
Partition-based exploration for reconfigurable JPEG designs

Philip G. Potter, Wayne Luk, Peter Cheung
Imperial College, London

London, UK
{pgp,wl}@doc.ic.ac.uk, peter.cheung@ic.ac.uk

Abstract

This paper proposes a novel approach for design
space exploration by characterizing hardware sharing
based on the notion of a partition in set theory. Re-
lated designs with different degrees of hardware sharing
can be captured concisely by a Hasse diagram, high-
lighting designs with shared building blocks. Hardware
sharing can be implemented in various ways, such as
component multiplexing, instruction-set processors, or
run-time reconfiguration. We illustrate how the pro-
posed approach can be applied to exploring the design
space for FPGA implementations of JPEG image com-
pression.

1 Introduction

Automated hardware design is often expressed as a
design space exploration problem. Design space explo-
ration is a particular type of multi-objective optimiza-
tion problem where a decision vector x consisting of
decision variables xi is selected to optimize an objec-
tive vector f consisting of objective variables fi [1]. In
general, there may be more than one ideal solution as
different objective variables are traded off against each
other.

Before an effective design space exploration can hap-
pen, the decision variables must be chosen. However, it
is not possible to define decision variables which con-
tain the gamut of all possible designs. Examples of
previous classifications in design space exploration have
been restricted to one particular solution architecture
as a result.

This paper attempts to classify the JPEG encoder
design space in a way which includes diverse architec-
tures. The aims of the research are to allow a wide va-
riety of designs into the explored space, and to achieve
a wide coverage of the objective space from small and
slow to fast and large. In particular, we wish to in-

clude diverse solutions in structure such as MicroBlaze,
a pipelined datapath, and a state machine within the
design space classification.

2 Previous work

A number of authors have tried to tackle design
space exploration previously. The Platune system [2]
exploits independence of decision variables: for in-
stance, reducing voltage reduces both power consump-
tion and maximum frequency monotonically regardless
of cache size or instruction encoding. This allows the
design space to be pruned by separating independent
variables into exponentially smaller subspaces.

Yiannacouras, Steffan and Rose developed a system
called SPREE [7] to investigate the design of a soft
processor on Altera field-programmable gate arrays
(FPGAs). They used a set of benchmark programs to
determine the effects of different architectural choices
on performance (wall-clock time) and area. Choices in-
cluded pipeline depth, hardware vs software multiplica-
tion, serial shifter vs hardware multiplier-based barrel
shifter, and different pipeline lengths. They created a
large number of designs which provide a range of solu-
tions of different speeds and areas.

Mohanty et al used two tools, DESERT and
HiPerE [3], in a three-phase approach to generate an
optimal design based on user constraints. They used
their system to target a system consisting of either a
StrongARM, a MIPS, or both.

Pimentel et al modelled M-JPEG as a Kahn pro-
cess network and explored different mappings from
Kahn processes to architectural processing elements [4].
Their target architecture was a multiprocessor plat-
form, and they analysed the resultant designs for archi-
tecture cost, processing time and power consumption.

Most of the previously mentioned systems represent
the design space using a vector of decision variables,
and all of them constrain the solution space to a par-
ticular architecture template. We propose a different

 

978-3-9810801-5-5/DATE09 © 2009 EDAA 

 



Figure 1. Hasse diagram showing “finer than”
partial order of partitions

method of design characterization from those proposed
before based on hardware sharing, in order to keep the
solution space inclusive of all possible designs. Hard-
ware sharing can take many forms, from simple time-
multiplexing of a static resource, to using a soft pro-
cessor such as MicroBlaze, or using runtime reconfigu-
ration to change usage of hardware [6].

3 Partition-based characterisation

A partition of a set S is a set of subsets of S, such
that each member of S belongs to exactly one subset.
The subsets (or blocks) are collectively exhaustive and
mutually exclusive with respect to S. For example, two
partitions on the set {a, b, c, d} are {{a, b}, {c, d}} and
{{a, d}, {b}, {c}}. For ease of notation, these partitions
can also be denoted ab.cd and ad.b.c.

Partitions can be partially ordered using a finer than
relation: a partition P is finer than another partition
Q if every block of P is a subset of some block of Q.
Colloquially, P divides S into smaller blocks than Q
does. A diagram of such a partial order is shown in
figure 1; finer designs are towards the bottom. At any
given ‘height’ on the diagram, all partitions consist of
the same number of blocks; however, the elements have
been divided up in different ways between the blocks.

A computational problem can be modelled as a set
of tasks. A partition of the set of tasks is created,
such that two tasks are placed in the same block in
the partition if and only if they share hardware; for
example, both use the same multiplier or divider unit
on different clock cycles to calculate their results. As

a result, each block within the partition is associated
with a physical block of hardware in the design.

As one moves through the partition lattice in figure 1
from bottom to top, task-level parallelism decreases,
and hardware sharing increases.

Consider an 8-tap finite impulse response (FIR) fil-
ter: a circuit which transforms a sequence of input sam-
ples xi into a sequence of output samples yi based on
the following formula:

yi :=
8∑

k=1

aixi+k−1

We consider each multiplication within the sum as
a separate task, labelled from a to h. A pipelined dat-
apath solution would contain 8 separate multipliers,
so the partition would be a.b.c.d.e.f.g.h. A multiply-
accumulator based solution would use only 1 multi-
plier, taking 8 cycles to produce the output for one
sample. Its partition would be abcdefgh. A sim-
ple processor-based solution would also use only 1
multiplier and have the same partition. In between
these extremes there are solutions with varying level
of hardware sharing, represented by such partitions as
abcd.efgh, ab.cd.ef.gh and abc.def.gh using 2, 4 and 3
multipliers respectively.

We use this classification as a method for driving
the creation of FPGA designs. In our design approach,
we first select classifications which we believe may pro-
vide useful designs, and then generate hardware which
fits the classification. Currently the exploration is sys-
tematic but manual. The choice of which partitions
to explore is left to the designer, and once they have
been chosen, a number of designs for each partition are
created.

The partitions chosen will often share blocks, and
so the same subdesign of a block of one partition can
be reused within others. Furthermore, the design for
a block ab may be reused in the designs for blocks abc
and abd; we present an example of this in section 4.
Design reuse is a key part of this design process.

The analysis of composite designs for individual
computational elements within the original graph is
treated recursively as a new graph-partition problem
until the underlying computational elements are prim-
itives such as adders and multipliers.

There are many different types of hardware sharing,
especially in the FPGA world. A simple way to share
a multiplier is to place a multiplexer on the inputs;
one can also use the multiplier as a functional unit in
a processor, or use runtime partial reconfiguration to
change the hardware design around that multiplier.



4 JPEG example

We apply our approach to a JPEG encoding prob-
lem. JPEG is a standard for the lossy compression
of photographic or continuous-tone images. The pro-
cess consists of four main stages: colour space conver-
sion (typically from RGB to Y UV ), 2-D discrete cosine
transform (DCT), quantization, and entropy coding.

Overview We divide the JPEG encoding computa-
tion into 13 modules: colour space conversion, labelled
Y ; six one-dimensional DCT modules, labelled from
D1Y to D2V ; and three quantization modules, labelled
from QY to QV . We select a number of partitions to
choose designs from. The design choices reflect the na-
ture of the design space. The partitions chosen are:

Y.D1P .D2P .QP Y.D1S .D2S .QP

Y.D1P .D2P .QS Y.D1S .D2S .QS

Y Q.D1P .D2P Y Q.D1S .D2S

where D1S = DY 1DU1DV 1, QS = QY QUQV ,
D1P = DY 1.DU1.DV 1, and QP = QY .QU .QV .

The finest-grain partition, Y.D1P .D2P .QP , is cho-
sen in order to demonstrate the fastest, most parallel
design. From this, we consider which elements would
most readily share hardware. The DCT blocks are clear
candidates to share hardware between themselves, be-
cause they each have identical structure; similarly for
the quantize blocks. The quantize block seems too
computationally insignificant to necessarily require its
own hardware block, and so for some designs we com-
bined it with YUV to produce the Y Q block.

The blocks needed for implementation are therefore
Y , D1S , D1Y , QY , QS and Y Q. Symmetry between
different components allows us to reuse the same de-
signs for Y, U and V streams.

Implementation of Y block We use the RGB-to-
YUV definition from JFIF, the JPEG File Interchange
Format. Colour space conversion is a simple matrix
multiply operation: Y

U
V

 =

 0.299 0.587 0.114
−0.1687 −0.3313 +0.5

0.5 −0.4187 −0.0813

  R
G
B


The matrix multiply consists of nine multiplications,
one for each matrix coefficient.

We recursively characterize this block in terms of set
partitions. There are nine multiplies, arranged in three
rows of three. The following diagrams illustrate our
designs; each dot represents a multiply operation, with

Multipliers Cycles
YUV Q Total

1 9 3 12
2 6 2 8
3 3 1 4
6 2 1 3
7 1 1 2

Table 1. Y Q module designs

multiplies shared between the same multiplier grouped
together in the same box. ◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦


7 mults
1 cycle

 ◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦


6 mults
2 cycles

 ◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦


3 mults
3 cycles ◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦


2 mults
6 cycles

 ◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦


1 mult
9 cycles

Note that the cycle-time is equal to the size of the
largest block. The completely parallel design requires
only 7 rather than 9 multipliers because two of the
multiplies are by a coefficient of 0.5 and can be imple-
mented by a bit shift.

Although it is possible that 9 multiplies could be
performed in 2 cycles by just 5 multipliers instead of
the 6 reported here, such a design would have more
complex control flow and so it is omitted.

Combined YUV and quantize For each pixel in-
put, consisting of three colour samples, the YUV sec-
tion requires 9 multiplies, of which 2 are simply bit-
shifts; the quantize section requires 3 multiplies. We
consider the set of designs produced when YUV and
quantize share hardware by time-multiplexing: in any
clock cycle, the hardware is either entirely dedicated to
YUV or to quantize. This allows us to base our design
for Y Q on the previous design for YUV and the design
for quantize. This gives the results in table 1.

5 Results

Figure 2 shows the objective space of the designs
generated in the previous section. The dotted line
shows the Pareto front, the line which divides satis-
fiable design objectives from unsatisfiable objectives
given this solution set. The designs at the outside cor-
ners of the Pareto front are the Pareto optimal solu-



1

10

100

1 10 100 1000

M
u

lt
ip

lie
rs

Delay (Cycles)

Y.D1P.D2P.QP
Y.D1P.D2P.QS
Y.D1S.D2S.QP
Y.D1S.D2S.QS

YQ.D1P.D2P
YQ.D1S.D2S
Pareto front

Figure 2. Objective space of JPEG encoders

tions. A design is Pareto optimal if there is no other
design which is better in one objective and at least as
good in all other objectives.

The fastest design uses 58 multipliers and takes 8
cycles per 8 pixels, while the smallest design uses 3
multipliers and takes 192 cycles. The span between
largest and smallest is a factor of 20, while the scale
between fastest and slowest is a factor of 24.

In between, there is a cloud of solutions in the ob-
jective space. There are regular occurrences of Pareto
optimal solutions to satisfy various user constraints.
No one partition dominates the results: the Pareto set
contains points from four of the chosen partition, while
the remaining two partitions have some solutions very
close to the Pareto front. This is because the differ-
ent partitions have different ‘sweet spots’ where no one
constituent block is a significant bottleneck.

For example, the Pareto point with 41 multi-
pliers and 12 cycles per 8 pixels from partition
Y.D1S .D2S .QS , is better than the Y.D1P .D2P .QS de-
sign which takes 12 cycles with 57 multipliers. The best
design, Y.D1S .D2S .QS , has three of its four blocks with
equal throughput, with the Y block running slightly at
excess capacity – capable of 8 cycles. The worst de-
sign, Y.D1P .D2P .QS , has a poor match in throughput
between its blocks. Both the DCT blocks and the Y
block are capable of 8 cycle performance, but the Q
block requires 12. There is thus 50% excess capacity in
the relatively large Y and D blocks. There is no design
available for these blocks which matches the speed of
the bottleneck, so a larger design is required.

We expected that finer partitions would be generally
faster than coarser partitions, but the results do not
show this. This is because the partition does not reflect
the internal parallelism or hardware sharing within the

blocks. A design which is parallel at the high-level but
much less so within the blocks may run at a similar
speed and with similar area to a design which shares
much hardware at a high level but is highly parallel
within the blocks.

We have not assessed control-flow requirements.
Hardware sharing requires control-flow support struc-
ture to route signals to and from hardware resources
or as support for runtime reconfiguration.

6 Conclusion

We aim to incorporate this technique into a system-
atic tool for hardware design. We believe that the gen-
eration of component module designs could be auto-
mated to some extent, though the high-level choice of
partitions to search will require a designer in the loop.
The component design can be automated based on the
computation/communication graph of the component.
Such a tool could take advantage of resource estimation
technology [5] to rapidly assess designs without having
to fully synthesize them. It would also help in assess-
ing control-flow requirements and give a more accurate
impression of the resource usage for each design.

Acknowledgements The support of UK EPSRC and
Xilinx is gratefully acknowledged.

References

[1] K. Deb. Multi-Objective Optimization using Evolution-
ary Algorithms. Wiley, 2001.

[2] T. Givargis and F. Vahid. Platune: a tuning framework
for system-on-a-chip platforms. IEEE Trans. on CAD
of Integrated Circuits and Systems, 21(11):1317–1327,
Nov 2002.

[3] S. Mohanty et al. Rapid design space exploration of
heterogeneous embedded systems using symbolic search
and multi-granular simulation. ACM SIGPLAN No-
tices, 37(7):18–27, July 2002.

[4] A.D. Pimentel et al. A systematic approach to exploring
embedded system architectures at multiple abstraction
levels. IEEE Trans. Computers, 55(2):99–112, 2006.

[5] P. Schumacher and P. Jha. Fast and accurate resource
estimation of RTL-based designs targeting FPGAs. In
FPL, 2008.

[6] A. Tumeo et al. A self-reconfigurable implementation
of the JPEG encoder. In ASAP ’07, pages 24–29, July
2007.

[7] P. Yiannacouras et al. Application-specific customiza-
tion of soft processor microarchitecture. In FPGA ’06,
pp. 201–210. ACM, 2006.


	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index




