
Property Analysis and Design Understanding
Ulrich Kühne

Institute of Computer Science
University of Bremen

28359 Bremen, Germany
ulrichk@informatik.uni-bremen.de

Daniel Große
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

grosse@informatik.uni-bremen.de

Rolf Drechsler
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

drechsle@informatik.uni-bremen.de

Abstract—Verification is a major issue in circuit and system
design. Formal methods like bounded model checking (BMC) can
guarantee a high quality of the verification. There are several
techniques that can check if a set of formal properties forms a
complete specification of a design. But, in contrast to simulation-
based methods, like random testing, formal verification requires
a detailed knowledge of the design implementation. Finding
the correct set of properties is a tedious and time consuming
process. In this paper, two techniques are presented that provide
automatic support for writing properties in a quality-driven BMC
flow. The first technique can be used to analyze properties in
order to remove redundant assumptions and to separate different
scenarios. The second technique – inverse property checking –
automatically generates valid properties for a given expected
behavior. The techniques are integrated with a coverage check for
BMC. Using the presented techniques, the number of iterations
to obtain full coverage can be reduced, saving time and effort.

I. INTRODUCTION

In today’s hardware design flows verification is a major is-
sue concerning time and effort. With an increasing design size,
automation and tool support of the verification process is indis-
pensable. Concerning the verification methodology, there are
mainly two different paradigms – simulation-based verification
and formal verification. Simulation-based approaches rely on
a test bench that should capture all relevant scenarios. The
simulation results are compared to a golden reference model.
In formal verification – here we focus on property checking
– the functional behavior is described by properties which
are checked on the design using symbolic techniques [1].
Although simulation-based verification is still widely used
in industry, formal verification generally offers the highest
quality.

Regarding the effort to set up a verification environment, it
is the easiest to use random simulation. In this methodology,
the Design Under Verification (DUV) is treated as a black
box. For more sophisticated approaches like directed tests
or constraint-based random simulation, some insight into the
implementation is necessary. However, writing a high-quality
property set that formally captures the specification requires
a deep knowledge of the DUV internals. Therefore, the time
needed to get the formal verification up and running is signifi-
cantly higher. In contrast, once the property suite is complete,
the task of verification is fulfilled, while simulation-based
methods may never come to meet the coverage requirements
in a reasonable time [2].

There are several techniques which can be used to check
that a set of properties covers the whole functionality of a
design [3], [4], [5], thus ensuring that the written properties
form a complete specification. If there is a verification gap, a
scenario can be extracted that is not yet specified. This can be

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project VerisoftXT under contract
no. 01 IS 07008 C.

used to guide the verification towards complete coverage. But
still the properties have to be refined and formulated manually.

As a conclusion, it is inevitable for the verification engineer
to achieve a good design understanding in order to match
the specification with the implementation. This may take a
significant amount of time and a meticulous inspection of the
specification and the RTL code. Making it even worse, in many
cases the specification will be incomplete or outdated. The
same applies for source code documentation. Thus, to achieve
a shorter ramp-up time for formal verification, it is necessary
to provide support for the verification engineer to guide the
verification process.

In this work, we propose techniques to aid the verification
engineer in design understanding and to ease the formalization
of the specification. The contributions of this work are as
follows: First, we introduce a technique to automatically
analyze a given property, identifying too strong constraints
on the environment or the internal state of the DUV. It is a
common way to start with relatively strict assumptions and
refining the properties until the most general case is met.
Using our technique, the number of iterations to achieve full
coverage can be reduced. Furthermore, the technique provides
a true gain in design understanding by revealing which parts
of the assumptions are sufficient to prove a property. Second,
based on this approach we present a technique to automat-
ically generate properties, given an expected behavior as a
temporal expression. With this inverse property checking, the
user can interactively query the design to find out how the
abstract concepts of the specification are implemented. The
generated properties can then be inspected and verified with
the specification.

If the proposed techniques are integrated with an existing
coverage analysis, the formalization of a specification can be
approached from both ends: making the written properties as
concise as possible by analyzing them and revealing new un-
covered behavior and integrating this behavior in the property
suite using inverse property checking.

The paper is structured as follows. In the next section we
will provide the basics on the used verification and coverage
techniques. In Section III related work is discussed. The
new techniques are explained in Sections IV and V. Finally,
the main results of an experimental evaluation are given in
Section VI.

II. PRELIMINARIES

A. Verification Setting
Bounded Model Checking (BMC) has been introduced

in [6]. In contrast to the original BMC, we use an all
states verification, meaning that the properties are proven for
arbitrary starting states [7].

Formally, for a design with its transition relation Tδ , a
BMC instance for a property p over the finite interval [0, c]

978-3-9810801-5-5/DATE09 © 2009 EDAA

is given by: ∧c−1
i=0Tδ(si, si+1) ∧ ¬ p , where p may depend

on the inputs, states and outputs of the circuit in the time
interval [0, c]. This verification problem can be formulated
as a Boolean satisfiability (SAT) problem by unrolling the
circuit for c time frames and generating logic for the property.
A satisfying assignment corresponds to a case where the
property fails – a counter-example. Allowing arbitrary starting
states may lead to false negatives, i.e. counter-examples that
start from an unreachable state. In such a case these states
are excluded by additional assumptions to the property or
assuming proven invariants. But, for BMC as used here, it
is not necessary to determine the diameter of the underlying
sequential circuit. Thus, if the SAT instance is unsatisfiable,
the property holds.

For the formulation of the properties, we use a subset of
PSL (property specification language [8]). A property has the
form of an implication A → C. Here, the antecedent A
contains a conjunction of assumptions on the state and inputs
of the design, like e.g. environment constraints or a specific
configuration setting. The consequent C then describes the
intended behavior. The used operators are the typical HDL
operators like logic, arithmetic and relational operators. The
timing is expressed using the operators next and prev.

B. Coverage Analysis
To achieve a high quality verification result, the properties

must cover the entire behavior of the DUV. As non-trivial
verification scenarios have to be considered and properties
may get quite complex, this achievement is not obvious to the
verification engineer. Instead, a formal check can be carried
out to prove that the functionality of the DUV is fully covered
by the properties, as described in [5]. There, it is checked for
each output of a hardware module whether a set of properties
uniquely determines the value of the output for each possible
scenario of states and inputs. If the check fails, an uncovered
scenario in form of a counter-example is presented to the user.
Full coverage in terms of this approach means that a signal
is determined by a set of properties for all possible state and
input scenarios.

Alternative approaches for analyzing coverage for formal
property verification can be found in [3], [4].

III. RELATED WORK

Different approaches for analyzing properties have been
proposed. An important research direction in this context is
vacuity detection (see e.g. [9], [10], [11], [12]). The basic idea
is to check if a property has a subformula which is irrelevant
to its satisfaction. In [13] the resulting information from such
checks is used to tighten the properties, i.e. redundancy in the
property suite is removed.

In the domain of SAT the problem has been investigated
what causes the unsatisfiability of a set of clauses. Here
approaches have been developed to compute an unsatisfiable
core (or unsatisfiable subformula), i.e. an already unsatisfi-
able subset of the set of clauses [14], [15]. Recently these
approaches have been extended to extract all minimal unsat-
isfiable subformulas (see e.g. [16]). How this method can be
used for the proposed property analysis is detailed later in
Section IV-B.

In [17], [18] temporal logic query checking has been pro-
posed. Given a model and a temporal logic formula (the query)
which contains a place-holder, then a solution to the query is
a propositional formula that is satisfied in the model. This

concept has been enhanced in [19] to trigger querying such
that temporal scenarios are returned that satisfy the query.
While the underlying question is quite similar to our inverse
property checking, we combine our method with the property
analysis and propose the integration in a formal coverage
analysis flow. Hence, the proposed techniques are part of the
comprehensive task of building a complete property suite.

In [20], [21], techniques for the extraction of properties
from simulation traces were introduced. These methods rely
on a large data base of simulation results, while our approach
produces formal properties that hold by construction.

IV. PROPERTY ANALYSIS

The verification of a hardware design is a complex and
creative task. Starting with an RTL implementation and a
specification, the verification engineer has to figure out how
the abstract concepts of the specification can be mapped to
the signals in the implementation. To get an understanding of
the design behavior, she usually starts with simple properties
including very restrictive assumptions on the configuration and
environment. These properties are then refined manually until
full coverage is achieved.

The most common cause for the coverage check to fail are
too strong assumptions in the properties. For this reason, it is
desirable to have an automatic support for the user in writing
his properties as concise as possible, saving time for further
iterations on the way to full coverage.

The idea of the presented approach is to iteratively find
subsets of essential subexpressions of the antecedent. A subset
is essential if removing the contained subexpressions inval-
idates the property. In this way, all possible combinations
of subexpressions can be constructed that are sufficient to
guarantee the validity of the property. The next section details
the approach.

A. Algorithm
The overall flow of the property analysis is depicted in

Algorithm 1. The steps are described in the following.
Given a property in the form A → C, in order to analyze

the antecedent, it is decomposed into its subexpressions. For
each subexpression, a free Boolean variable di (disable) is
introduced to control the disabling of the expression in the
antecedent. In this way, an antecedent A = A1∧A2∧· · ·∧An

is transformed to
A′ =

n∧
i=1

(di ∨Ai). (1)

In the next step, all combinations of disabled subexpressions
are extracted that falsify the overall property. This is done
iteratively by solving the SAT instances Qk for k ranging from
1 to n, the number of subexpressions:

Qk =
n∧
i=1

(di ∨Ai) ∧ (
∑

di = k) ∧ ¬C (2)

The design is unrolled within the involved time interval
(omitted in equation 2). The found assignments to the di
variables are stored in a BDD E (Binary Decision Diagram
[22]) and a blocking clause is added to the instance in order
to conduct the solver to the next solution. If an assignment
a : (d1, d2, . . . , dn) 7→ {0, 1}n is found, only the cube con-
sisting of the positive literals a(di) = 1 is stored, representing
all supersets of the subset of disabled subexpressions. As
disabling the identified subset already falsifies the property,
disabling more subexpressions will falsify it as well. Thus we

Algorithm 1: propertyAnalysis
A′ = reformulated antecedent1
for (k = 1 . . . n) do2

repeat3
find assignment for Qk4
store cube of di in BDD E5
block assignment6

until UNSAT ;7

compute BDD S = ¬E8
compute set cover of S ′9

a

b

c

o

(a)

d1 d2 d3 k

1 0 0 1
0 1 1 2
- - - 3

(b)

property P =
always (

a == 1 &&
b == 1 &&
c == 1 &&

) −> (
o == 1

) ;

(c)

d1

d3

d2

0 1

d1

d3

0 1

(d)

Fig. 1. Example for Algorithm 1

do not need to search for these supersets any more. By starting
with k = 1 and incrementing it, we are able to block the most
general supersets first and thereby reduce the number of solver
calls. The corresponding blocking clause for assignment a is∨
a(di)=1

(¬di).

If for a given k no more solutions can be found, k is
incremented until it reaches the number of subexpressions n.
At the end, E contains all subsets of assumptions that falsify
the property. By calculating the BDD S = ¬E , we obtain
a collection of all subsets of assumptions that preserve the
validity of the property. Note that negation on BDDs is a
constant time operation when using complement edges.

The resulting sufficient antecedents can then be computed
as a set cover of the subsets in S. This is done by iteratively
removing cubes from the BDD until the zero function is
obtained. By preferring the paths with the least number of
low edges, antecedents with a small number of activated
subexpressions are picked first. These are usually the most
interesting results for the user.

Example 1: Consider the circuit shown in Figure 1(a),
implementing the function o = a∧ (b∨ c). The naive property
in Figure 1(c) states that o is 1 whenever all inputs are 1.
Starting the analysis, for Q1 = (d1 ∨ a = 1) ∧ (d2 ∨ b =
1) ∧ (d3 ∨ c = 1) ∧ (

∑
di = 1) ∧ ¬(o = 1), we

find the single solution (d1,¬d2,¬d3), as shown in the first
row of the table in Figure 1(b). This means that disabling
A1 = (a = 1) invalidates the property. The only solution
for Q2 is (¬d1, d2, d3) and there is no more solution for
k = 3 that does not include the already found subsets. The
resulting BDD S = ¬E is shown in Figure 1(d) on the
left (low edges are represented by dashed lines). From this,
we pick and remove the cubes corresponding to the paths
to the terminal 1-node. The sufficient antecedents to satisfy

the consequent (c = 1) are then (a = 1)&&(b = 1) and
(a = 1)&&(c = 1), corresponding to the paths (¬d1,¬d2) and
(¬d1,¬d3), respectively. (The BDD on the right of Figure 1(d)
represents the intermediate result after removing the first
solution (a = 1)&&(b = 1).)

B. Discussion
There is a relation of the above algorithm to the calcu-

lation of minimal unsatisfiable subformulas (MUS) of a SAT
instance. In [16], the authors point out the connection between
minimal correction sets (MCS) of a SAT formula and MUS.
A correction set is a set of clauses that turns an unsatisfiable
formula into a satisfiable formula when being removed. All
MUS form a hitting set of the MCS and vice versa. In our al-
gorithm, the calculation of the essential subsets corresponds to
the calculation of the MCS of the BMC instance with respect
to the antecedent subexpressions. The extraction of sufficient
antecedents from the BDD S is basically the construction of
MUS from the complete MCS.

We have implemented the above analysis using an alterna-
tive algorithm based on the tool described in [16]. Obtaining
equal quality of the results, we did not find that one approach
outperforms the other one in terms of run-time. Using our
approach, it is possible to perform an underapproximation
on the obtained BDD S to filter out too long (and thus in
most cases uninteresting) antecedents. It is subject to future
investigations to figure out the best way of implementing the
analysis.

In summary, the property analysis removes unnecessary
assumptions of a concrete verification scenario on the one
hand. On the other hand different scenarios can be identified
and separated.

V. INVERSE PROPERTY CHECKING

For a given property, the above analysis can be used to ex-
tract all the essential assumptions within the antecedent. But in
case the user presents a property with assumptions describing
a scenario which is far-off the design’s core functionality, this
does not guarantee that she captures the full behavior of the
DUV. The analysis states which parts of the assumptions are
essential for this specific scenario.

Instead, based on the analysis, the user can start with a given
expected behavior or proof goal for which legal antecedents
are constructed automatically. The resulting properties hold by
construction and can then be inspected by the user to find out
if they comply with the specification. This approach is denoted
as inverse property checking. It reverses the normal process of
finding a formal description for a given functionality, where
the verification engineer tries to extract the correct setting from
the specification and the RTL implementation. Here a valid
description of the implementation is extracted automatically,
that can then be compared to the specification.

The idea is to find a witness for a given proof goal. A
witness in this case is a complete assignment to the signals of
the DUV for that the given consequent expression holds. The
witness is then generalized using the property analysis. In this
way, it is revealed which of the assignments in the witness are
sufficient for a given proof goal. In the following section the
approach is described in more detail.

A. Algorithm
The expected behavior for inverse property checking is

specified as a PSL expression e. In order to construct a

witness for the expected behavior, a BMC instance is build
by unrolling the circuit and adding the constraints for e.
Therefore, on the circuit the maximum delay dmax between
any of the inputs or state signals and the signals involved in
e is calculated. This is done by a depth-first search on the
circuit. The circuit is then unrolled in the interval [0, dmax].

If the instance is unsatisfiable, the expected behavior e
can never be observed in the design. Otherwise, we obtain
a witness a : S × T → B∗, that maps a signal of the design
and a time point from T = {0, . . . , dmax} to a bitvector value.
To reduce the number of potential antecedent subexpressions,
a subset IS ⊆ S × T containing the influencing signals is
calculated by a path analysis of the witness and the circuit.
The initial property is then given by the formula(∧

(s,t)∈IS

(st = a(s, t))
)
→ e, (3)

where st denotes the value of signal s at time point t. This
property holds trivially, since all signals are assigned to the
value they have in the witness for e. Furthermore, all signals
that influence the value of the signals in e, are included
in IS. Each assignment to a signal in Formula 3 forms an
antecedent subexpression. In order to obtain sufficient subsets
of the assignments in a to satisfy the expected behavior e, the
property analysis is applied to formula 3.

B. Integration with Coverage Analysis
For the above technology, the algorithm starts with a single

witness for the expected behavior. The quality of the result
depends on the assignment that is found by the underlying SAT
solver. Thus, it is desirable to focus the search on interesting
scenarios. As it turns out, the coverage analysis described in
Section II-B provides exactly what is needed here.

With the approach from [5], it is checked for a design,
if a set of properties covers the functionality of an output
signal. If the coverage check fails, an uncovered scenario is
presented in form of a counter-example which is basically an
assignment to all the signals in the design. Now, it is common
that the coverage check fails because of too strong assumptions
or missing corner cases. Thus, it is also likely that one or
more of the given properties matches the correct behavior for
the uncovered scenario. This can be checked by simulating
the involved properties with the assignment of the counter-
example. If the consequent of a property holds for the scenario,
it is indeed a witness and can be processed by the inverse
property checking described above.

If none of the yet specified properties matches the scenario,
a simple consequent expression can be derived from the
concrete assignment to the target signal, that is currently
checked for coverage. The generated properties will then show
possible explanations of this assignment.

In this way, the approach automatically presents valid modi-
fications of the properties in order to include the yet uncovered
behavior in the specification. By iteratively following this
procedure full coverage is achieved much faster using the
presented techniques. The overall run-time of the enhanced
verification flow is still dominated by the time for BMC.
Regarding the techniques presented here, the most time is
spent on the extraction of essential subsets of assumptions by
successive calls to a SAT solver or using the technique from
[16] (see Sections IV-A and IV-B, respectively).

VI. EXPERIMENTAL EVALUATION

The presented techniques have been implemented and ex-
perimentally evaluated for different designs, among them a

memory unit (MU). This MU connects a CPU to a single
port memory, thereby providing a dual port interface to the
CPU. Due to page limitation the details cannot be given here.
Further information can be found in [23]. By applying the
property analysis we were able to strengthen several of the
written properties of the MU automatically. Moreover, using
the coverage analysis in combination with the inverse property
checking we were able to integrate yet unspecified behavior
quickly. In summary, the number of iterations and the effort
for design understanding on the way to obtain full coverage
was reduced for the MU.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[2] M. Bartley, D. Galpin, and T. Blackmore, “A comparison of three
verification techniques: directed testing, pseudo-random testing and
property checking,” in Design Automation Conf., 2002, pp. 819–823.

[3] K. Claessen, “A coverage analysis for safety property lists,” in Int’l Conf.
on Formal Methods in CAD, 2007, pp. 139–145.

[4] J. Bormann, S. Beyer, A. Maggiore, M. Siegel, S. Skalberg, T. Black-
more, and F. Bruno, “Complete formal verification of Tricore2 and other
processors,” in Design and Verification Conference (DVCon), 2007.

[5] D. Große, U. Kühne, and R. Drechsler, “Analyzing functional coverage
in bounded model checking,” IEEE Trans. on CAD, vol. 27, no. 7, pp.
1305–1314, July 2008.

[6] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in Tools and Algorithms for the Construction and
Analysis of Systems, ser. LNCS, vol. 1579. Springer Verlag, 1999,
pp. 193–207.

[7] M. Nguyen, M. Thalmaier, M. Wedler, J. Bormann, D. Stoffel, and
W. Kunz, “Unbounded protocol compliance verification using interval
property checking with invariants,” Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, vol. 27, no. 11,
pp. 2068–2082, Nov. 2008.

[8] Accellera Property Specification Language Reference Manual, version
1.1, http://www.pslsugar.org, 2005.

[9] I. Beer, S. Ben-David, U. Eisner, and Y. Rodeh, “Efficient detection of
vacuity in ACTL formulas,” in Computer Aided Verification, ser. LNCS,
vol. 1254, 1997, pp. 279–290.

[10] O. Kupferman and M. Y. Vardi, “Vacuity detection in temporal model
checking,” in Correct Hardware Design and Verification Methods, 1999,
pp. 82–96.

[11] M. Purandare and F. Somenzi, “Vacuum cleaning CTL formulae,” in
Computer Aided Verification, ser. LNCS, vol. 2404, 2002, pp. 485–499.

[12] A. G. J. Simmonds, J. Davies and M. Chechik, “Exploiting resolution
proofs to speed up LTL vacuity detection for BMC,” in Int’l Conf. on
Formal Methods in CAD, 2007, pp. 3–12.

[13] H. Chockler and O. Strichman, “Easier and more informative vacuity
checks,” in ACM & IEEE International Conference on Formal Methods
and Models for Codesign, 2007, pp. 189–198.

[14] E. Goldberg and Y. Novikov, “Verification of proofs of unsatisfiability
for CNF formulas,” in Design, Automation and Test in Europe, 2003,
pp. 886–891.

[15] L. Zhang and S. Malik, “Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applica-
tions,” in Design, Automation and Test in Europe, 2003, pp. 880–885.

[16] M. H. Liffiton and K. A. Sakallah, “Algorithms for computing minimal
unsatisfiable subsets of constraints,” J. Autom. Reason., vol. 40, no. 1,
pp. 1–33, 2008.

[17] W. Chan, “Temporal-logic queries,” in Computer Aided Verification,
2000, pp. 450–463.

[18] A. Gurfinkel, M. Chechik, and B. Devereux, “Temporal logic query
checking: A tool for model exploration,” IEEE Transactions on Software
Engineering, vol. 29, no. 10, pp. 898–914, 2003.

[19] O. Kupferman and Y. Lustig, “What triggers a behavior?” in Int’l Conf.
on Formal Methods in CAD, 2007, pp. 146–153.

[20] G. Fey and R. Drechsler, “Design understanding by automatic property
generation,” in Workshop on Synthesis And System Integration of Mixed
Information technologies, 2004, pp. 274–281.

[21] F. Rogin, T. Klotz, G. Fey, R. Drechsler, and S. Rülke, “Automatic
generation of complex properties for hardware designs,” in Design,
Automation and Test in Europe, 2008, pp. 545–548.

[22] R. Bryant, “Graph-based algorithms for Boolean function manipulation,”
IEEE Trans. on Comp., vol. 35, no. 8, pp. 677–691, 1986.

[23] U. Kühne, D. Große, and R. Drechsler, “Property analysis and design
understanding in a quality-driven bounded model checking flow,” in
IEEE International Workshop on Microprocessor Test and Verification,
2008.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

