
Extending IP-XACT to support an MDE based
approach for SoC design

Amin El Mrabti
TIMA Laboratory

46 Ave Felix Viallet
38031 Grenoble CEDEX, FRANCE

amin.elmrabti@imag.fr

Frédéric Pétrot
TIMA Laboratory

46 Ave Felix Viallet
38031 Grenoble CEDEX, FRANCE

frederic.petrot@imag.fr

Aimen Bouchhima
TIMA Laboratory

 46 Ave Felix Viallet
38031 Grenoble CEDEX, FRANCE

aimen.bouchhima@imag.fr

Abstract— We are interested in the problem of improving ip-
reuse in SoC design. This paper presents an MDE based
approach based on a proposed IP-XACT standard extension.
This approach combines the benefits of using MDE techniques in
SoC design such as abstraction levels definition and model
transformation for code generation, and the benefits of the IP-
XACT standard such as a unique exchange format of packaged
IPs (Intellectual Property) with reuse capabilities.

I. INTRODUCTION
 Interoperability of SoC models from multiple vendors is a

key issue in SoC design. To guarantee this objective, there is
an increased use of standards such as SystemC [1] and UML
profiles for SoC design (MARTE [2], Sysml [3], UML profile
for SystemC [4], UML profile for IP-XACT [5]). The IP-
XACT specification provided by the SPIRIT consortium
represents one of the important standards used to facilitate the
integration of various IP coming from different sources. It
offers a standard way of describing IPs for integration
purpose. IP-XACT proposes a set of XML schema to describe
the components of a system. The standard targets hardware
modeling at a low level of abstraction and particularly the
RTL level. Although the latest versions offer support for TLM
though, for example the transactional port component, the
formalism is still based towards RTL modeling. The TLM
level is not a model and represents a library implementing a
high level approach where the details of communication are
abstracted by transaction requests. We believe that IP-XACT
could be a good environment for modeling HW/SW systems at
higher abstraction levels. In this work, we try to improve ip-
reuse in SoC design by taking advantage of the Model Driven
Engineering techniques in an IP-XACT environment. We
show how to extend IP-XACT to allow more formalized IP
modeling at different abstraction levels with hardware
dependent software representation, and how to generate
SystemC code for simulation.

II. RELATED WORKS
There are several frameworks and environments for

modeling embedded systems using an MDE approach. UML
profiles definition for SoC design represents an important
MDE activity. The SysML (Systems Modeling Language) [3]

is a profile which takes a part from UML, extends the other
part and defines new types of diagrams. Sequence, use case
and state machine diagrams were taken by SysML. The profile
defines a parametric and a requirement diagrams to structure
requirements. Others profiles exist such as the UML profile
for SystemC [4] and MARTE profile [2]. The MARTE profile
is used to model IP-XACT designs [6]. Gaspard [7] is a tool
implementing an MDA based design flow. The design flow is
based on a “Y” chart design. The application and the hardware
architecture are two models which represent the two sides of
the Y design. Models for application and hardware
architecture are done separately and each of them is conform
to a corresponding meta-model. There is a third meta-model,
named association meta-model, which defines relation
between the functional components and the hardware
components. The Gaspard flow focuses on intensive signal
processing applications. Metropolis [8] is a system modeling
environment based on a meta-model of computation. This
meta-model provides the possibility to design various model
of computation with various semantics. The meta-model
specification is used to model the functionality, the
architecture and the mapping. The main elements are
"Process" and "Media" which represent respectively
computation and communication semantics. MoDES [9] is an
embedded systems design methodology which defines meta-
models for application, platform and the mapping of
application onto the platform. The methodology uses model
transformation to define the possible mappings.

III. ABSTRACTION LEVELS, IP-XACT AND MDE BASICS

A. Abstraction levels in SoC modeling
Abstraction Levels in SoC design are used in a multilevel

SoC design flow context. Intermediate abstraction levels are
used to allow software generation, simulation and debug. The
multilevel design flow proposed in [10] defines four
abstraction levels starting from the system level and getting to
the Cycle accurate level. We will focus in the third abstraction
level called “Transaction Accurate” for three main reasons: (1)
this abstraction level is the one that immediately precedes the
RTL level (2) it represent the easiest level to integrate within
the current IP-XACT specification (3) and it is interesting for

978-3-9810801-5-5/DATE09 © 2009 EDAA

the design because of the simulation results obtained in [10].
The Transaction Accurate level abstracts hardware
architecture details. This specification requires the definition
of software services offered by the hardware components.

Abstract CPU Memory

DeviceInterface

Interconnect

HW SS HDS API

HAL API

OS Com

Application

(a) Hardware Architecture (b) Software Architecture

Abstract CPU Memory

DeviceInterface

Interconnect

HW SS HDS API

HAL API

OS Com

Application

(a) Hardware Architecture (b) Software Architecture

Figure 1. Transaction Accurate abstraction level

Those services are specified in the hardware abstraction layer
(HAL API) of the software side (Fig 1.b). The software is
linked with an explicit OS and specific communication
primitives. The resulting software makes use of hardware-
abstraction layer primitives (HAL API). The software is
executed over an abstract model of the platform (Fig 1.a) that
represents the explicit devices used by the HAL API, and the
abstract processor. The simulation at this level allows
validating the integration of the application with the OS and
the communication layer. It may also provide precise
information about the communication performances [10].

B. IP-XACT overview
IP-XACT is an independent front-end standard that allows

IP packaging. It uses its own XML syntax to describe structure.
The objective of SPIRIT is to facilitate the integration of
various IP coming from different sources through the use of the
IP-XACT specification [11]. The IP-XACT specification is
provided by the SPIRIT consortium and offers a standard way
of describing IP for integration purpose. SPIRIT proposes a set
of XML schema to describe the components of a system. The
IP-XACT model is an XML file that should be validated by an
IP-XACT XML schema which represents the meta-model. IP-
XACT XML schema enable hardware component modeling at
the RTL and TLM levels. The IP-XACT Component [11] is the
central concept. It is used to describe cores (processors,
DSPs…), Peripherals (Memories, DMA controllers, Timers …)
and Busses. A Design describes the component instances and
the interconnection between these instances. IP-XACT
represents a standard meta-modeling environment for hardware
modeling.

C. MDE basic definitions
The basic entity in Model Driven Engineering is the

Model. A Model is an abstract description of a system. A
meta-model is a model that defines the language to create a
model. A meta-model can be written in different ways (XML
schema, UML diagram, etc…). The relation between a model
and a Meta-model is a relation of conformance. The main
MDE techniques are Meta-modeling and models
transformations. Models transformations are sets of rules
which describe how a model in a source language can be
transformed into a model of a target language using the source
and the destination meta-models. Model Transformations
ensure automatic transition from a meta-model to another, by

generating an output model from an input model. There are
some languages which are used to implement model
transformations such as ATL (ATLAS Transformation
Language) [12]. The ATL language provides “ATLModule” to
define transformation between source and destination models
and “ATLQuery” to define transformation from a source
model to text.

IV. IP-XACT EXTENSION TO SUPPORT MDE BASED
APPROACH

A. MDE approach for IP-XACT SoC design
MDE techniques may improve the SoC design with IP-

XACT in different ways: (1) the meta-modeling techniques
can be used to define concepts to use at a defined abstraction
level (2) the model transformation technique to generate
simulation models in SystemC. (3) The introduction of
different modeling abstraction levels may facilitate the reuse
of existing components defined in different libraries. The
modeling approach we propose allows modeling by using a
meta-model of the desired abstraction level (Abstraction Level
Definition in Fig 2.b). This meta-model will be written in
XML schema and takes part of an IP-XACT extension that we
call IP-XACT++. Theses meta-models will be considered as
the semantic rules for each appropriate abstraction level,
because the IP-XACT specification presents only the syntax
side. Indeed, IP-XACT allows modeling at two levels: TLM
and RTL. The concepts corresponding to those levels are
gathered in the same XML schema. We want the designer to
distinguish the concepts of each supported level of abstraction.
This will be guaranteed by the definition of meta-models for
each level of abstraction in the IP-XACT environment. This
ensures a clear separation of concerns. This also ensures that
the introduction of a new abstraction level, like the
Transaction Accurate level seen in III.A, does not break the
existing specification.

IP-XACT Basic Components
Meta Model

Abstraction Level Definition
(Meta Modes for Abstraction Levels)

SystemC Meta Model

SoC Designs
And models

SystemC

Model Transformation
Definition for code generation

Model Transformation
Execution

Instanciation

Specialisation

reuse

Extended IP-XACT

(a)

(b)

(c)

(d)

(e)

IP-XACT Basic Components
Meta Model

Abstraction Level Definition
(Meta Modes for Abstraction Levels)

SystemC Meta Model

SoC Designs
And models

SystemC

Model Transformation
Definition for code generation

Model Transformation
Execution

Instanciation

Specialisation

reuse

Extended IP-XACT

(a)

(b)

(c)

(d)

(e)

Figure 2. MDE approach for SoC design with extended IP-XACT

Figure 2 shows the MDE approach for SoC modeling. The
relation between components from the abstraction level meta-
models (fig 2.b) and the IP-XACT meta-models (fig 2.a) is
specialization and reuse. It means that a concept corresponding
to a specific abstraction level is a specialization or a reuse of a
component from the IP-XACT meta-model. The SoC models
will be extracted from this intermediate layer and will be
conform to the IP-XACT specification (Fig 2.c). For generating
SystemC code, model transformation (Fig 2.d) will be defined

between meta-models of the intermediate layer and the
SystemC meta-model (Fig 2.e) inspired from [4].

B. IP-XACT Extension: Meta-models for abstraction levels
The meta-model for describing a level of abstraction

allows the definition of constructs and rules between the
different types of components for creating lacking semantics
in IP-XACT. These components have a relation of
specialization and reuse with the concepts defined by IP-
XACT. This section will focus in the definition of the
Transaction Accurate meta-model. It is written as an XML
schema and represents the IP-XACT extension to allow
modeling at this level. The “Execution Unit” abstracts
computation in the SoC model. It is composed of one or more
processing elements which are implemented with independent
threads. The “Execution Unit” represents a task level view of
the hardware parallelism. The “Address Space Unit” is an
abstraction of the communication and the data transfer. It
abstracts an addressable domain in the architecture which can
be a bus, memory …. The “Synchronization Unit” abstracts
the interruption process, which is a distributed process over
many hardware components (interrupt controller …). The
“Device Unit” in our meta-model is a functional view of the
physical device represented by a set of HAL services.

« 1..* »
Device

« 1..* »
Address Space Unit

« 1 »
Synchronisation

Unit

« 1..* »
Execution Unit

A

A

A

AM

M

O

I

H

H

H

H

1..*

1..*

1..*

1..*

1..*

0..*

1..*

0..*
1..*

1..*

1..*1..*

1..*

1..*

H H H

Operating System

O

I

H

HALPort InterruptOUTPort

InterruptINPort

AccessPortMAPPort

« 1..* »
Device

« 1..* »
Address Space Unit

« 1 »
Synchronisation

Unit

« 1..* »
Execution Unit

A

A

A

AM

M

O

I

HH

HH

HH

HH

1..*

1..*

1..*

1..*

1..*

0..*

1..*

0..*
1..*

1..*

1..*1..*

1..*

1..*

HH HH HH

Operating System

O

I

HH

HALPort InterruptOUTPort

InterruptINPort

AccessPortMAPPort

Figure 3. Transaction Accurate Meta-model

This meta-model level distinguishes four types of hardware
ports and one type of software port connecting the logical
units. The “Access Port” abstracts memories accesses
between logic units. Executing a task by the processor requires
writing data in address spaces. The Access Port is used to
abstract this operation from “Execution Unit” to “Address
Space Unit”. The “Map Port” abstracts mapped memories.
Some devices have a local memory mapped with other
memory in the address space. The operation realized in the
address space is automatically realized in the corresponding
mapped memory of the device. The “Interrupt In Port”
abstracts interruption trigger. For example, the device triggers
an interruption and the synchronization unit receives this
request. The “Interrupt Out Port” abstracts the process of
sending the interruption from the “Synchronization Unit” to
the “Execution Unit”. This interruption will be handled by the
abstract CPU. The “HAL Port” is a software port which
abstracts the software communication. The logic units provide
“HAL services” to the operating system. An initiator hardware
port requires a hardware service, which is provided by a target
hardware port of the same type. (The same applies for

software port). The complete Meta-model is shown in Fig 3. It
covers the needs for the expression of a TA model used in
[10]. An IP-XACT extension for modeling at the TA Level is
composed of two files; the fisrt one is an XML schema called
“ta_library.xsd” which contains the definition of specific
components to be used at this level. By analogy to
“spirit:component” of IP-XACT, the central element is
“spirit:TAComponent” which reuse the “spirit:model” and
“spirit:view” elements of IP-XACT. The specialization and
reuse of IP-XACT concepts are realized at this level. For
example, the “spirit:HALPort” of the Transaction accurate
level will reuse the “spirit:portTransactionType” concept of
IP-XACT. If we were to use directly IP-XACT, we would be
obliged to create a port which type is “spirit:port”. Thus, we
are able to create a new element “spirit:HALPort” which is a
specialization of the “spirit:port” element and a reuse of the
“spirit:portTransactionType”. The second one is an XML
schema called “ta_level.xsd” which define the interaction of
component defined in “ta_library.xsd” to design a coherent
model at the TA level. For example, we define at this level
which type of ports are needed to define an “Execution Unit”
component. With a “ExecutionUnit” component, we can
define an unbounded “spirit:HALPort” ports which are in
reality a reuse of “spirit:portTransactionnalPort” and a
specialization of “spirit:port”.

C. IP-XACT ++ proposition
The need to model SoC at different abstraction levels, and

especially high levels, requires developing concepts able to
express component at all these levels. In order to enhance the
expressivity in IP-XACT, we introduce an intermediate layer
which contains abstract concepts specific to the desired
abstraction levels (Fig 4.b).

Abstraction
Levels
Meta

Model

Model
Level

IP-XACT
Meta

Model

…
ta_library.xsd

ta_level.xsd

Component.xsd
AbstractionDefinition.xsd
BusDefinition.xsd
Port.xsd ...

Component
library
(*.xml)

+ Design.xml

: IP-XACT++ : IP-XACT

Transaction Accurate
Component

Library (*.xml)

(a)

(b)

(c)

(b.1)Abstraction
Levels
Meta

Model

Model
Level

IP-XACT
Meta

Model

…
ta_library.xsd

ta_level.xsd

Component.xsd
AbstractionDefinition.xsd
BusDefinition.xsd
Port.xsd ...

Component
library
(*.xml)

+ Design.xml

: IP-XACT++ : IP-XACT

Transaction Accurate
Component

Library (*.xml)

Abstraction
Levels
Meta

Model

Model
Level

IP-XACT
Meta

Model

…
ta_library.xsd

ta_level.xsd

Component.xsd
AbstractionDefinition.xsd
BusDefinition.xsd
Port.xsd ...

Component
library
(*.xml)

+ Design.xml

: IP-XACT++ : IP-XACT

Transaction Accurate
Component

Library (*.xml)

(a)

(b)

(c)

(b.1)

Figure 4. IP-XACT++ structure

The goal of adding this intermediate layer (Fig 4.b) is to
restore the IP-XACT structure to be modular which allows the
definition of specific models related to each modeling
abstraction level. The Model level (Fig 4.c) in IP-XACT++ is
the same as in the IP-XACT specification and different
component libraries are developed with XML files. The
modular structure of IP-XACT++ grants easy evolution and
easy component reuse. Introducing this intermediate layer
allow developing libraries of components specific to
abstraction levels and thus eases IP reuse in SoC design.

V. EXPERIMENT AND INTEGRATION
An example of instance corresponding to the Transaction

accurate Meta-model is shown in Fig 5 with IP-XACT++. In
this model, the “Execution Unit” element is the ARM
processor. It is described as an abstract processor which
provides HAL services via “spirit:HALPort” and request for
data access services via “AccessPort”. The HAL services
offered by “Execution Unit” elements are basically context
services (load_context, switch_context …).

arm

timerAddress_space

Synchro_unit

eCos OS

H

H

H

H

A A

A A

HH HH

H H

I

H H

switch_context,
load_context, …

read, write

H

HI

start_dma,
init_dma, …OO

disable_interrupt
mask_interrupt, …

interrupt

send_irq

read, write

arm

timerAddress_space

Synchro_unit

eCos OS

HH

HH

HH

HH

AA AA

AA AA

HHHH HHHH

HH HH

II

HH HH

switch_context,
load_context, …

read, write

HH

HHII

start_dma,
init_dma, …OOOO

disable_interrupt
mask_interrupt, …

interrupt

send_irq

read, write

Figure 5. IP-XACT++ transaction accurate model

The data access services are access services (Read, Write).
The model uses a TIMER device which provides services such
as “init_timer”, “start_timer”. It uses a synchronization unit
and address space elements too. The transformation process
for SystemC code generation is detailed in Fig 6. We
implement model transformations to define relations between
the TA elements and the SystemC concepts with the ATL
language. We use “ATL Module” to define mapping between
concepts (Fig 6.a) and generate a SystemC model in a XML
format. Transformations over SystemC XML model is
performed with “ATL Query” which generate SystemC code
(Fig 6.b).

Transaction
Accurate

MetaModel
SystemC MetaModelATL

Transformation

ATL MODULE for « Transaction Accurate » component generator

ATL
Transformation

For code
generation

Component
services

Code (SystemC)

Component
Interfaces

code (SystemC)

ATL
Transformation

For code
generation

ATL QUERY ATL QUERY

Service.h
component.h
arm.h , dma.h, …

(a)

(b)
(b)

(c.1)
(c.2)

Transaction
Accurate

MetaModel
SystemC MetaModelATL

Transformation

ATL MODULE for « Transaction Accurate » component generator

ATL
Transformation

For code
generation

Component
services

Code (SystemC)

Component
Interfaces

code (SystemC)

ATL
Transformation

For code
generation

ATL QUERY ATL QUERY

Service.h
component.h
arm.h , dma.h, …

(a)

(b)
(b)

(c.1)
(c.2)

Figure 6. Transaction Accurate to SystemC Transformation for code

generation.

Transformations in Fig 6.a consists of transforming a
component at the TA level into a SystemC module. An
initiator port is transformed into a “sc_port” and a target port
into a “sc_export”. The initiator port requires services while a
target port provides services and has to implement them in the
local SystemC module. The services described in the TA
architecture are transformed into “sc_interface”. Thus, we
generate for each component an interface file (arm.h, mem.h,
dma.h… Fig 6.c.1) and the file “services.h” (Fig 6.c.2) which
contains the services interfaces. We intend to generate those
files basically from the “HALservices” description of our
model. The implementation of those interfaces needs the use
of some predefined libraries. Limitations of this work are at:

(1) Code generation of the behavior of some components
such as Execution Unit or DMA device (2) Modeling with
different abstraction levels at the same time represents a point
that our approach didn’t take in consideration (3) Refinement
of model from an abstraction level to another is still a complex
task because it requires some designer decisions like the
choices in mapping and in the libraries to be used in the
communication and in the operating system.

VI. CONCLUSION
This paper presents an MDE approach in IP-XACT context to
well formalize abstraction level models and to generate
SystemC. We propose an extension of IP-XACT to support
this approach. This extension consists of a set of meta-models
implemented as XML schemas and used to formalize
abstraction levels concepts. By means of our proposition of IP-
XACT extension (IP-XACT++), we show how to integrate an
abstraction level called Transaction Accurate. The integration
of different abstraction levels may improve IP reuse in IP-
XACT. Our future works will focus on modeling at other
abstraction levels. We will focus on modeling application and
software with IP-XACT++. This will offer software
component reuse. The refinement between different
abstraction levels will be an important activity we will focus
on. We will work also in representing our proposed meta-
models with UML profiles such as MARTE.

REFERENCES
[1] SystemC web site: http://www.systemc.org
[2] MARTE UML profile voted at OMG: http://www.omgmarte.org
[3] W. Mueller, Y. Vanderperren: “UML and model-driven development for

SoC design”. CODES+ISSS 2006
[4] E.Riccobene, P.Scandurra, A.Rossi, S.Bocchio, “A SoC Design

Methodology Involving a UML 2.0 Profile for SystemC”. In Design
Automation and Test in Europe Conference (DATE 2005), pages 704-
709.

[5] S. Révol. UML profile for TLM: contribution to formalize and
automates SoC design flow and verification. Thesis document.

[6] C.André, F.Mallet, A. M. Kahn, R. de Simone. « Modeling SPIRIT IP-
XACT in UML MARTE”. DATE Workshop on MARTE, pp. 35-40,
Mars 2008.

[7] P. Boulet, J.L. Dekeyser, C. Dumoulin, P. Marquet, "MDA for SoC
Embedded Systems Design, Intensive Signal Processing Experiment",
SIVOES-MDA workshop at UML 2003 San Francisco., pages 20-24

[8] A. Davare, D. Densmore, T. Meyerowitz, A. Pinto, A. Sangiovanni-
Vincentelli, G. Yang, H. Zeng, Q. Zhu. “A Next-Generation Design
Framework for Platform-Based Design,” Conference on Using Hardware
Design and Verification Languages (DVCon), Feb 2007

[9] F. A. M. do Nascimento, M. F. S. Oliveira, F. Rech Wagner, "ModES:
Embedded Systems Design Methodology and Tools based on MDE,"
mompes, Fourth International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software
(MOMPES'07), pages. 67-76.

[10] K.Popovici, X.Guerin, F.Rousseau, P.S.Paolucci, A.A.Jerraya: Platform-
based software design flow for heterogeneous MPSoC. ACM Trans.
Embedded Comput. Syst. Volume 7 Issue 4 - Article No. 39– 2008

[11] SPIRIT consortium November 2006, IP-XACT specification with ESL
extensions -User Guide v1.4

[12] F. Jouault et I. Kurtev. Transforming Models with ATL. Proceedings of
the Model Transformations in Practice (MTiP) Workshop at MoDELS
2005,pages128-138

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

