
A Fully-Asynchronous Low-Power Framework  
for GALS NoC Integration 

Yvain Thonnart, Pascal Vivet, Fabien Clermidy 
CEA-LETI, MINATEC 

Grenoble, France 
{yvain.thonnart, pascal.vivet, fabien.clermidy}@cea.fr 

 
 

Abstract — Requiring more bandwidth at reasonable power 

consumption, new communication infrastructures must provide 

adequate solutions to guarantee performance during physical 

integration. In this paper, we propose the design of a low-power 

asynchronous Network-on-Chip which is implemented in a 

bottom-up approach using optimized hard-macros. This 

architecture is fully testable and a new design flow is proposed 

to overcome CAD tools limitations regarding asynchronous 

logic. The proposed architecture has been successfully 

implemented in CMOS 65nm in a complete circuit. It achieves a 

550Mflit/s throughput on silicon, and exhibits 86% power 

reduction compared to an equivalent synchronous NoC version. 

I. INTRODUCTION 

With many hundreds of million transistors available on a 
single chip, the era of Manycores System-on-Chip (MPSoC) 
has become a reality. The available synchronous bus 
architectures cannot meet the increasing demands of 
communication between the processing elements, because the 
long-wire loads and resistances result in slow signal 
propagation. On the other hand, the advantages of Network-
on-Chip (NoC) [1] are numerous: high scalability and 
versatility, high throughput with good power efficiency. A 
NoC can be implemented using synchronous logic [2] but 
designers still face the issue of generating a global clock tree 
over the chip. Multi synchronous design can help but with 
extra latency due to re-synchronization cost within each router 
along the paths. 

The NoC distributed communication architecture is 
perfectly adapted to the Globally Asynchronous Locally 
Synchronous (GALS) paradigm [3] where ÏP units are 
implemented with standard synchronous design 
methodologies on an independent timing domain, while the 
NoC itself is implemented in asynchronous logic. The GALS 
paradigm also offers a natural way to implement Dynamic 
Voltage and Frequency Scaling (DVFS) thanks to fully 
decoupled synchronous islands. Even if asynchronous logic 
may bring additional benefits such as low power and low 
noise, asynchronous logic is yet not well supported by CAD 
tools. A recent asynchronous interconnect tool chain, 
CHAINworksTM [4], presents strong benefits but offer 
efficient point to point communications rather than a complete 
NoC protocol and regular framework. Several asynchronous 
NoC architectures have been designed and synthesized, but 
not yet fabricated [5][6]. 

In this paper, we present the design of a 550 Mflit/s 
asynchronous Network-on-Chip, fully implemented in Quasi – 
Delay – Insensitive (QDI) asynchronous logic [7]. The 
proposed ANoC architecture is fully testable. A new 
asynchronous logic timing optimization is proposed during 
Place & Route to overcome CAD tool limitations. The 
proposed architecture is implemented with optimized hard-
macros for the NoC routers and NoC GALS interfaces, which 
are used at top level in a bottom-up design flow. 

The outline of the paper is as follows: in section II is 
presented the architecture and details of its building elements. 
In section III is presented the proposed implementation flow, 
while in section IV are presented the area, speed and power 
results, as well as a comparison with two equivalent 
synchronous NoC versions. 

II. ANOC ARCHITECTURE AND DESIGN 

A. ANoC Main Principles 

The proposed ANoC framework allows an easy assembly 
of a complex GALS SoC made of independent synchronous IP 
units, relying on asynchronous routers and links assembled in 
a mesh topology for communication as seen on Figure 1. 

IPa IPb IPc

IPd IPe IPf

R L

G

 
Figure 1.  ANoC framework:  

Routers (R), Links (L) and GALS interfaces (G) 

Data is transmitted in packets made of several flits 
following the format of Figure 2, which transit in the NoC in a 
wormhole fashion, along the path specified in the header flit. 

1 0 header payload Path-to-Target
(shifted in each node)

1 0 header payload Path-to-Target
(shifted in each node)

0 0 data payload0 0 data payload

0 1 data payload0 1 data payload

32bit flitB
O
P

E
O
P

 
Figure 2.  ANoC packet format 

 

 
 
 
 
978-3-9810801-6-2/DATE10 © 2010 EDAA 
 

 



 

data0

acc0i

pkt0i

OUT S IN S

IN

R

OUT

R

OUT NIN N

IN

E

OUT

E

OUT

W

IN

W

 

VC Demux

Shifter 0 buf

buf
Signal

Packet 0

Shifter 1

Gather

Accepts 1
(init token)

buf
(init token)

buf

Gather

Accepts 0
(init token)

buf
(init token)

buf Signal

Packet 1

VC0

VC1

BOP0

PATH0

BOP1

PATH1

BOP0

BOP1

buf

buf

data

acc0

send

acc1

data0

pkt0i
i=0..3

acc0i
i=0..3

acc1i
i=0..3

pkt1i
i=0..3

data1

 

VC0
Direction

Arbiter 0

Direction

Switch 0

buf

Signal

Accept

VC Arbiter

VC

Switch

DIR0

DIR1

VCVC

Direction

FIFO 0

buf

VC1

Direction

Arbiter 1

Direction

Switch 1

buf

Direction

FIFO 1

buf

data

acc0

send

acc1

pkt0i
i=0..3

acc0i
i=0..3

acc1i
i=0..3

pkt1i
i=0..3

data1i
i=0..3

data0i
i=0..3

 
  (a) (b) (c) 

Figure 3.  ANoC router architecture (a) and micro-architecture of input ports (b) and output ports (c) 

B. ANoC Router 

The router is in charge of routing and arbitrating the 
packets inside the NoC using the information contained in the 
packet format presented in Figure 2. Given the 2D-mesh 
topology of the NoC, the router is made of five input ports and 
five output ports; no central arbitration is needed. The input 
port routes the consecutive flits of a packet according to the 
path to target present in the header flit (marked with a BOP), 
which is shifted for use in the next router. The output port 
arbitrates and multiplexes the packets from all connected input 
ports starting from the BOP, and keeps a path open until the 
EOP is reached. 

The router has two independent virtual channels for 
improved quality of service separating best effort traffic and 
priority out-of-band signaling. A backpressure mechanism is 
used for flow control in order to allow for at most two flits in 
each virtual channel of an input port, so that the shared NoC 
link is never congested. Figure 3 presents the micro-
architecture of the router. 

The input port is made of a first de-multiplexing stage (VC 
Demux), which routes flits to their corresponding VC queues. 
Then, the Shifter stage modifies the routing information as 
needed, and the flit is stored in a buffer stage waiting for 
consumption by one of the output ports. The notification from 
the input port to the good output port is done only once at the 
beginning of packet in Signal Packet.  

The output port first performs arbitration between 
directions within each VC, and only then between VCs. 
Direction Arbiter performs fair arbitration of the possible new 
packet requests from the input ports, and generates a single 
command token to the Direction Switch that will be consumed 
only at the end of packet. Finally, the VC Arbiter arbitrates at 
flit level between the two VCs, and commands the VC Switch. 

The send/accept backpressure mechanism is also initiated 
by the VC Arbiter: the downstream accept token is consumed, 
and an upstream accept token is generated, and forwarded, 
through Signal Accept in the output port and Gather Accepts 
in the input ports. The loop formed by two consecutive routers 
is initialized with as many tokens as there is room in the inputs 
queues. 

C. ANoC Pipelined Links 

Because the synchronous islands connected to the NoC 
may have an important area, the links between routers may be 
long. Due to the 4-phase handshake of the QDI 4-Phase 
asynchronous protocol (Figure 4), this length would have and 
impact on performance. In order to overcome this, 
asynchronous pipelining is added to the NoC links: it reduces 
the cycle time of the longest paths without adding a latency 
penalty compared to classical inverter/buffer wire buffering. 
Figure 5 presents a typical 4-Rail QDI interconnect, and the 
associated WCHB pipelining [4],[7]. 

1st transfer 2nd transfer

Phase 1 Phase 2 Phase 3 Phase 4Phase 1Phase 2 Phase 3 Phase 4

Dack

D0

D1

D2

D3

D=1 D=0

  

Figure 4.  QDI 4-Rail reqest/acknowledge asynchronous protocol 

Link

(a)

(b)

C

C

R1 R2

C

C

R1 R2

 
Figure 5.  Buffered (a) and pipelined (b) QDI 4-rail links 

The Muller C-elements induce a forward latency similar to 
that of two inverters, while the wire delay penalty is divided 
by two in the handshake loops. The links can be pipelined as 
presented, as often as needed to hide the impact of long wire 
delays on the NoC performance. A pipeline stage every 
millimeter reveals to be enough for 65 nm CMOS. 



D. ANoC GALS Interface 

The synchronous IP cores are connected to the routers by 
means of a GALS interface, which has two objectives: (a) re-
synchronize the asynchronous NoC protocol with the 
synchronous domain; (b) generate a local clock with a 
programmable frequency. 

In GALS design, the major challenge is to robustly 
interface different timing domains, while providing high 
throughput and low latency. Two kinds of solutions have been 
explored: pausable clocking scheme and FIFO based design. 
In pausable clocking, in order to avoid meta-stability, the idea 
is to generate locally the clock and pause or stretch this clock 
whenever a transfer from/to the asynchronous domain occurs 
through the interface [8]. This elegant design style is 
nevertheless limited in throughput, mainly due to the clock 
tree insertion time constraint [9], which can be severe with 
large synchronous IP blocks. On the other hand, in FIFO-
based design, the idea is to use standard synchronizers to 
synchronize the synchronous and asynchronous domains 
(actually the read/write pointers) and build a FIFO to sustain 
the throughput by hiding the synchronizer latency [10]. 

For the proposed architecture, we propose to mix both 
types:  the GALS interface is composed (Figure 6) of a new 
asynchronous � synchronous FIFO using Johnson Encoding 
in order to offer small and efficient FIFO, and of a locally 
generated clock using a pausable clocking scheme in order to 
offer a programmable frequency with a fast and robust 
programming interface (more detail is given in [11]). 

IP Unit
(Local Clock Domain)

S-A

FIFO

Delay Line Prog.

Clock Gen.

A-S

FIFO

ANoC
(QDI Async. Logic)

IP Unit
(Local Clock Domain)

S-A

FIFO

Delay Line Prog.

Clock Gen.

A-S

FIFO

ANoC
(QDI Async. Logic)

 
Figure 6.  GALS adapter architecture 

The GALS interface implements the NoC protocol: on the 
asynchronous side using the 4-phase / 4-rail protocol (Figure 
4); on the synchronous side using a send/accept protocol. The 
two Virtual Channels (VC0 & VC1) are supported by the 
interface but without VC arbitration, to reduce FIFO number 
and logic complexity. The interface achieves one flit transfer 
per cycle, with a latency of 2 cycles. The two FIFOs have a 
size of 5 words to achieve maximum throughput while hiding 
the internal synchronization (2 Flip-Flops) of the Johnson 
Encoded read/write pointers. 

The interface generates a local and programmable clock in 
the [400MHz - 1GHz] range with scaling factors. Its internal 
delay line is only made of standard-cell elements. The 
generated clock is used by the IP and is also fed back in the 
interface since used by its synchronous part. As a conclusion, 
the IP is a fully independent timing domain. A new frequency 
can be safely programmed by the IP itself in less than 3 cycles, 
without halting any IP computation or NoC communication. 

E. ANoC Design-for-Test Architecture 

Regarding testability of the proposed ANoC architecture, 
two issues need to be solved: the test of the synchronous IP 
units and the test of the asynchronous NoC itself. 

For the test of IPs within the NoC, a test wrapper 
compatible with the IEEE 1500 standard [11] has been 
developed. Test data of each IP are encapsulated into packets 
that are transported at high bandwidth through the NoC. There 
is thus no extra Test Access Mechanism (TAM) hardware cost 
and the scalability of the test is improved [13]. Classical fault 
coverage of the synchronous IPs is then obtained using 
standard ATPG tools. 

To test the asynchronous NoC itself, since asynchronous 
logic is difficult to test with standard design techniques, a 
novel asynchronous DfT architecture adapted to the 
asynchronous router has been developed [14]. The main idea 
is to encapsulate each router by an asynchronous test wrapper 
in order to improve its controllability and observability. The 
test wrappers are used: (a) to insert test vectors to the 
elements-under-test (routers and network links) and to get out 
the test results; (b) with network links, to establish high 
bandwidth asynchronous TAMs to transport test data. 

WCM

OTC

ITC

ITC

OTC

ITC OTC

IT
C

O
TC

OTC ITC

Test wrapper

ANOC

router

WEST

RES

EAST

SOUTH

NORTH

cfg_in

cfg_out

2

2

34

 

Figure 7.  ANoC router with its test wrapper 

For each router, the test wrapper (Figure 7) is composed of 
5 input test cells (ITC), and 5 output test cells (OTC), plus the 
additional Wrapper Control Module (WCM) to control all test 
cells. The ITCs and OTCs are alternatively interconnected to 
establish a boundary-scan path around the router plus some 
additional bypass paths. The test wrappers are individually 
controlled through a configuration chain, while a centralized 
test controller performs test pattern generation and analysis 
using the configuration chain protocol. There is no change to  
the chip external interface except the additional 2-bit test 
configuration chain. 

Using the proposed test protocol, it is then possible to test 
iteratively each link and each router within the NoC topology. 
By using successive data values for each router port, thanks to 
QDI logic stuck-at fault stall property, a minimal number of 
test vectors (320) is finally required per router. With a single-
stuck-at fault model on both inputs and outputs, test coverage 
of 99.86% per router is achieved. In terms of test efficiency, 
2 ns per configuration chain symbol is achieved, this provides 
a test time per router of 32 µs, and about 0.7 ms for a complete 
NoC topology with 20 routers. 



F. ANoC Router with Automatic Power Down  

Thanks to their local handshaking, asynchronous circuits 
are automatically in standby state when inactive. In order to 
further reduce the interconnect power consumption, each 
router can also integrate an automatic power down 
mechanism. Thanks to the robustness and locality of 
asynchronous logic, fast and reliable activity detection is done, 
which is used to power down unused or under-loaded NoC 
routers and thus save additional static or dynamic power. A 
detailed presentation of this proposal can be found in [15]. 

III. QDI LOGIC IMPLEMENTATION METHODOLOGY 

To implement the targeted QDI asynchronous logic, a 
standard-cell based approach is preferred, and even mandatory 
for easy integration. The STMicroelectronics CMOS 65 nm 
standard-cell libraries have been enriched with a set of 
additional cells [14] (approximately 30 cells of Muller 
C-elements, Mutual exclusion cells and Synchronizers). These 
“asynchronous” cells are fully compatible with the standard-
cell design flow (layout rules, .lib timing characterization, 
back-annotable Verilog model ...). 

A. ANoC Tiles and Floor-Planning 

In order to offer an efficient top level implementation, as 
well as in order to hide the inherent complexity of 
asynchronous logic, it is chosen to implement both the routers 
and GALS interfaces as hard macros. Due to the lack of 
asynchronous CAD design and verification tools, these two 
macros are implemented using an ad-hoc design style [7] and 
are fully validated by extensive simulations. As presented in 
Figure 8, the proposed architecture is implemented as a 
building-block design. During layout floor-planning, each 
NoC synchronous unit is reserved a square box, in which the 
top-left corner is reserved for the associated router, to which is 
connected the GALS interface. 

IP UnitIP Unit

Locally
Generated

Clock

Router

GALS IF

Pipelined LinkN
W

S

E

 
Figure 8.  ANoC tile floor-planning 

The pin-out of the two hard macros has been defined to 
allow direct pin-to-pin connections: between North & South 
ports, West & East ports for the router, and similarly for the 
GALS interface. Each link represents 92 signals, which 
defines 184 pins for a NoC bi-directional port, assigned in two 
metal layers (M2/M4 or M3/M5 according to the routing 
preferred directions). At top-level, in order to implement and 
route the pipelined links, minimal space is reserved according 
to available routing tracks using only two metal layers. In the 
case of non homogeneous NoC structure, a solution to help 
floor-planning consists in defining a constant height for NoC 
units on a given NoC row, and distinct widths according to 
each NoC unit area. The pipelined links are implemented as 

soft-macros to ease integration for these small elements and 
provide efficient buffering during timing optimization (see 
section III.B). This provides a fully GALS integration scheme, 
in which each NoC synchronous units has its own local clock: 
there is no synchronous timing constraint between distinct 
NoC units, only a few additional top level global signals may 
need synchronous constraints (chip I/Os). Hence, hierarchical 
floor-panning can be applied without derivation of complex 
timing constraints at top level. 

B. QDI Logic Timing Modeling & Optimization 

Even if asynchronous QDI logic is fully functional 
whatever the gates and wires delays [7], it is yet mandatory to 
optimize the logic to achieve performance. Proper 
asynchronous logic buffering is required, mainly for the long 
NoC link wires. Since asynchronous logic is not well 
supported by CAD tools, it has been chosen to model the 
asynchronous logic as a fake synchronous logic, using the 
global reset signal as a dummy clock to break the 
asynchronous logic timing loops. As seen in Figure 4 
presented earlier, the timing loops that exist between forward 
and backward logic paths of the asynchronous handshaking 
can be broken in the C element of the pipeline stage. The C-
element is then modeled for the CAD tools as a flip-flop using 
reset signal as a dummy clock. The associated clock period 
corresponds to only one phase of the 4-phase handshaking 
protocol, which thus requires constraining the dummy clock 
frequency to four times the target asynchronous period. 

Place & route of IPC

flip-flop C-element modeling

ANoC macros optimization

.lib timing model generation

ANoC top-level optimization

Top-level ANoC hierarchical floor-planning

Place & route of IPB

Place & route of IPA

Top-level netlists (ANoC+IPs)

Top-level merged chip layout  
Figure 9.  GALS NoC design flow 

Throughout the whole design flow (Figure 9), the 
asynchronous logic reset is modeled as a clock, but which is 
always maintained with a virtual zero delay to remove any 
skew problem on this heavily loaded global signal, since its 
skew is clearly meaningless. Using this strategy, timing 
optimization is performed for implementing the two hard 
macros (router and GALS interface); abstract timing models 
of the macros are then generated using standard CAD tool 
features: the generated “.lib” models contain asynchronous 
timing paths of the I/Os related to the reset signal. Using these 
models, top-level optimization is achieved on the NoC link 
long wires, through proper buffering under timing constraints. 
The obtained asynchronous handshake cycle time is at least 
four times the dummy clock period. Post-layout back-
annotated simulations allow checking the maximum 
sustainable performance. To conclude, even if CAD tool does 
not support properly asynchronous logic, by using optimized 
hard-macros with a fake synchronous modeling, hierarchical 
floor-planning offers a divide and conquer GALS scheme, 
while timing optimization at top level is still under control. 



IV. IMPLEMENTATION & BENCHMARKING 
WITH A SYNCHRONOUS NOC 

A. Asynchronous NoC Implementation 

The architecture presented in Section II has been 
implemented using the methodology described in Section III, 
and the complete proposed framework has been deployed and 
fabricated using the STMicroelectronics CMOS 65 nm LP 
technology in a chip dedicated to flexible baseband processing 
for 3G/4G wireless telecommunication applications [18]. 

The resulting architecture is made of 15 asynchronous 
routers arranged in a 5x3 2D-mesh, with a synchronous 
external interface, and interconnecting 22 independent 
synchronous islands. Depending on their different sizes, NoC 
links of various lengths are needed on the chip. Various depths 
of pipelining were added to these links to sustain a global 
throughput on the whole NoC, and avoid bandwidth 
limitations due to a longer handshake loop. With an average 
size of 1 mm2 for the processing units as in the current 
implementation, the whole NoC structure represents about 
15% of the chip area, which is an acceptable cost considered 
the dataflow structure of telecommunication applications. 

B. Equivalent Synchronous NoC Implementations 

In order to precisely benchmark the asynchronous 
framework presented in this paper against synchronous 
solutions, a fully synchronous NoC has also been developed 
following the same requirements. The initial constraint was 
that the target implementation of the NoC should be 
transparent to both the synchronous islands and the external 
interface, so that the logical view of the NoC remains the 
same. Besides, the comparison has been led up to physical 
layout of the chip in all the implementations, and the global 
chip floor-planning was kept for the synchronous NoC, aside 
from an additional logical pin for the NoC clock. 

Hence, the synchronous implementation is based on the 
same NoC protocol as presented Figure 2, with a 32-bits data-
path and 2 Virtual Channels. Moreover, bi-synchronous FIFOs 
were inserted at each IP interface with the NoC to offer 
GALS-like decoupling and DVFS at IP level. Finally, the 
synchronous NoC has been implemented with standard fully 
scannable flip-flops and clock gating; this was done in order to 
have a fair comparison as regards testability and power 
consumption. 

It was chosen for this benchmarking to implement a fully 
synchronous NoC with a unique NoC clock domain at top 
level. Indeed, if implementable, this appears to be the solution 
with the lowest overhead compared to mesochronous or 
multisynchronous versions, which require re-synchronization 
FIFOs at each timing domain boundary. Those FIFOs would 
lead to higher area, latency and power consumption compared 
to a fully synchronous version with a single clock domain. 
The actual limitation of this fully synchronous version is the 
clock-tree distribution that may be challenging for back-end 
tools, but yet achievable on a regular enough design. 

As regards the Power-Performance-Area tradeoff for the 
synchronous version of the NoC, two versions of the 
synchronous NoC router have been implemented, in order to 

get the most fair comparison points: a low-area one with a 
single clock cycle to cross the NoC router and the link, and a 
high-performance one with two clock cycles per router and 
possibly another cycle on the link. The single cycle version of 
the router registers the flits at the input ports, and then 
combinationally routes and arbitrates to the output ports and 
the links, while the pipelined version adds a register stage after 
arbitration within each VC, just before multiplexing the VCs 
on the output link. 

C. Experimental Setup 

Hence, two comparison chips with both versions of the 
synchronous NoC were realized up to layout in the same 
STMicroelectronics CMOS 65 nm LP technology, with the 
same floorplan as the asynchronous version, and all required 
information were collected to run post-layout back-annotated 
simulations of these chips. 

On these three circuits was mapped part of the real telecom 
application running on the prototype presented in [17][18], i.e. 
the CFO (Carrier Frequency Offset) estimation and correction 
of the 3GPP-LTE receiver chain. This leads to a total of about 
150000 flits transiting in the NoC in about 250 µs. For this 
application, a 200 Mflit/s NoC throughput is enough to sustain 
real-time constraints, and the synchronous versions were 
hence clocked at only 200 MHz to minimize power 
consumption. Post-layout back-annotated simulation was 
performed on the nominal PVT corner, and power estimation 
was done using Synopsys PrimePower on this simulation. 
Performance and power figures from the asynchronous 
simulation were successfully matched against the real silicon 
measurements with an error of less than 10% on all observable 
results (throughput, IPs power, …). 

V. PERFORMANCE RESULTS 

In Figure 10 is presented the results of the comparison 
between the asynchronous NoC implementation and its 
synchronous counterparts. 

As regards area, the asynchronous version is clearly larger 
than the synchronous ones, as it could be expected from QDI 
logic, which suffers from multiple-rail encoding: timing 
flexibility and robustness come at the cost of about twice the 
same logic as what is needed with binary encoding in the 
synchronous versions. 

As regards performance, thanks to QDI asynchronous 
logic intrinsic auto-regulation by the handshake loops, it is 
possible to achieve nominal case speed results on the 
asynchronous implementation while synchronous logic is 
characterized in worst case conditions and should not be used 
above the worst case frequency. The usual gain is between 
30% and 50%, depending on the targeted technology. Here, 
the asynchronous version achieves a 550 Mflit/s throughput on 
nominal conditions (as verified on silicon measurements), 
which corresponds to the target timing optimization frequency 
as defined in the methodology presented in Section III. 

Even higher throughputs were attained on small ANoC 
testcases up to 750 Mflit/s. As for the high-performance syn-
chronous version, a maximum clock frequency of 480 MHz 
(worst case) was attained at the cost of a deep clock-tree (5 ns 



insertion time) to minimize the skew at the FF leaves (500 ps). 
This performance, though, is quite comparable to the 
asynchronous one given the worst case corner. The low-area 
synchronous router only achieves 280 MHz, due to the long 
combinational paths required to arbitrate all the flows. Finally, 
the asynchronous version offers a reduced latency (almost a 
ratio of 2): for a NoC path of 5 routers, ANoC latency is 
17.3 ns compared to 29 ns for the synchronous version. 

As regards leakage, the asynchronous router is quite 
behind the synchronous versions, although in about the same 
ratio as for area for the high-performance synchronous router. 
This is yet partly due to the availability of only the low-Vt 
option for the asynchronous cells. However, static current is 
the only power dissipation when the asynchronous router is 
idle: there is no dynamic activity at all. On the contrary, 
synchronous versions greatly suffer from the clock switching 
even though clock gating is performed, with up to 5 mW idle 
consumption for the high-performance synchronous router. 
Overall, on the telecom application implemented, the energy 
budget on the whole NoC (15 routers) is drastically reduced 
from 82.6 mW on the high-performance synchronous version 
down to 11.9 mW on the asynchronous version. 

VI. CONCLUSION 

The proposed asynchronous Network-on-Chip is a 
technology ready for assembling complex manycores chips. It 
provides a GALS NoC infrastructure with 550 MFlit/s 
throughput and five-times power reduction compared to a 
synchronous equivalent. The hard macro methodology 
provides a guaranteed performance during the physical 
implementation, reducing Time-To-Market. Finally, a 
complete CMOS 65 nm demonstrator has been used to show 
the efficiency of the proposed scheme. 

ACKNOWLEDGMENT 

The authors would like to thank their colleagues from the 
TIMA laboratory for the development of the TAL65 
asynchronous standard cell library. 

REFERENCES 

[1] P. Guerrier, A. Greiner, “A Generic Architecture for On-chip Packet-
switched Interconnections”, in Proceedings of the Design And Test in 
Europe Conference (DATE’2000), pp 250-256, march 2000. 

[2] M. Dall'Osso, G. Biccari, L. Giovannini, D. Bertozzi, L. Benini, 
"Xpipes: a Latency Insensitive Parameterized Network-on-chip Archi-
tecture for Multi-Processor SoCs", in Proceedings of the IEEE Inter-
national Conference on Computer Design (ICCD'03), pp.536, 2003. 

[3] M. Krstic, E. Grass, F. K. Gürkaynak, P. Vivet, “Globally Asyn-
chronous, Locally Synchronous Circuits:Overview and Outlook”, IEEE 
Design and Test of Computers, vol 24, n°5, pp 430-441, sept. 2007. 

[4] J. Bainbridge, CHAINWorks, Silistix, http://www.silistix.com  

[5] R. Dobkin, V. Vishnyakov, E. Friedman, R. Ginosar, “An Asyn-
chronous Router for Multiple Service Levels Networks on Chip”, in 
Proceedings of the 11th IEEE International Symposium on Asyn-
chronous Circuits and Systems (ASYNC’05), pp. 44-53, march 2005. 

[6] T. Bjerregaard, J. Sparso, “A Router Architecture for Connection-
Oriented Service Guarantees in the MANGO Clockless Network-on-
Chip”, in Proceedings of the IEEE Design, Automation and Test in 
Europe Conference (DATE’05), pp. 1226-1231, march 2005. 

[7] A. J. Martin, M. Nyström, “Asynchronous techniques for system-on-
chip design”, Proc. of the IEEE, vol. 94, n°6, pp 1089-1120, june 2006. 

[8] R. Mullins, S. Moore, “Demystifying Data-Driven and Pausible 
Clocking Schemes”, in Proceedings of the IEEE International 
Symposium on Asynchronous Circuits and Systems (ASYNC’07), pp 
175-184, march 2007. 

[9] R. Dobkin, R. Ginosar, C. Sotiriou, “High Rate Data Synchronization 
in GALS SoCs”, IEEE Transactions on VLSI Systems, vol 14, n°10, pp 
1063-1074, october 2006. 

[10] T. Chelcea, S. M. Nowick, “Robust Interfaces for Mixed-Timing 
Systems”, IEEE Transactions on VLSI Systems, vol. 12, n° 8, pp 857-
873, august 2004. 

[11] Y. Thonnart, E. Beigné, P. Vivet, “Design and Implementation of a 
GALS Adapter for ANoC based Architectures”, in Proceedings of the 
15th International Symposium on Advanced Research in Asynchronous 
Circuits and Systems (ASYNC’09), pp 13-22, april 2009. 

[12] IEEE 1500 working group. IEEE 1500 Standard for Embedded Core 
Test. http://grouper.ieee.org/groups/1500. 

[13] A.M. Amory, K. Goossens, E.J. Marinissen, M. Lubaszewski, and F. 
Moraes, “Wrapper Design for the Reuse of Networks-on-Chip as Test 
Access Mechanism”, in Proceedings of the IEEE European Test 
Symposium (ETS’06), pp. 213–218, may 2006. 

[14] X.-T. Tran, J. Durupt, Y. Thonnart, V. Beroulle, C. Robach, “Design-
for-Test Approach of an Asynchronous Network-on-Chip Architecture 
and its Associated Test Pattern Generation and Application”, IET 
Journal on Computers and Digital Techniques, vol. 3, n°5, pp. 487-
500, sept. 2009. 

[15] Y. Thonnart, E. Beigné, A. Valentian, P. Vivet, “Power Reduction of 
Asynchronous Logic Circuits using Activity Detection”, IEEE 
Transactions on VLSI Systems, vol. 17, n° 7, pp. 893-906, july 2009. 

[16] P. Maurine, J.B. Rigaud, F. Bouesse, G. Sicard, M. Renaudin, “Static 
Implementation of QDI Asynchronous Primitives”, in Proceedings of 
the 13th International Workshop on Power and Timing Modeling, 
Optimization and Simulation (PATMOS’03), pp. 181-191, sept. 2003. 

[17] F. Clermidy, R. Lemaire, X. Popon, D. Kténas, Y. Thonnart, “An Open 
and Reconfigurable Platform for 4G Telecommunication: Concepts and 
Application”, In Proceedings of the 12th Euromicro Conference on 
Digital System Design (DSD’09), august 2009. 

[18] F. Clermidy, C. Bernard, R. Lemaire, J. Martin, I. Miro-Panades, Y. 
Thonnart, P. Vivet, N. Wehn, “A 477mW NoC-Based Digital Baseband 
for MIMO 4G SDR”, in Proceedings of IEEE International Solid-State 
Circuits Conference (ISSCC’2010), february 2010. 

Bare Router Router with Async/Sync Low-Area Router High-Perf Router Sync/Sync
Version Power On Power Down Test Wrapper GALS IF single stage pipelined 2 stages GALS IF

Area 0.17 mm² 0.23 mm² 0.014 mm² 0.053 mm² 0.094 mm² 0.014 mm²

Flit Cycle Time 1.8 ns 1.8 ns 7.2 ns 1.8 ns 2.0 ns 3.6 ns 2.1 ns 2.0 ns
Flit Throughput 550 Mflit/s 550 Mflit/s 140 Mflit/s 550 Mflit/s 500 MHz 280 MHz 480 MHz 500 MHz
Flit Latency 2.3 ns 2.5 ns 5.8 ns 2.6 ns 4.8 ns (round trip) 3.6 ns (1 cycle) 4.2 ns (2 cycles) 8 ns (round trip)

Supply Voltage 1.2 V 1.2 V 0.6 - 0.8 V 1.2 V 1.2 V 1.2 V 1.2 V 1.2 V
Static Power 240 µW 250 µW 100µW 316 µW 10 µW 43 µW 105 µW 8 µW
Idle Power 240 µW 250 µW 100 µW 316 µW 1100 µW 1980 µW 5170 µW 1100 µW
Energy per flit 30 pJ/flit 30 pJ/flit 14 pJ/flit 37 pJ/flit 3 pJ/flit 26 pJ/flit 24 pJ/flit 2 pJ/flit
Appl. Tot. Power 11.9 mW 11.9 mW 8.8 mW (*) 13.7 mW — 33.6 mW 82.6 mW —

Synchronous NoC
Router with Auto Power Down

0.20 mm² 

Asynchronous NoC

 
(*) Auto-power-down mode is applied when routers are idle; routers in use are in power-on mode to meet realtime constraints on this application 
 

 Figure 10.  Asynchronous NoC performance results and benchmarking against synchronous NoC implementations 
 


	Main
	DATE'10
	Front Matter
	Table of Contents
	Author Index




