
On the Relationship between Stuck-At Fault Coverage and Transition fault Coverage

Jan Schat

 NXP Semiconductors

jan.schat@nxp.com

Abstract

The single stuck-at fault coverage is often seen as a

figure-of-merit also for scan testing according to other

fault models like transition faults, bridging faults,

crosstalk faults, etc. This paper analyzes how far this

assumption is justified.

Since the scan test infrastructure allows reaching

states not reachable in the application mode, and since

faults only detectable in such unreachable states are

not relevant in the application mode, we distinguish

those irrelevant faults from relevant faults, i.e. faults

detectable in the application mode.

We prove that every combinatorial circuit with exactly

100% stuck-at fault coverage has 100% transition

fault test coverage for those faults which are relevant

in the application.

This does not necessarily imply that combinatorial

circuits with almost 100% single-stuckat coverage

automatically have high transition fault coverage. This

is shown in an extreme example of a circuit with

nearly 100% stuck-at coverage, but 0% transition

fault coverage.

1 Introduction

Customers are constantly asking for lower and lower

DPPM (Defective Parts per Million) levels. This requires

very elaborate production tests. Besides single stuck-at

(SSA), many non-SSA fault models have to be considered

like transition faults, path delay, bridging, and crosstalk.

With smaller feature sizes, the percentage of stuck-at

faults is declining along with the confidence in the SSA-

targeting scan patterns as the major gatekeeper for logic

faults. Thus more attention is paid to coverage of patterns

designed for scan testing according to other fault models.

While SSA fault coverage usually reaches 99% or more

in today’s designs and today’s ATPG engines, coverage

figures for transition faults or bridging faults as reported

from the ATPG engines are much lower, typically in the

range of unsatisfying 70% - 95% [1] (for a remarkable

99% see [2]).

While it is clear that high SSA coverage usually implies

high coverage for non-SSA scan tests, these questions

often arise:

a) Is a transition fault pattern with 80% coverage so

much worse than an SSA pattern with 99% coverage?

b) Does high SSA coverage always imply high coverage

for non-SSA scan tests?

c) Does 100% SSA coverage always lead to a certain

minimum coverage for non-SSA scan tests?

This paper mainly addresses these three questions on

the transition fault model as an example of a non-SSA

fault model. To answer these questions, one has to look

closer at the set of targeted faults, also known as ‘fault

universe’:

There is always a certain number transition faults,

which can be detected in test, but not in the application

[1,3,4]. This is because some states are not reachable in

the application; also, not all transitions from one reach-

able state to another can occur in the application. The

faults that are only detectable in these transitions are thus

undetectable and hence not noticeable in the application.

It should be thoroughly considered if these faults should

really be included into the set of targeted faults.

Fault coverage is defined as the number of detectable

faults in this set, divided by the number of all faults in this

set. Thus, if this set contains faults which are undetectable

in the application, the calculated coverage will be mis-

leadingly low.

The rest of the paper is organized as follows: Chapter 2

summarizes the reasons for not having 100% SSA cover-

age. Chapter 3 presents a small example to motivate the

distinction between different sets of faults, also answering

the previous question a). Chapter 4 summarizes consid-

erations whether ICs with defects not disturbing the ap-

plication mode should be shipped or not. Chapter 5 shows

the example that even close-to-100% SSA coverage may

mean 0% transition fault coverage, thus answering the

previous question b). As the main part of this paper,

Chapter 6 presents proof that 100% SSA coverage means

that a transition fault test pattern set can be created with

100% coverage for those faults that can disturb the appli-

cation; this answers the previous question c). Finally,

Chapter 7 concludes.

978-3-9810801-5-5/DATE09 © 2009 EDAA

2 Factors reducing the fault coverage

A 100% SSA fault coverage is rarely achieved in com-

binatorial logic in real-life ICs. This is mainly because of

three reasons:

• Netlist redundancy (including unused gate outputs, con-

stant inputs etc.). Redundancy is usually unwillingly

added when compiling RTL code to a gate level netlist,

typically accounting for some 0.1 - 1.0 % of all faults

being undetectable.

• Outputs of RAMs, mixed-signal blocks etc. often have

a state which is unknown to the ATPG engine. The

same applies to signals crossing a clock domain, i.e. go-

ing from one island of synchronicity to another. To en-

sure complete testability, these signals should only go

to a scan testable flip-flop, not to combinatorial logic.

• Some ATPG engines abort the calculation of a test pat-

tern for a targeted fault when a specified calculation

time is exceeded. This is no longer an issue in today’s

ATPG engines, however, since SAT solvers are avail-

able; those calculate scan test patterns for each detect-

able fault [5].

Good design practice can lead to 100% SSA coverage,

but approximately the last half percent of the coverage

can often only be achieved manually by test point inser-

tion and redundancy elimination.

3 Example: Synchronous counter

To illustrate the different set of targeted faults, a simple

example follows (see [1] for another).

Consider a synchronous counter that divides a clock

signal by three. It has three different states (here simply

called 0, 1 and 2) and must hence have two flip-flops. A

circuit with two flip-flops has four states, however (the

mentioned states 0,1,2, and an additional state called 3),

of which states 0,1 and 2 are used, and are thus reachable

in the application, and state 3 is not used and is thus un-

reachable in the application. Of course, on power-up, each

of the states may occur. The production test must ensure

that from the possible initial state 3, the circuit can reach

state 0 upon reset (also called initialization), and that from

the other states the circuit can reach the next (Figure 1).

Figure 1: States and transitions in a
synchronous counter

Which transitions between two states should be consid-

ered for the set of targeted transition faults? An ATPG

engine could calculate all possible transitions from each

of the states 0…3 to each of the other states, thus 3*4=12

transitions.

Since only states 0, 1 and 2 are reachable in the applica-

tion and are thus relevant, however, the number of transi-

tions considered for testing could be reduced to 2*3=6

transitions.

In the application, however, only three transitions can

occur, namely 0 � 1, 1 � 2 and 2 � 0. Only during the

reset, also the transition 3 � 0 can occur.

Thus, we to choose between four possible sets of transi-

tions to consider:

a) All 12 transitions from each state to another state;

b) All six transitions from each reachable state to the

other reachable state;

c) All four transitions which can occur in the applica-

tion mode, including the reset;

d) All three transitions in application mode, excluding

the reset.

While it seems reasonable to only consider the fault set

d), the problem is that the ATPG engine usually does not

know if a state is reachable in the application or not (see

[4] for an exception). This does not mean it calculates all

possible transitions according to a), however: the launch-

on-capture architecture only permits transitions to a

reachable state (no matter if the state from which the tran-

sitions occurs, is reachable or not), which in this example

(but not always) is identical to the fault set c).

In this example, an ATPG engine which calculates a

pattern set for transition faults using launch-on-capture

will have all 12 transitions according to a) in the fault set,

while the launch-on-capture architecture only allows for

testing the four transitions according to c). The engine

will thus report a transition fault coverage of 4/12=33.3%

- even though all transition faults can be tested that can

occur in the application. This low reported coverage is

likely to concern the test engineer, because he or she will

think the majority of faults of an important fault class

remains untested.

This example shows it is very important to note which

set of faults the number of faults refers to. For a more

detailed discussion, see [1,3,4]; for the importance of con-

sidering reset states, also [6].

4 Uncritical faults and Reliability

It is sometimes argued that ICs with non-application-

critical faults should be not shipped, even though they are

fully functional. The main concern is reliability: the

physical defect causing this fault might worsen in the

course of time and lead to an application-relevant fault.

There are good reasons, however, to ship those ICs any-

way:

2

0

1

3

• Any kind of defect is seen minimally critical in

RAMs: repair using spare rows and columns is a gen-

erally accepted (and often the only possible) way for

manufacturing large RAMs. After repair, of course

the defect remains, but is made redundant and unde-

tectable. No noticeable influence on reliability was

reported [7]. Thus the same is likely to apply to com-

binatorial logic.

• Transition faults in non-application paths should not

be considered, because these paths are usually longer

than the optimized application-critical paths. Further-

more, current consumption could be higher than de-

signed, leading to higher IR voltage drops and thus to

overtesting, i.e. throwing away parts that are fully

functional, but failing the test only because of the IR

drop in those non-application-mode patterns [1].

5 Close-to-100% SSA coverage, yet 0%
Transition fault coverage

To show that even with a nearly 100% SSA coverage

the transition fault coverage can be very poor, the follow-

ing example is presented:

Tie-off cells are used to deliver a constant logic value –

either 0 or 1. Usually they are made scannable so that in

the scan test, they can deliver both values. For this exam-

ple, we consider a cell named ‘misdesigned scannable tie-

off cell’ (MSTO cell) as shown in Figure 2. This cell is

indeed controllable in the first normal mode cycle, but, by

misdesign, outputs an undefined signal in the second

normal mode cycle. In all following cycles, i.e. in the

application, it outputs a constant 0 (Figure 3).

This MSTD cell is therefore functional for stuck-at scan

test, functional for the application, but fails badly in the

transition fault test.

Imagine now that the output signal of this cell is used to

XOR the input signal of all scan flip-flops (SFFs) (Figure

4). In the

first normal mode cycle, a defined signal is out-

put from the MSTO cell, so that the input of the SFFs is

also defined. This also means that the complete combina-

torial logic (marked by the dashed box) is nearly 100%

SSA testable. The only untestable node is the ‘X’ node of

the MSTO cell.

Figure 2: a misdesigned scannable tie-off

(MSTO) cell

Figure 3: Output of the MSTO cell in the transi-
tion fault test (dashed lines for shift enable:
stuckat-scan test and application mode)

In the second normal mode cycle, however, all signals

from the combinatorial logic to the scan flip-flops are

XORed with the unknown signal of the MSTO cell, thus

also the output of the XOR gates is undefined.

In other words, a completely stuck-at testable combina-

torial logic becomes untestable for transition faults due to

this MSTO cell. Of course, circuits like this are never

purposely designed. This example was chosen to illustrate

that an extremely high SSA coverage (just one node of

the MSTO cell is not SSA testable) can even lead to 0%

transition fault coverage.

Figure 4: MSTO cell in a design, spoiling the
transition fault coverage

6 100% SSA Coverage leads to 100% transi-
tion fault coverage

While in the previous chapter it was shown that even a

close-to-100% SSA coverage means nothing for the tran-

sition fault coverage, it can be proven that exactly 100%

SSA coverage means 100% coverage for all transition

faults which are relevant in the application. This, to the

best of the authors’ knowledge, has never been proven

before.

Scan in

Scan

enable

Scan

out

X

0 0 0
1 1

FF FF

Clock Functional

out

 XOR

 XOR

 XOR

SFF

SFF

MSTO

Combina-

torial

Logic,

100%

testable

SFF

SFF

SFF SFF

Shift enable

clock

MSTO output
X 0/1

1
st

normal

mode

Application

mode

2
nd

normal

mode

Cororally:

The combinatorial logic has the same behavior (state ta-

ble, or Boolean expression) in the normal mode(s) of a

scan test, as in the application mode

Proof:

Since 100% SSA fault coverage is assumed, there cannot

be constant signals as input signals to the combinatorial

logic. Any difference in behavior between normal mode

and application mode would be caused by such a constant

signal. A contradiction. 

Assumption:

For each combinatorial logic with 100% SSA fault cover-

age, a transition fault pattern set can be generated which

has 100% coverage for all application relevant transition

faults.

Proof:

We consider the launch-on-capture architecture only.

Without loss of generality,

• We only consider transitions 0 � 1.

• We only consider one clock domain.

Since we have 100% stuck-at fault coverage, for each

node Ni there is at least one state, named S2, with:

− Ni = 1

− Ni is observable at the outputs of the combinato-

rial logic, i.e. at the input of the scan flip-flops.

This state S2 should be the second normal mode state of

a transition fault test. Can this state S2 in a transition fault

test (launch on capture) be derived from another first-

normal mode state, named S1, and cause a transition 0 �

1 at Ni? To answer this question, we consider all states,

named {S2A,..., S2X}, for which both above conditions are

met:

Case 1: none of the states {S2A,..., S2X}, fulfils the addi-

tional condition:

There is at least one state S1 with

− Ni =0

− In the transition fault test (and in the application)

S1 is transformed to S2 in the following cycle.

In this case the transition Ni: 0 � 1 is not observable in

the application, and thus a failing transition is a redundant

fault.

Case 2: at least one of the states {S2A,..., S2X} fulfils the

additional condition:

There is at least one state S1 with

− Ni=0

− In the transition fault test (and in the application)

S1 is transformed to S2 in the following cycle.

In this case, the transition Ni: 0 � 1 is relevant in the ap-

plication, and is testable in a transition fault test by the

two states S1 and S2.

The above is valid for each node Ni. Thus for each

node Ni the transition fault 0 � 1 is either redundant, or

detectable. Thus the test coverage, considering only faults

relevant in the application, is 100% for the whole combi-

natorial logic. 

7 Conclusion

Stuck-at coverage is a figure of merit, also for the cov-

erage of other scan-based tests for bridging, path delay

and other faults. The relationship is loose, however; in

extreme cases, 100% stuck-at coverage can mean 0%

transition fault coverage, as was shown in an example. On

the other hand a proof was presented, that 100% stuck-at

coverage also means 100% coverage for those transition

faults that can be detected in the application. A good

ATPG engine in this case can calculate a transition fault

pattern set, which indeed covers all transition faults which

can occur in the application.

The reported coverage will be much lower than 100%,

however, because also non-relevant, undetectable transi-

tion faults are in the list of targeted faults.

100% stuck-at fault coverage is indeed reachable when

using today’s design tools, ATPG engines and some man-

ual optimization.

This astonishing fact is important for assessing the usu-

ally reported low coverage in non-stuck-at scan tests like

transition faults. Since their coverage for application-

relevant faults is comparable to the coverage of stuck-at

tests, this fact helps gain confidence in these tests, reas-

sure test engineers and customers, and helps explain why

relatively low DPPM figures are achieved with apparently

low transition fault coverages.

References

[1] J. Rearick, “Too much fault coverage is a bad thing”, Interna-
tional Test Conference 2001, p. 624 -633

[2] M. P. Kusko, B. J. Robbins, T. J. Koprowski, and W. V. Huott,
“99% AC test coverage using only LBIST on the 1 GHz IBM
S/390 zSeries 900 Microprocessor”, International Test
Conference 2001, p. 586-592

[3] I. Pomeranz and S. M. Reddy, “Expanded definition of func-
tional operation conditions and its effects on the computation
of functional broadside tests”, VLSI Test Symposium 2008, p.
317-322

[4] I. Pomeranz, “On the generation of scan-based test sets with
reachable states for testing under functional operating condi-
tions”, Design Automation Conf. 2004, p. 928 – 933

[5] T. Larrabee, “Test pattern generation using boolean
satisfiability”, IEEE Transactions on computer-aided design,
Vol. 11, No. 1, p. 4-15, 1992

[6] M. Abramovici and P. S. Parikh, “Warning: 100% Fault Cov-
erage may be misleading!!”, International Test Conference
1992, p. 662 – 668

[7] T. S. Barnett, M. Grady, K. Purdy, and A. D. Singh, “Redun-
dancy implications for early-life reliability: experimental veri-
fication of an integrated yield-reliability model”, International
Test Conference 2002, p. 693-699

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

