
A Link Arbitration Scheme for Quality of Service
in a Latency-Optimized Network-on-Chip

Jonas Diemer and Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig, Germany
Email: {diemer,ernst}@ida.ing.tu-bs.de

Abstract—Networks-on-chip (NoC) for general-purpose multi-
processors require quality of service mechanisms to allow real-
time streaming applications to be executed along with latency-
sensitive general purpose processing tasks. In this paper, we
propose a NoC link arbitration technique that supports band-
width guarantees along with best effort latency optimizations.
In contrast to many existing quality of service mechanisms,
our technique prioritizes best effort over guaranteed bandwidth
traffic for optimal latency. Distributed traffic shaping is used to
offer bandwidth guarantees over previously reserved connections,
which are established dynamically using control messages. Initial
simulation results show that our arbitration scheme can provide
tight bandwidth guarantees for streaming traffic under network
overload conditions. At the same time, the average latency of best
effort traffic is improved compared to a simple prioritization of
streaming traffic.

I. INTRODUCTION AND RELATED WORK

Driven by power efficiency and thermal constraints, main-
stream general-purpose processors are integrating an increas-
ing number of processing cores on a single die. These many-
core architectures are facing challenges similar to embedded
MPSoC architectures [1], [2], especially the on-chip commu-
nication complexity. Networks-on-chip (NoC) have been used
as an efficient communication architecture in this domain for
years and are now also being considered for general-purpose
and high performance computing, e.g. [3], [4], [5], [6]. One
of the challenges for these NoCs is the wide variety of traffic
patterns and communication requirements which cannot be
narrowed down at design time: traffic generated by processor
cores running general-purpose applications is very latency-
sensitive and bursty, but can be treated as best effort (BE)
without timing guarantees. Streaming applications such as
multimedia or augmented reality on the other hand require
a guaranteed bandwidth (GB) with bounded latency.

Without quality of service (QoS) mechanisms supporting
these traffic types in the network-on-chip, it is very difficult,
if not impossible, to execute soft or firm real-time stream-
ing applications in coexistence with other general-purpose
applications. Most existing communication architectures for
general-purpose systems are optimized for best effort latency
and throughput, offering no guarantees to individual traffic
streams. In contrast, communication architectures in embedded
(real-time) streaming systems give strong guarantees, usually
by connection-based preallocation of time slots (e.g. [7], [8]),
by prioritization of virtual channels (e.g. [9], [10], [11]) or a

Input

NORMAL

LOW

Crossbar

Output
Arbitration

TS

Output

Routing

In
pu

t 
C

ha
nn

el
s

O
ut

pu
t 

C
ha

nn
el

s

Fig. 1. Proposed router architecture including traffic shapers (TS).

combination of these [12]. While some approaches (e.g. [11])
offer the ability to separately control latency and bandwidth
guarantees, all of the existing solutions have treat BE traffic,
i.e. traffic for which no service requirements or resource
bounds are known, as low priority traffic, which may only
consume excess bandwidth. This results in higher latencies
for the BE traffic, which is unfavorable in a general-purpose
multiprocessor, where most of the best effort traffic is latency-
sensitive.

Therefore, this paper presents a NoC architecture that is
optimized for latency but allows bandwidth guarantees for
specific traffic streams. The goal is to provide the best possible
latency to the regular BE traffic while meeting the bandwidth
guarantees for the streaming (GB) traffic. We achieve this by
modifying the link arbitration to prioritize BE traffic, but limit
its rate by means of traffic shapers to guarantee bandwidths
for GB traffic. In this way, our approach is similar to the
scheduling in several recent memory controllers with QoS
support (e.g. [13], [14], [15]), which use prioritization to
control latencies and install traffic shapers at the input queues
to regulate bandwidth. As a consequence, these memory con-
trollers allow bandwidth guarantees independent of priorities.
While memory controllers regulate traffic at a single point,
our scheme uses distributed regulators at the network routers.
Coordination of these shapers is achieved by a configuration
protocol, which allows dynamic adjustments to traffic shaper
settings.

II. QOS-AWARE LINK ARBITRATION SCHEME

Our baseline NoC is a packet switched mesh network
with dimension ordered XY-routing for deterministic in-order
packet delivery. The routers use input buffering and switching
is non-blocking. Inter-tile packet flow control follows the

 

978-3-9810801-5-5/DATE09 © 2009 EDAA 

 



virtual cut-through scheme. Buffers and links are arbitrated
at packet granularity, i.e. packets cannot be preempted during
transmission.

A. Priorities and Traffic Shaping

As discussed above, we assume two different traffic classes.
The “regular” traffic generated by processors and caches is
best effort (BE) and is latency-sensitive. Traffic resulting from
streaming applications requires a bandwidth guarantee (GB),
but can tolerate (bounded) latencies. Hence, we define two
priorities: NORMAL for BE traffic and LOW for GB traffic.
Separate buffers (virtual channels) are assigned to priorities.
Link arbitration between traffic is strictly prioritized. NOR-
MAL priority packets will always be handled before LOW
priority ones. Scheduling within the same priority is round-
robin.

Traffic shapers limit the rate of high priority traffic to leave
a guaranteed bandwidth to the low priority traffic. Traffic
shaping usually refers to regulating the rate of packet injection,
which implies that the shapers are placed at the injection
links. However, to regulate the best effort “background” traffic
at individual routes regardless of its source, the shapers are
placed within each router, more specifically after the routing
and before the arbitration stage. Here we can control the rate
of NORMAL priority traffic for each direction (north, east,
south, west, and two clients), allowing us to reserve distinct
GB paths. Fig. 1 depicts our proposed router architecture, with
our variations from a standard router shaded.

We propose to use token bucket shapers, which implement
a bucket for up to b tokens, to which c tokens are added after
every T clock cycles. As long as the bucket is full, additional
tokens are discarded. Whenever a packet is to be sent over an
output link, tokens are taken out of the corresponding bucket.
Each token is worth one cycle on the link. If there are not
enough tokens in the bucket to transfer a complete packet,
it is stalled until enough new tokens have accumulated. This
implies that the bucket must be large enough for the longest
packet. The maximum average rate (as a fraction of the link
capacity) for best effort traffic is rBE

max = c
T , which results in a

minimum guaranteed rate for GB traffic of rGB
min = 1− rBE

max.
The longest interval tblock that a single GB packet is blocked

can be derived from the shaper parameters b, T and c as
follows: The worst case occurs when there are unlimited
NORMAL priority packets injected, the bucket is filled and
the next c tokens are added after c cycles, which yields the
maximum number of additions. Because at most one token can
be consumed per time unit, the maximum time that a single
low priority packet is delayed is (see Fig. 2 for an example):

tblock = b +
⌈

tblock − c

T

⌉
· c (1)

This equation can be solved by iterating from tblock = b. A
fixpoint exists if c < T , i.e. rBE

max < 1.
During a BE burst, GB traffic does not receive its guaranteed

average rate. The corresponding buffer must be at least rGB
min ·

tblock in size so it can absorb enough GB traffic arriving at

b

T

c

Bucket fill level

Time

t
block

Fig. 2. Shaper bucket fill level for b = 5, T = 3, c = 2, resulting in
tblock = 13.

the rate rGB
min for tblock (worst-case BE burst), to ensure that

there will be enough GB data to send during future BE idle
periods in which tokens accumulate for another burst.

B. Bandwidth Allocation Protocol

In order to provide a bandwidth guarantee on a network
route, the corresponding traffic shapers need to be set up
accordingly. This can be done by a distributed protocol using
control messages sent as best effort traffic to set-up and tear-
down a GB connection, which is also done in e.g. [7]. We
assume that T and b are kept constant throughout the NoC,
all shapers are disabled at initialization (e.g. by setting c = T )
and traffic defaults to NORMAL priority.

To establish a guaranteed bandwidth channel from node A
to node B, node A sends a control message to reserve a guaran-
teed rate rrequest.This message contains a requested number
of tokens per period crequest = rrequest · T to reserve for
this channel. The control message is routed deterministically
on the same route as any other traffic between A and B.
On its way, it is processed by every router. With T being
constant, each router decrements c for the traffic shaper of
the corresponding output port by crequest. This effectively
limits the rate of BE traffic potentially blocking the GB traffic
stream to rBE = T−crequest

T (after the first reservation).
When the reservation message successfully reaches B, an
acknowledge message is sent back to A. After that, the GB
channel is established and may be used by sending packets on
the LOW priority. If a router cannot free enough bandwidth
(c < crequest), it discards the request and sends a not-
acknowledge message back to A. Note that this message may
take a different route than the setup packet, so it cannot directly
free resources. To free reserved tokens – either as a response to
a not-acknowledge message or when a connection is no longer
needed – the requester A sends a control message to B or to
the router that sent the not-acknowledge to free the previously
reserved tokens cfree = crequest. Routers that see this message
increment c in the corresponding shapers accordingly. The
bandwidth allocation protocol has an overhead of two packet
round trips on the BE traffic class, which amortizes quickly if
large amounts of data need to be streamed.



C. Overlapping GB Streams

We have only discussed a single GB connection so far, but
multiple independent reservations can be made along overlap-
ping routes. Since LOW priority streams are indistinguishable
from each other, they can interfere, i.e. “steal” bandwidth
from each other. Hence, we require GB streams to conform
to their requested average bandwidth, which can be done by
a system policy or by additional shapers at the corresponding
injection points. When GB streams overlap, there are three
cases to consider: (1) Streams enter and leave the router over
the same ports. Here, they can share both buffers and shapers.
The blocking time reduces compared to a single stream due
to reduced c, which also reduces buffering requirements. (2)
Streams diverge, i.e. they enter at the same port, but leave
over different ports. Naturally, they use separate shapers, but
they must also use separate buffers to avoid that head-of-
line blocking prevents streams from using their guaranteed
bandwidth when it becomes available (i.e. when the corre-
sponding BE shaper is depleted). The allocation of buffers to
GB connections is done dynamically during the setup of GB
connections. (3) When streams converge, they use different
buffers, but share the same traffic shaper. Blocking time (and
hence buffer size) becomes more complicated to calculate,
since individual GB streams are not only blocked by BE traffic,
but also by other GB streams (for the maximum packet length
s per contending GB stream). Assuming the BE shaper does
not saturate during that time (i.e. b > (N − 1) · s/T · c), the
blocking time for N converging GB streams is given by Eq.
2, which can be used along with the corresponding rates to
calculate the minimum buffer sizes.

tblock,conv = b + (N − 1) · s +
⌈

tblock,conv − c

T

⌉
· c (2)

D. Discussion

We have employed virtual cut-through flow control for its
favorable overload behavior. However, we acknowledge the
fact that this requires large packet buffers compared to flit-
sized buffers in the more commonly used wormhole flow
control scheme. This may make our scheme seem infeasible
for a current NoC. However, in a general purpose architecture,
larger caches are located on every node anyway, which could
be used to buffer packets, so virtual cut-through becomes
viable again. Furthermore, we believe that our scheme can
be extended to be used with wormhole flow control when
each GB connection uses its own virtual channel (VC), so
that stalled flits do not interfere with other streams. Multiple
VCs for BE traffic are beneficial for the same reason.

With the arbitration scheme presented in this paper, band-
width that is reserved but not consumed by GB traffic is
wasted. BE traffic cannot be allowed to send with the cor-
responding traffic shaper being depleted without potentially
violating the bandwidth guarantees, because link arbitration
is done on packet level and thus a BE packet cannot be
preempted when a GB packet arrives. This drawback can be
solved by arbitrating on flit level (by using wormhole routing),

S R

(7,3)

(0,0)

Fig. 3. Mesh with streaming application (Sender and Receiver).

so that the transmission of a BE packet can be preempted to
transmit a GB packet in that case. Flit-level arbitration would
also improve BE latency.

Our arbitration scheme has additional hardware costs for the
traffic shapers, improved arbitration logic, and configuration
logic. We believe these are feasible, but no thorough studies
have been conducted so far.

III. EXPERIMENTAL EVALUATION

For a initial evaluation of the concepts, we have imple-
mented the NoC outlined above in a SystemC model. The
routers have two separate, relatively large buffers (one for each
priority), each of which holds 8 packets. Routing delay is one
cycle (very optimistic), and each router can transfer 4 bytes
per cycle and output on bidirectional links. Network traffic is
generated by packet generators with configurable randomized
packet size, injection rate and destination distribution. These
are used to model both background traffic as well as streaming
traffic. All experiments are performed on a 4x8 mesh network.
A packet generator modeling a streaming application is located
on node (0,2) and sends packets along the x-axis to node
(6,2), as illustrated in Fig. 3. All other nodes inject background
traffic. Test cases were randomized (e.g. packet injection jitter)
and executed for 100k cycles multiple times with different
random seeds to obtain standard deviations and min/max
values shown in the plots.

Our first experiments demonstrate the effect of network
overload to the streaming application. The streaming appli-
cation sends a packet of 32 bytes (including packet overhead)
every 12 to 52 cycles, averaging 1 byte/cycle. Hence, it
consumes 25% of the available bandwidth on that route (with
a link bandwidth of 4 bytes/cycle). All other nodes inject back-
ground traffic. The left bar represents the streaming application
running under medium network load: Each background tile
injects a packet of 32 bytes every 10 to 22 cycles to a random
destination. As a result, the streaming application achieves full
throughput (left bar in Fig. 4), even though both traffic classes
share the same priority and buffers.

To model an overload situation, background tiles inject
32 bytes every 8 to 12 cycles only to destinations in row 2.
This results in a 65% drop in the streaming application
bandwidth when the same priorities are used (second bar in
Fig. 4), which could lead to severe degradation of service
quality (e.g. deadline misses) for that application. The naı̈ve
solution to restore the throughput of the streaming application
is to send the background traffic on LOW priority (without any



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Same Prio Same Prio BE LOW GB LOW+TS

To
ta

l t
hr

ou
gh

pu
t /

 L
in

k 
B

an
dw

id
th

 Medium Load High Load

Throughput

Fig. 4. Streaming traffic throughput.

 0

 5

 10

 15

 20

 25

 30

 35

 40

Same Prio BE LOW GB LOW+TS GB OFF

La
te

nc
y 

/ c
yc

le
s

Average Latency

Fig. 5. Best effort traffic latency.

traffic shaping, third bar in Fig. 4). This, however, has negative
effects on the latency, but can be seen as the best case for the
streaming traffic. Alternatively, in our arbitration scheme, the
streaming traffic is sent on LOW priority and traffic shaping
of the NORMAL priority is enabled (with b = 64, T = 64 and
c = 48, resulting in rmax

BE = 75%) in the east-bound shapers
of nodes (0,2) through (5,2) and the reception shaper of (6,2).
This also restores the throughput of the streaming traffic to its
original value (rightmost bar in Fig. 4).

To see the effect of these adjustments on the best effort
traffic, we have measured the average latencies for tile (1,2)
east of “S” in Fig. 3, sending bursts of 1 to 3 packets to row 2
every 44 to 84 cycles (1 byte/cycle average). The background
load is low (32 bytes every 44 to 84 cycles) to reduce the
impact of background traffic on the measured latency.

Fig. 5 shows the average latencies for different scenarios.
The left bar constitutes the case where all traffic shares one
priority and no guarantees are given. With the naı̈ve solution
of BE traffic being sent on LOW priority, the average latency
increases slightly. When streaming traffic is sent on LOW
priority with traffic shaping enabled (shaper settings as above),
we can improve the latency by over 30%. This is still about
50% more than the best case latency (with streaming traffic
OFF) due to the lack of packet preemption.

IV. CONCLUSION

In this paper, we have presented a link arbitration scheme
for a Network-on-Chip targeted to general purpose comput-
ing, supporting two traffic classes: guaranteed bandwidth and
latency-optimized best effort. Our approach allows bandwidth
guarantees while maintaining much of the latency of the
best effort traffic, which is essential for the performance
of general purpose applications. This is achieved by prior-
itizing the latency-sensitive BE traffic over GB traffic and
integrating traffic shapers in the link arbitration to maintain
bandwidth guarantees. We have presented a distributed model
to configure this mechanism and discussed the overheads and
possible extensions of the scheme. Initial simulation results
have demonstrated the effectiveness of the arbitration scheme
to give tight bandwidth guarantees to streaming traffic under
high load. They have also shown the positive impact on best
effort latency under low load conditions compared to a simple
prioritization of streaming traffic.

ACKNOWLEDGMENT

This work is supported by Intel Corporation. The authors
would like to thank the researchers at Intel Germany Research
Center for their valuable input and support.

REFERENCES

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick, “The Landscape of Parallel Computing Research: A
View from Berkeley,” UC Berkeley, Tech. Rep. UCB/EECS-2006-183.

[2] M. Azimi, N. Cherukuri, D. Jayashima, A. Kumar, P. Kundu, S. Park,
I. Schoinas, and A. Vaidya, “Integration Challenges and Tradeoffs for
Tera-scale Architectures,” Intel Technology Journal, August 2007.

[3] M. Kistler, M. Perrone, and F. Petrini, “Cell multiprocessor communi-
cation network: Built for speed,” IEEE Micro, vol. 26, no. 3, pp. 10–23,
2006.

[4] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, P. Iyer, A. Singh, T. Jacob et al., “An 80-Tile 1.28 TFLOPS
Network-on-Chip in 65nm CMOS,” ISSCC 2007.

[5] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C. Miao, J. Brown III, and A. Agarwal, “On-Chip Intercon-
nection Architecture of the Tile Processor,” IEEE Micro, vol. 27, no. 5,
pp. 15–31, 2007.

[6] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan, “Larrabee: a many-core x86 architecture for
visual computing,” in SIGGRAPH ’08, 2008.

[7] K. Goossens, J. Dielissen, and A. Radulescu, “Æthereal Network on
Chip: Concepts, Architectures, and Implementations,” IEEE DESIGN &
TEST, pp. 414–421, 2005.

[8] T. M. Marescaux, Mapping and management of communication services
on MP-SoC platforms. Technische Universiteit Eindhoven, 2007.

[9] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS
architecture and design process for network on chip,” J. Syst. Archit.,
vol. 50, no. 2-3, pp. 105–128, 2004.

[10] N. Kavaldjiev, G. Smit, P. Jansen, and P. Wolkotte, “A Virtual Channel
Network-on-Chip for GT and BE traffic,” IEEE ISVLSI.

[11] T. Bjerregaard, The MANGO clockless network-on-chip: concepts and
implementation. IMM, Danmarks Tekniske Universitet.

[12] M. A. A. Faruque, G. Weiss, and J. Henkel, “Bounded arbitration
algorithm for QoS-supported on-chip communication.”

[13] S. Heithecker and R. Ernst, “Traffic shaping for an FPGA based SDRAM
controller with complex QoS requirements,” DAC ’05, pp. 575–578.

[14] S. Whitty and R. Ernst, “A bandwidth optimized SDRAM controller for
the MORPHEUS reconfigurable architecture,” IPDPS 2008, 2008.

[15] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: A predictable
SDRAM memory controller,” CODES+ISSS ’07, pp. 251–256, 2007.


	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index




