
Analogue Mixed Signal Simulation Using Spice and
SystemC

Tobias Kirchner, Nico Bannow

Robert Bosch GmbH
Corporate Sector Research and

Advance Engineering
P.O. Box 30 02 40, 70442 Stuttgart, Germany

Tobias.Kirchner@de.bosch.com

Christoph Grimm

Vienna University of Technology
Institute of Computer Technology

Grimm@ICT.TUWien.ac.at

Abstract—SystemC is a discrete event simulator that enables
the programmer to model complex designs with varying levels
of abstraction. In order to improve precision, it can be coupled
to more specialized simulators.

This article introduces the concept of loose simulator coupling
between an analogue simulator and SystemC.

It explains the properties and advantages which include a
higher simulation performance as well as a higher degree of
flexibility.

A design example in which SystemC will be connected to
SwitcherCad will demonstrate the benefits of loose coupling.

I. INTRODUCTION

Some progress has been made in simulation technology over
the past couple of years. With more and more manufacturers
supporting it, SystemC [1], [2] has grown in importance
constantly.

Using SystemC it is possible to reach very high levels of
abstraction. However, its ability to extend simulation coverage
down to analogue level is limited. So far there is no way
for SystemC to simulate designs with better precision than
register transfer level (RTL). Still, there are circuits which
just cannot be simulated inside the digital domain since they
require feedback from the analogue world. This is where
more specialized, mostly continuous time simulators need
to be used. Because SystemC is essentially C++, it can do
both, be a simulator and act as connecting and coordinating
element between different other simulators. With a specialized
simulator like MatLab Simulink, Spice or Saber connected
to it, SystemC capabilities are extended towards analogue
continuous time simulation.

Another attempt to extend SystemC simulation capabilities
is SystemC AMS Extensions. It is an extension to the SystemC
language that aims at analogue designs [3], [4].

II. RELATED WORK

When coupling an analogue simulator to SystemC, the
usual way of interfacing is by using the simulators built-in
programming language interface and extending the SystemC
kernel with co-simulation capability. In a tightly synchronized
co-simulation all simulators start at simulation time t0 = 0s.

This paper refers to the simulator that runs first as the master.
In a tight simulator coupling the simulator is usually not
pre loaded with a bias point or an internal state. Master
and slave simulator are synchronised at fixed intervals. In
an improved approach the master determines when its next
event occurs and commands the slave to advance to that point.
The slave reports back to the master and indicates whether
it has encountered an event of its own before the end of
this time step. If it has, the master advances to that time
instead [5]. As seen in Fig. 1 all simulators are instantiated at
the beginning of the simulation and remain in memory until
they are finished. Between simulations they are just halted,
retaining their internal state. The advantage of this kind of
coupling is a very tight and synchronous interaction of the
simulators chosen. The outputs can be examined at any time
during the simulation and they will be synchronized in regular
intervals.

SC

SPICE

time steps21

SC

SPICE

SC

Fig. 1. Execution of tightly coupled simulators. Both of them start at t0 and
are executed at least once every simulation timestep.

Tight coupling also brings some problems with it. Most of
all, only simulators which support a co-simulation interface
can be used. There is also a lot of communication necessary
in order to keep the simulators synchronized. Depending on the
implementation of the coupling interface, this communication
overhead may even use more computational power than the
simulation itself. Especially simulations that are distributed
across a network suffer from additional network latency de-
lays.

III. LOOSE SIMULATOR COUPLING

In contrast to the tight coupling, with loose coupling there
is a clear difference between the master and a slave simulator.

 

978-3-9810801-5-5/DATE09 © 2009 EDAA 

 



The master gets executed upon start of simulation and remains
active throughout the remainder of the simulation. A slave on
the other hand gets called by the master, executes and shuts
down when it has finished. When started for the first time, a
slave calculates a bias point. When it exits, it will save the
current state of the simulation to file so that it can resume the
simulation when it is called again.

Not all slave simulators do have to start at t0. The master
may invoke them later during the simulation.

In order to be used as a loosely coupled simulator a slave
needs to accept and execute the simulation model source files
as a parameter and it needs to be able to load and save its
internal state on request.

An example for such a simulator is the spice based
SwitcherCad3 from Linear Technologies [6].

In order to connect SCad3 to SystemC the wrapper in
Fig. 2 has been developed [7]. It provides access to the
netlist, components and all other parameters of the analogue
simulation as if they were an integral part of SystemC. In order
to achieve this, it translates SystemC commands and integrates
the resulting information into the netlist file prior to executing
the slave.

sim. state from 

prev. sim.

SPICE

SystemC

netlist

raw file

log file sim. state at end 

of simulation

scan for 

errors

scan for 

events

modify 

sources

wrapper

Fig. 2. All information between SystemC and SCad3 is exchanged via files.

It also scans the results for errors and events that need to
be reported back to SystemC.

IV. ADVANTAGES OF LOOSE COUPLING

A. Selective Precision

The fact that the slave simulator does not have to start at
t0 is one of the most important advantages of loose coupling.
This allows SystemC to enable SCad3 only when it is needed.

In a simulation where a SystemC microcontroller model is
connected to an analogue circuit via I/O pins, the analogue
simulator would not be invoked until the microcontroller has
finished the reset and initialisation phase. During this phase
there is no access to the I/O pins and thus no change in the
analogue part of the circuit. Because the analogue simulator
is not enabled at this point the simulation is accelerated con-
siderably. This is shown in Fig. 3. SC M2 is the first module
that accesses the pins that are connected to the analogue parts
of the design.

When the simulation of analogue circuits is not needed,
SCad3 is not started. In contrast to tight simulator coupling, in

SC_reset

SPICE

= save simulator state

SC_M1 SC_M2 SC_M1

SPICE

SC_M2

time steps

Fig. 3. Loose Coupling allows SystemC to simulate a microcontroller reset
and invoke the analogue simulator afterwards.

this example analogue simulation can be resumed later during
the simulation by making the appropriate simulator state file
available to SCad3.

This selective precision results in a considerable increase in
simulation performance.

B. Re-use of Multiple Simulation Runs

Whenever the analogue slave simulator is invoked by the
master, it is supplied with internal simulation state details. It
then runs for a certain time and saves the updated simulation
state information and the simulation results back to file. It so
leaves a complete trace of previous activities which allow for
a re-simulation at any time.

In order to re-simulate a section of time none of the
preceding simulations has to be repeated since the results
would not change but are already available. Only simulations
after the point where the change did happen have to be updated
with new results. See Fig. 4. After that the results are collected
and arranged by the master.

simulation run one:

SC_M2 SC_M1

SPICE

= load simulator state

SC_reset

SPICE

SC_M1 SC_M2 SC_M1

SPICE

SC_reset SC_M1

has changed

*

time steps

time steps

simulation run two:

= save simulator state

Fig. 4. If SC M2 in simulation 1 changes, only Spice simulations after that
point have to be re run.

C. Multi-Processor Computation Capability

Using the standard kernel SystemC simulations can not be
designed in a way that they use multiple processors. Whether
the analogue simulator makes use of more than one processor
depends on the simulator and can not be influenced by the
user.



In a normal, tight simulator coupling only one simulator
runs at a time. They alternate between synchronization points.

In a loose coupling, however, simulators are synchronized
when there is a change of inputs to or an event from the
analogue simulator. Between these events the simulators can
run asynchronously and in parallel. If a design contains
analogue parts that are independent from each other, e.g. two
output stages driven by different I/O pins, each part can be
simulated with a dedicated simulator.

If an analogue event occurs only the simulators which are
affected by it are stopped or started. This does not only de-
crease communications load but also distributes it, preventing
bursts.

D. Universal Access to Analogue Components

In a tight simulator coupling access to components of an
analogue simulation is limited by the interface. Depending on
the implementation this access may be limited to a group of
elements, e.g. voltage sources or just the interfaced component
itself.

In a loose coupling, every component may be read or
written between simulation steps. This is possible because
each simulation step is an independent simulation with its
own netlist. Each component in the netlist can be changed
between simulation steps. It is also possible to add or remove
components. In combination with the ability of a loosely
coupled simulator to run ahead of the digital siulator, it is
possible to make the simulation sensitive to events like extrema
or turning points. These events can only be detected because
they occurred in the past.

In a tight simulator coupling detection of an extremum is
only possible if the simulation can be rolled back to that point.

E. Optimizing a Design for Loose Simulator Coupling

It has become obvious by now that loose coupling has
its greatest advantages in designs, that need only very few
synchronization points. It is therefore advantageous to use a
mechanism like the one in Fig. 7 which translates requests to
a loosely coupled simulator whenever necessary.

If the input to the analogue circuitry changes with every
delta cycle, there is no advantage. But as soon as there are
cycles that do not affect the analogue design, requests to the
analogue simulator are cached and passed on to the simulator
before a relevant change happens. The graph which is labeled
out in Fig. 6 represents the input to the analogue part of the
design in Fig. 5. As long as it remains stable, there is no need
to interrupt the according analogue simulation run.

SystemC out

Fig. 5. SystemC is connected to the analogue simulator via the signal out.

210 3

out

time steps

Fig. 6. The signal out in Fig. 5 changes only twice during five simulation
time steps.

SC

SPICE

210

SystemC Interface Layer

SPICE

3

SPICE

SC SC SC

time steps

SC

Fig. 7. An interface layer collects requests to the analogue simulator and
passes them on if a signal changes.

Simulation results are only synchronized at points where the
analogue simulator gets started. Introducing an interface layer
like in Fig. 7 allows already existing simulations with tightly
coupled simulators being quickly transformed into a loosely
coupled equivalent.

V. DESIGN EXAMPLE

A. Controlling a Capacitive Load

The following example demonstrates the benefits of loose
simulator coupling.

The example in Fig. 8 consists of an amplifier that is
connected to a capacitive load. The amplifier has a digital
push pull output stage which can be switched to either ±20 V
or tristate. It has a polarity input and a tristate input. An
application for such a setup can be a piezo ceramic injector
or if used with a inductive load a hydraulic valve.

Fig. 8. Schematics of the design example. A push-pull amplifier drives a
capacitive load.

B. Operation

The amplifier shall be controlled in a way that it charges
the capacitor to a given voltage and keeps it at that level. Each
time one of the inputs of the amplifier changes, a new analogue
simulation gets started. It runs until either a new digital event
that affects the analogue simulation occurs, or it terminates
prematurely due to an event in the analogue domain.



A termination condition for the analogue domain needs to be
set prior to simulation execution. Once the analogue simulation
terminates, it hands back control to the digital simulator which
then executes the next event.

Fig. 9 shows the output of the SCad3 simulation after the
results from the different simulation steps have been merged.

Fig. 9. The output of the simulation. The vertical lines mark the simulation
boundaries.

The upper trace shows the input voltage to the amplifier. A
value of 1 V causes the amplifier to output 20 V, 0 V at the
input results in −20 V at the output. The trace in the middle is
the tristate input of the circuit. The trace at the bottom shows
the voltage across the capacitor. After a short delay it rises up
to the desired level and stays there with a hysteresis of 0.5 V.

Each simulation is labeled with a number at the bottom.
The vertical dashed lines mark the simulation boundaries. The
arrows indicate where analogue events occurred. At the end
of the first analogue simulation part, after approximately 1µs,
no analogue event has occurred because simulation finished
at the predefined point in time. All subsequent simulations
are interrupted because the abort criterion was met, i.e. an
analogue event occurred. The master then initializes a new
simulation, sets the break condition and the values for the
inputs of the amplifier. It is then started with a predefined
time of 2 microseconds. The simulation will not run for
the whole 2 microseconds but stop before that time because
the abort condition will be met. The voltage sources inside
the simulation are evaluated directly without any hardware
interfaces as described in section IV-D. This means that signal
conditioning is encapsulated within the wrapper.

If the simulation had to be extended or modified, previously
calculated simulation steps that have not changed can be re-
used. The operator just marks them as inactive to skip the
actual calculation. The simulation in Fig. 9 has been extended
so that the voltage across the capacitor drops to five volts. The
result can be seen in Fig. 10. The level input of the amplifier is
set low while the tristate input is switched low as well so that
the amplifier will output −20 V. As a result the voltage drops
very quickly. In order to mark the preceding simulations as
inactive, the corresponding lines of code have to be changed
manually. In future steps one could also implement some sort
of automatism which tracks the inputs to the simulation and
decides whether the data can be re-used or not. To proceed
to the next simulation phase the code is simply extended with
the new simulation steps.

Fig. 10. The previous simulation has been extended so that the voltage is
now stable at 5V.

Fig. 10 shows the simulation that has now been extended.
The arrows in the graph indicate that an analogue event has
occurred at this point. The arrows can only be found in the
second part of the simulation because the first part has been
loaded from files which were already available from the first
simulation run. The total simulation time for this simulation
run was only 6 seconds, compared to 7 seconds of the previous
simulation. Without the re-use of simulation results, the total
simulation time would have been 13 seconds.

VI. CONCLUSION

This paper has introduced the concept of loose simulator
coupling and explained its advantages over conventional tight
coupling.

Loose coupling can easily be established with many simu-
lators because it just requires the slave simulator to be able to
handle netlists as well as to load and store its internal state.

It can speed up the simulation by temporarily suspending the
analogue simulation and by reducing synchronisation points.
This also facilitates the distribution of multiple loosely coupled
simulators across different processors and allows for a generic
access to components between simulation steps.

By storing simulation results along with the simulators
internal state and timestamps in a file, these results can be
re-used in consecutive simulation runs.

REFERENCES

[1] O. S. Initiative, IEEE 1666-2005 Standard SystemC Language Reference
Manual, http://www.systemc.org, December 2005.

[2] T. Grötker, System Design with SystemC. Norwell, MA, USA: Kluwer
Academic Publishers, 2002.

[3] C. Grimm, M. Barnasconi, A. Vachoux, and K. Einwich, An Introduction
to Modeling Embedded Analog/Mixed-Signal Systems using SystemC AMS
Extensions, http://www.systemc-ams.org/ ed., June 2008.

[4] K. Einwich, A. Vachoux, C. Grimm, and M. Barnasconi, SystemC AMS
extensions Draft 1, SystemC-AMS Working Group, December 2008.
[Online]. Available: systemc-ams.org

[5] L. Gheorghe, F. Bouchhima, G. Nicolescu, and H. Boucheneb, “A formal-
ization of global simulation models for continuous/discrete systems,” in
SCSC: Proceedings of the 2007 summer computer simulation conference.
San Diego, CA, USA: Society for Computer Simulation International,
2007, pp. 559–566.

[6] M. Engelhardt, SwitcherCad3 Manual, 2nd ed., Linear Technonogy Inc.,
December 2007.

[7] T. Kazmierski and N. Clayton, “A two-tier distributed electronic design
framework,” in DATE ’02: Proceedings of the conference on Design,
automation and test in Europe, vol. -. Washington, DC, USA: IEEE
Computer Society, 2002, p. 227.


	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index




