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Abstract 
 

The single stuck-at fault coverage is often seen as a 

figure-of-merit also for scan testing according to other 

fault models like transition faults, bridging faults, 

crosstalk faults, etc. This paper analyzes how far this 

assumption is justified.  

Since the scan test infrastructure allows reaching 

states not reachable in the application mode, and since 

faults only detectable in such unreachable states are 

not relevant in the application mode, we distinguish 

those irrelevant faults from relevant faults, i.e. faults 

detectable in the application mode.  

We prove that every combinatorial circuit with exactly 

100% stuck-at fault coverage has 100% transition 

fault test coverage for those faults which are relevant 

in the application.  

This does not necessarily imply that combinatorial 

circuits with almost 100% single-stuckat coverage 

automatically have high transition fault coverage. This 

is shown in an extreme example of a circuit with 

nearly 100% stuck-at coverage, but 0% transition 

fault coverage. 

 
 

1   Introduction 

 

Customers are constantly asking for lower and lower 

DPPM (Defective Parts per Million) levels. This requires 

very elaborate production tests. Besides single stuck-at 

(SSA), many non-SSA fault models have to be considered 

like transition faults, path delay, bridging, and crosstalk. 

With smaller feature sizes, the percentage of stuck-at 

faults is declining along with the confidence in the SSA-

targeting scan patterns as the major gatekeeper for logic 

faults. Thus more attention is paid to coverage of patterns 

designed for scan testing according to other fault models. 

While SSA fault coverage usually reaches 99% or more 

in today’s designs and today’s ATPG engines, coverage 

figures for transition faults or bridging faults as reported 

from the ATPG engines are much lower, typically in the 

range     of unsatisfying 70% - 95% [1] (for a remarkable 

99% see [2]).  

While it is clear that high SSA coverage usually implies 

high coverage for non-SSA scan tests, these questions 

often arise: 

a) Is a transition fault pattern with 80% coverage so 

much worse than an SSA pattern with 99% coverage? 

b) Does high SSA coverage always imply high coverage 

for non-SSA scan tests? 

c) Does 100% SSA coverage always lead to a certain 

minimum coverage for non-SSA scan tests? 

This paper mainly addresses these three questions on 

the transition fault model as an example of a non-SSA 

fault model. To answer these questions, one has to look 

closer at the set of targeted faults, also known as ‘fault 

universe’: 

There is always a certain number transition faults, 

which can be detected in test, but not in the application 

[1,3,4]. This is because some states are not reachable in 

the application; also, not all transitions from one reach-

able state to another can occur in the application. The 

faults that are only detectable in these transitions are thus 

undetectable and hence not noticeable in the application. 

It should be thoroughly considered if these faults should 

really be included into the set of targeted faults.  

Fault coverage is defined as the number of detectable 

faults in this set, divided by the number of all faults in this 

set. Thus, if this set contains faults which are undetectable 

in the application, the calculated coverage will be mis-

leadingly low.  

The rest of the paper is organized as follows: Chapter 2 

summarizes the reasons for not having 100% SSA cover-

age. Chapter 3 presents a small example to motivate the 

distinction between different sets of faults, also answering 

the previous question a). Chapter 4 summarizes consid-

erations whether ICs with defects not disturbing the ap-

plication mode should be shipped or not. Chapter 5 shows 

the example that even close-to-100% SSA coverage may 

mean 0% transition fault coverage, thus answering the 

previous question b). As the main part of this paper, 

Chapter 6 presents proof that 100% SSA coverage means 

that a transition fault test pattern set can be created with 

100% coverage for those faults that can disturb the appli-

cation; this answers the previous question c). Finally, 

Chapter 7 concludes.   
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2   Factors reducing the fault coverage 
 

A 100% SSA fault coverage is rarely achieved in com-

binatorial logic in real-life ICs. This is mainly because of 

three reasons: 

• Netlist redundancy (including unused gate outputs, con-

stant inputs etc.). Redundancy is usually unwillingly 

added when compiling RTL code to a gate level netlist, 

typically accounting for some 0.1 - 1.0 % of all faults 

being undetectable.  

• Outputs of RAMs, mixed-signal blocks etc. often have 

a state which is unknown to the ATPG engine. The 

same applies to signals crossing a clock domain, i.e. go-

ing from one island of synchronicity to another. To en-

sure complete testability, these signals should only go 

to a scan testable flip-flop, not to combinatorial logic. 

• Some ATPG engines abort the calculation of a test pat-

tern for a targeted fault when a specified calculation 

time is exceeded. This is no longer an issue in today’s 

ATPG engines, however, since SAT solvers are avail-

able; those calculate scan test patterns for each detect-

able fault [5]. 

Good design practice can lead to 100% SSA coverage, 

but approximately the last half percent of the coverage 

can often only be achieved manually by test point inser-

tion and redundancy elimination. 
 

3   Example: Synchronous counter 
 

To illustrate the different set of targeted faults, a simple 

example follows (see [1] for another). 

Consider a synchronous counter that divides a clock 

signal by three. It has three different states (here simply 

called 0, 1 and 2) and must hence have two flip-flops. A 

circuit with two flip-flops has four states, however (the 

mentioned states 0,1,2, and an additional state called 3), 

of which states 0,1 and 2 are used, and are thus reachable 

in the application, and state 3 is not used and is thus un-

reachable in the application. Of course, on power-up, each 

of the states may occur. The production test must ensure 

that from the possible initial state 3, the circuit can reach 

state 0 upon reset (also called initialization), and that from 

the other states the circuit can reach the next (Figure 1). 

 

 

Figure 1: States and transitions in a                           
synchronous counter 

Which transitions between two states should be consid-

ered for the set of targeted transition faults? An ATPG 

engine could calculate all possible transitions from each 

of the states 0…3 to each of the other states, thus 3*4=12 

transitions. 

Since only states 0, 1 and 2 are reachable in the applica-

tion and are thus relevant, however, the number of transi-

tions considered for testing could be reduced to 2*3=6 

transitions. 

In the application, however, only three transitions can 

occur, namely 0 � 1, 1 � 2 and 2 � 0. Only during the 

reset, also the transition 3 � 0 can occur.  

Thus, we to choose between four possible sets of transi-

tions to consider:  

a) All 12 transitions from each state to another state; 

b) All six transitions from each reachable state to the  

other reachable state; 

c) All four transitions which can occur in the applica-

tion mode, including the reset; 

d) All three transitions in application mode, excluding 

the reset. 

 

While it seems reasonable to only consider the fault set 

d), the problem is that the ATPG engine usually does not 

know if a state is reachable in the application or not (see 

[4] for an exception). This does not mean it calculates all 

possible transitions according to a), however: the launch-

on-capture architecture only permits transitions to a 

reachable state (no matter if the state from which the tran-

sitions occurs, is reachable or not), which in this example 

(but not always) is identical to the fault set c). 

In this example, an ATPG engine which calculates a 

pattern set for transition faults using launch-on-capture 

will have all 12 transitions according to a) in the fault set, 

while the launch-on-capture architecture only allows for 

testing the four transitions according to c). The engine 

will thus report a transition fault coverage of 4/12=33.3% 

- even though all transition faults can be tested that can 

occur in the application. This low reported coverage is 

likely to concern the test engineer, because he or she will 

think the majority of faults of an important fault class 

remains untested. 

This example shows it is very important to note which 

set of faults the number of faults refers to. For a more 

detailed discussion, see [1,3,4]; for the importance of con-

sidering reset states, also [6]. 

 

4   Uncritical faults and Reliability 

 

It is sometimes argued that ICs with non-application-

critical faults should be not shipped, even though they are 

fully functional. The main concern is reliability: the 

physical defect causing this fault might worsen in the 

course of time and lead to an application-relevant fault. 

There are good reasons, however, to ship those ICs any-

way: 
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• Any kind of defect is seen minimally critical in 

RAMs: repair using spare rows and columns is a gen-

erally accepted (and often the only possible) way for 

manufacturing large RAMs. After repair, of course 

the defect remains, but is made redundant and unde-

tectable. No noticeable influence on reliability was 

reported [7]. Thus the same is likely to apply to com-

binatorial logic. 

• Transition faults in non-application paths should not 

be considered, because these paths are usually longer 

than the optimized application-critical paths. Further-

more, current consumption could be higher than de-

signed, leading to higher IR voltage drops and thus to 

overtesting, i.e. throwing away parts that are fully 

functional, but failing the test only because of the IR 

drop in those non-application-mode patterns [1]. 
 

5   Close-to-100% SSA coverage, yet 0% 
Transition fault coverage 

To show that even with a nearly 100% SSA coverage 

the transition fault coverage can be very poor, the follow-

ing example is presented:  

Tie-off cells are used to deliver a constant logic value – 

either 0 or 1. Usually they are made scannable so that in 

the scan test, they can deliver both values. For this exam-

ple, we consider a cell named ‘misdesigned scannable tie-

off cell’ (MSTO cell) as shown in Figure 2. This cell is 

indeed controllable in the first normal mode cycle, but, by 

misdesign, outputs an undefined signal in the second 

normal mode cycle. In all following cycles, i.e. in the 

application, it outputs a constant 0 (Figure 3). 

This MSTD cell is therefore functional for stuck-at scan 

test, functional for the application, but fails badly in the 

transition fault test. 

Imagine now that the output signal of this cell is used to 

XOR the input signal of all scan flip-flops (SFFs) (Figure 

4). In the
 
first normal mode cycle, a defined signal is out-

put from the MSTO cell, so that the input of the SFFs is 

also defined. This also means that the complete combina-

torial logic (marked by the dashed box) is nearly 100% 

SSA testable. The only untestable node is the ‘X’ node of 

the MSTO cell.  
 

 
Figure 2: a misdesigned scannable tie-off 

(MSTO) cell 

Figure 3: Output of the MSTO cell in the transi-
tion fault test (dashed lines for shift enable: 
stuckat-scan test and application mode) 
 

In the second normal mode cycle, however, all signals 

from the combinatorial logic to the scan flip-flops are 

XORed with the unknown signal of the MSTO cell, thus 

also the output of the XOR gates is undefined. 

In other words, a completely stuck-at testable combina-

torial logic becomes untestable for transition faults due to 

this MSTO cell. Of course, circuits like this are never 

purposely designed. This example was chosen to illustrate 

that an extremely high SSA coverage (just one node of 

the MSTO cell is not SSA testable) can even lead to 0% 

transition fault coverage. 

 
 

Figure 4: MSTO cell in a design, spoiling the 
transition fault coverage 

 

6   100% SSA Coverage leads to 100% transi-
tion fault coverage 

While in the previous chapter it was shown that even a 

close-to-100% SSA coverage means nothing for the tran-

sition fault coverage, it can be proven that exactly 100% 

SSA coverage means 100% coverage for all transition 

faults which are relevant in the application. This, to the 

best of the authors’ knowledge, has never been proven 

before. 
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Cororally: 

The combinatorial logic has the same behavior (state ta-

ble, or Boolean expression) in the normal mode(s) of a 

scan test, as in the application mode 

 

Proof: 

Since 100% SSA fault coverage is assumed, there cannot 

be constant signals as input signals to the combinatorial 

logic. Any difference in behavior between normal mode 

and application mode would be caused by such a constant 

signal. A contradiction.                                                     

 

Assumption: 

For each combinatorial logic with 100% SSA fault cover-

age, a transition fault pattern set can be generated which 

has 100% coverage for all application relevant transition 

faults. 

 

Proof: 

We consider the launch-on-capture architecture only. 

Without loss of generality, 

• We only consider transitions   0 � 1. 

• We only consider one clock domain. 

Since we have 100% stuck-at fault coverage, for each 

node Ni there is at least one state, named S2, with: 

− Ni = 1 

− Ni is observable at the outputs of the combinato-

rial logic, i.e. at the input of the scan flip-flops.  

This state S2 should be the second normal mode state of 

a transition fault test. Can this state S2 in a transition fault 

test (launch on capture) be derived from another first-

normal mode state, named S1, and cause a transition 0 � 

1 at Ni? To answer this question, we consider all states, 

named {S2A,..., S2X}, for which both above conditions are 

met: 

 

Case 1: none of the states {S2A,..., S2X}, fulfils the addi-

tional condition: 

There is at least one state S1 with 

− Ni =0 

− In the transition fault test (and in the application) 

S1 is transformed to S2 in the following cycle. 

In this case the transition Ni: 0 � 1 is not observable in 

the application, and thus a failing transition is a redundant 

fault. 

 

Case 2: at least one of the states {S2A,..., S2X} fulfils the 

additional condition: 

There is at least one state S1 with 

− Ni=0 

− In the transition fault test (and in the application) 

S1 is transformed to S2 in the following cycle. 

In this case, the transition Ni: 0 � 1 is relevant in the ap-

plication, and is testable in a transition fault test by the 

two states  S1 and S2. 

The above is valid for each node Ni. Thus for each 

node Ni the transition fault 0 � 1 is either redundant, or 

detectable. Thus the test coverage, considering only faults 

relevant in the application, is 100% for the whole combi-

natorial logic.                                                               
 

7   Conclusion 
 

Stuck-at coverage is a figure of merit, also for the cov-

erage of other scan-based tests for bridging, path delay 

and other faults. The relationship is loose, however; in 

extreme cases, 100% stuck-at coverage can mean 0% 

transition fault coverage, as was shown in an example. On 

the other hand a proof was presented, that 100% stuck-at 

coverage also means 100% coverage for those transition 

faults that can be detected in the application. A good 

ATPG engine in this case can calculate a transition fault 

pattern set, which indeed covers all transition faults which 

can occur in the application.  

The reported coverage will be much lower than 100%, 

however, because also non-relevant, undetectable transi-

tion faults are in the list of targeted faults. 

100% stuck-at fault coverage is indeed reachable when 

using today’s design tools, ATPG engines and some man-

ual optimization.  

This astonishing fact is important for assessing the usu-

ally reported low coverage in non-stuck-at scan tests like 

transition faults. Since their coverage for application-

relevant faults is comparable to the coverage of stuck-at 

tests, this fact helps gain confidence in these tests, reas-

sure test engineers and customers, and helps explain why 

relatively low DPPM figures are achieved with apparently 

low transition fault coverages.  
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