements the schemas proposed by the DMTF, a system not
capable of running the proprietary DCOM protocol is unable
to access it.

There are DMTF schemas concerning the management of
virtual machines, but no vendor actually implements them
correctly. Microsoft’s Hyper-V API, which uses WMI, is
actually based on the DMTF proposal, but there are major
differences, e.g. concerning the management of snapshots. For
example, the creation of a virtual machine snapshot involves
the method CreateSnapshot of the class VirtualSystemSnap-
shotService as stated by the DMTF schema1. However, the
Hyper-V API manages the snapshot creation through a method
called CreateVirtualSystemSnapshot of the class VirtualSys-
temManagementService.

This is even worse for other hypervisors claiming CIM
support, e.g. VMware ESX. There is simply no way of
managing virtual machines of an ESX server using WBEM
technologies, because no such functionalities are exposed.
VMware ESX server provides information about hardware
components or attached storage devices using WBEM, but no
virtual machine management functions.

It has to be concluded, that WBEM (including CIM) is
not yet a solution for uniformly managing different kinds
of hypervisors. This may change in the future, but it has
to be questioned, whether vendors are willing to support
interoperability or if it just leads to embrace, extend, and
extinguish products.

1CIM Schema 2.23.0



IV. LIBVIRT, AN ABSTRACTION LAYER

Libvirt is an abstraction layer library for various hypervisor
management APIs written in C. It started as a Xen wrapper,
but has been extended to several other hypervisors later on. It
is conceptual divided into a hypervisor agnostic and several
hypervisor specific parts, also called drivers.

Applications can use libvirts public API, which internally
maps to appropriate driver functions through an internal driver
API. This driver model has proven to be very flexible and easy
to extend, so drivers for storage and network interfaces using
the same model have been added.

KVM Server
libvirtd

Client PC

libvirt

Remote Driver

KVM Driver

Management Tool

KVM Hypervisor

Network Interface

Local Storage

iSCSI Driver

Network Driver

IDE Driver

iSCSI Server

Remote Storage

Fig. 1. Driver based libvirt architecture.

Many hypervisors like KVM do not offer remote manage-
ment facilities. Libvirt tries to circumvent this by implement-
ing a remote driver on the client and an appropriate daemon
for handling client requests from the server side, called libvirtd
(see also Figure 1). Requests from a client are tunneled
through the remote driver to the server, where the specific
hypervisor is running. The libvirtd on the server receives the
requested commands and locally calls the specific driver (see
Figure 2).

Application openvz

xen

qemu

lxc

test

remote

URI

qemu://host
libvirtd openvz

xen

qemu

lxc

test

remote

D
rive

r Im
p
l

D
rive

r A
P

I

P
u
b
lic A

P
I

D
rive

r Im
p
l

D
rive

r A
P

I

P
u
b
lic A

P
I

Fig. 2. Remote driver and libvirtd.

Introducing a middleware architecture consisting of the
remote driver and the libvirtd daemon offers great flexibility.
Communication between client and hypervisor can be, for
example, compressed and/or encrypted in a way that is totally
transparent to the hypervisor. The major drawback of this
architecture is that the physical server, on which the remotely
managed hypervisor resides, has to run libvirtd. The problem

here is that this requirement cannot always be fulfilled, as for
example it is difficult to install software on VMware ESX.

VMware ESX and also ESXi are closed software products
and integrating third party components is unsupported. While
there is a minimal Linux based operating service console
running on each ESX server, altering it is neither supported
nor comfortable. Without this, remote management of an
ESX server using libvirt and libvirtd is impossible in the
conventional way.

Microsoft Hyper-V servers, which are based on the Win-
dows server operating system, allow the installation of third
party software, but are also currently unsupported by libvirtd.
Our evaluation has shown that porting the libvirtd to Microsoft
Hyper-V would not really help us. Firstly, the libvirtd is
strongly coupled to Unix-like operating systems, requiring to
port the software. Secondly, even having a port to Microsoft
Hyper-V would still require us to access its API in nearly the
same way as accessing it remotely.

V. VMWARE ESX AND MICROSOFT HYPER-V

As pointed out before, libvirt uses libvirtd to establish
remote connections with a hypervisor. This concept basically
excludes support for VMware ESX and Microsoft Hyper-V,
because libvirtd cannot be efficiently implemented and main-
tained for these hypervisors. To enable libvirt to manage such
hosts remotely, the relevant libvirt drivers have to implement
the communication on their own.

Bypassing libvirtd for remote hypervisor management im-
plicates the loss of features provided by the daemon, such as
transparent encryption or compression. Because of VMware
ESX and Microsoft Hyper-V do not differentiate between local
and remote API access, a driver capable of controlling such
a hypervisor remotely can possibly be used locally in the
future. Therefore integrating remote access into the VMware
ESX, respectively Microsoft Hyper-V driver does not break
the current libvirt architecture, because switching to a libvirtd
approach is possible at least from the architectural point of
view.

We will see in the following, which protocols are needed
to communicate with an ESX, respectively Hyper-V host
and how they can be be implemented to be used within a
correspondent libvirt driver. We will also have a brief look at
the according APIs and how they influence the concrete driver
development.

A. VMware ESX

VMware ESX uses a large, SOAP based API named
vSphere API, which was formerly known as Virtual Infrastruc-
ture API. Besides single VMware ESX server management,
it also covers the management of an entire VMware cluster.
A cluster is formed as a combination of several VMware
ESX servers in combination with a VMware vCenter server.
In this setup, the VMware vCenter is responsible for higher-
order cluster management functionality, like load-balancing or
virtual machine migration (see Figure 3).



ESX Server Failover Cluster

vCenter Server

Client PC

libvirt

Hyper-V Driver

Management Tool

ESX Driver

S
O

A
P

hostd

S
O

A
P

ESX Server

hostd
SOAP

Hyper-V Server

WinRM

W
SMAN

Hyper-V Server

WinRM

WSMAN

Fig. 3. Communiucation architecture for VMware ESX and Microsoft
Hyper-V without libvirtd.

In order to use this SOAP API from within libvirt, it
is necessary to write a C-based SOAP client. An obvious
and simple approach would be to generate C code from the
vSphere API Web Services Description (WSDL) definition,
using a WSDL2C generator tool. Unfortunately, this approach
does not work very well, as the object types of the vSphere
API inherit from each other and generator tools, as the
gSOAP2 toolkit, do not generate working C code, if the degree
of inheritance is too big. In addition, the size of the generated
code is enormous. Other libvirt developers have tried to use
generated C code from the vSphere API before, but gave up
this approach for the same reasons.

SOAP does not map easily to C, because C is in contrast
to the object-based SOAP protocol not an object oriented
language. A gSOAP generated C++ client works without
problems, but C++ is not an option, because a mandatory
requirement for libvirt drivers is that they have to be written
in C.

One solution for this problem is the VMware VIX API,
because VMware provides closed source C bindings for it.
However, the main libvirt developers voted against it, as the
bindings are closed source and because of possible license
issues.

Our solution for this problem is a custom SOAP client
handwritten in C, which is based on libcurl3 for the HTTP
transport and libxml24 for XML (de-)serialization. Writing
the client by hand solves the inheritance problem in C.
Furthermore, it allows to only implement the necessary part
of the vSphere API, so that the SOAP client code is much
smaller than the generated C code.

B. Microsoft Hyper-V

Hyper-V is accessed through Microsoft’s CIM implemen-
tation, called Windows Management Instrumentation (WMI).
The native transport when calling WMI remotely is the Dis-
tributed Component Object Model (DCOM) binary protocol.
Migration is handled by the Microsoft Failover Cluster service
and is not part of the main Hyper-V API, but is included in the
Failover Cluster API. Fortunately, this API is also WMI-based,

2http://www.cs.fsu.edu/~engelen/soap.html
3http://curl.haxx.se/
4http://xmlsoft.org/

so that there is no difference in accessing these functionalities
remotely.

The direct use of WMI over DCOM from non-Windows
hosts is very difficult, as there is no software implementing
this protocol outside the Windows operating systems. There
are attempts from within the Samba project, but the results
are not yet in an usable state.

Our solution uses WS-Management (WSMAN), which can
be used to access WMI using SOAP. WS-Management is a
DMTF protocol to use CIM operations over HTTP in a web
service like manner. Microsoft implemented this as Windows
Remote Management (WinRM) into recent Windows operating
systems. Using WinRM enables us to access WMI from non-
Windows systems using open source software (see Figure 3).

An example for an open source WS-Management imple-
mentation is OpenWSMAN5. It provides server and client
components for WS-Management environments. The WS-
Management client library component for C is of special
interest for our approach. It speeds up implementing Hyper-
V management from within a driver without the expense
of writing an own client side communication stack, as it is
necessary for ESX.

VI. DRIVER DEVELOPMENT ISSUES

After the fundamentals have been done and remote access
to the hypervisor is available, our next step was to implement
the libvirt driver API using the hypervisor remote API. Some
examples for simple and more complex as well as currently
unsolved API mapping problems will be presented in the
following.

A. VMware ESX

An example for a simple one-to-one mapping is the vSphere
API method FindByUuid(), because it allows to obtain a
VirtualMachine object by its UUID to fulfill the libvirt
driver API function virDomainLookupByUUID(). Also,
this method is often required to implement other libvirt driver
API function.

The performance information provided by the vSphere API
PerformanceManager object is an example for a more
complex mapping problem. Each VMware ESX server collects
a large set of performance information, but the collected values
are only available in relative form. For example, the used CPU
time or the number of bytes read from a disk are returned in
5 minute slots. The libvirt driver API, in contrast, expects
these values in an absolute form. In the context of the used
CPU time or the number of bytes read from disk, these values
are expected as the accumulated numbers since the virtual
machine has been started. Nevertheless, the information is not
available in this form and cannot be calculated in a robust way
from the available information.

There is no simple solution to this mapping problem and
this problem is still unsolved. A possible solution would be
to extend the libvirt API to allow performance information in
relative form.

5http://www.openwsman.org/



Another unsolved problem is the network management. The
VMware ESX networking management is based on virtual
switches, virtual port groups, virtual network interface con-
trollers (NIC), and physical NICs. The libvirt API currently
has no notion for virtual switches and their assignment to
virtual port groups or physical NICs. A possible solution
would be to extend the libvirt API with a notion for virtual
switches and their relation to other networking elements.

A migration involves two VMware ESX servers. Therefore
it is handled as a higher-order cluster management function-
ality and requires to run VMware vCenter. The migration
command is issued on the VMware vCenter server to migrate
a virtual machine from the source VMware ESX server to the
destination VMware ESX server.

This represents another potential API mapping problem, be-
cause libvirt models a migration as a process that involves the
source and destination server only. A higher-level management
instance like the VMware vCenter is not part of this model.

In order to perform a migration, the libvirt VMware ESX
driver has to know which VMware vCenter server is in charge
for the involved VMware ESX servers. This information can
be retrieved from each VMware ESX server via the vSphere
API.

Before the driver is able to successfully issue commands
to an VMware ESX or vSphere server, it has to login to the
server. The necessary credentials are passed to the driver in
its open function. In order to perform a migration later on, the
credentials for the connection to the VMware vCenter server
have also to be passed to this open function.

B. Microsoft Hyper-V

First of all, there is a fundamental mapping issue between
libvirt and the Hyper-V API. While libvirt is a classic C
library, the Hyper-V API is realized using Microsoft’s CIM
implementation named WMI. It is characterized by classes,
instances and relations between them. To get information about
virtual machines, you have to query the data model using a
predefined set of meta operations, also called intrinsic CIM
operations, which are shown in Table I.

Extrinsic CIM operations on the other hand are methods of
specific classes or instances. For example, changing the power
state of a virtual machine is realized as a method of an instance
of a class representing virtual machines.

In the following, we examine the libvirt function
virDomainLookupByUUID(), which has already been
discussed for the ESX driver. Having the UUID of a virtual
machine, the CIM data model has to be queried to obtain
all instances of the MSVM_ComputerSystem class. After
obtaining all instances, the one with the corresponding UUID
has to be selected on client side. This means in detail that
the result set has to be checked for an instance with its
property Name being equal to the given UUID, as Hyper-V
stores the UUID in the Name property of instances of the
MSVM_ComputerSystem class.

Issues on network management are similar to ESX, as
Hyper-V exposes much more features than can be handled

Functional Group Dependency Methods

BasicRead None

GetClass
EnumerateClass
EnumerateClassName
GetInstance
EnumerateInstance
EnumerateInstanceName
GetProperty

BasicWrite BasicRead SetProperty

Instance Manipulation Basic Write
CreateInstance
ModifyInstance
DeleteInstance

Schema Manipulation Instance Manipulation
CreateClass
ModifyClass
DeleteClass

Association Traversal Basic Read

Associators
AssociatorNames
References
ReferenceNames

Query Execution BasicRead ExecQuery

Qualifier Declaration SchemaManipulation

GetQualifier
SetQualifier
DeleteQualifier
EnumerateQualifiers

TABLE I
INTRINSIC CIM OPERATIONS

through libvirt.
As mentioned before, migration is not accomplished by

Hyper-V directly, but by the Failover Cluster service, which
shares the Hyper-V access semantic by also exposing its API
using WMI. That is why there is no difference in accessing
this additional software component.

VII. CONCLUSION

Virtual machine management is still one of today’s most
important problems in data center management. The devel-
opment of open source management solutions often suffers
from the large number of different hypervisors, which are on
the market. Supporting a large fraction of these hypervisors
requires the implementation of interfaces for a large number
of different hypervisor interfaces. libvirt is the most prominent
solution of an abstraction layer, being used by a number
of management solutions and offering a stable interface to
hypervisor management.

This paper has presented the first approach to include
support for closed-source hypervisors into libvirt, enabling
the integration of VMware ESX and Microsoft Hyper-V in
open source management environments and also strongly
simplifying their long-term maintenance via libvirt’s stable
API. The identified issues in mapping libvirt to a remote API
will trigger further interesting architectural extensions to this
open source solution.

ACKNOWLEDGMENT

We would like to thank the libvirt development community
for helpful discussions as well as Fujitsu Technology Solutions
for a generous hardware gift.

REFERENCES

[1] G. Popek and R. Goldberg, “Formal requirements for virtualizable third
generation architectures,” Communications of the ACM, vol. 17, no. 7,
pp. 412 – 421, 1974.



[2] J. Smith and R. Nair, Virtual Machines. Versatile Platforms for Systems
and Processes. Elsevier Ltd, 2005.

[3] C. Waldspurger, “Memory resource management in vmware esx server,”
in Proceedings of the 5th Conference on Operating Systems Design and
Implementation (OSDI), Dec. 2002, pp. 181 – 194.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP), Bolton Landing, NY, USA, 2003, pp. 164–177.

[5] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig, “Intel
virtualization technology: Hardware support for efficient processor vir-
tualization,” Intel Technology Journal, vol. 10, no. 3, pp. 167 –178,
2008.

[6] J. Sugerman, G. Venkitachalam, and B.-H. Lim, “Virtualizing i/o de-
vices on vmware workstation’s hosted virtual machine monitor,” in
Proceedings of the Usenix Annual Technical Conference 2001, Boston,
Massachusetts, 2001.

[7] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
linux virtual machine monitor,” in Proceedings of the Linux Symposium,
Ottawa, Ontario, Canada, Jun. 2007, pp. 225 –230.

[8] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings of
the 2nd Symposium on Networked Systems Design and Implementation,
Boston, Massachusetts, USA, May 2005.

[9] D. Chisnall, The Definitive Guide to the Xen Hypervisor. Upper Saddle
River, NJ, USA: Prentice Hall, 2007.

[10] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Capacity
leasing in cloud systems using the opennebula engine,” in Proceedings
of the Workshop on Cloud Computing and its Applications 2008 (CCA),
Chicago, Illinois, USA, Oct. 2008.

[11] ——, “Virtual infrastructure management in private and hybrid clouds,”
IEEE Internet Computing, vol. 13, no. 5, pp. 14 – 22, Sep. 2009.

[12] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The eucalyptus open-source cloud-computing
system,” in Proceedings of the 9th IEEE International Symposium on
Cluster Computing and the Grid (CCGrid), Shanghai, China, May 2009.

[13] M. Johanssen, “Update on system virtualization management,” in Pro-
ceedings of the 2nd International Workshop on Systems and Virtual-
ization Management (SVM), Munich, Germany, Oct. 2008, pp. 125 –
134.


	Main
	DATE'10
	Front Matter
	Table of Contents
	Author Index




