
Speculative Reduction-Based Scalable Redundancy Identification

Hari Mony1 Jason Baumgartner1 Alan Mishchenko2 Robert Brayton2

1IBM Systems & Technology Group, Austin, TX
2Department of EECS, University of California, Berkeley

Abstract

The process of sequential redundancy identification is

the cornerstone of sequential synthesis and equivalence

checking frameworks. The scalability of the proof obliga-

tions inherent in redundancy identification hinges not only

upon the ability to cross-assume those redundancies, but

also upon the way in which these assumptions are lever-

aged. In this paper, we study the technique of specula-

tive reduction for efficiently modeling redundancy assump-

tions. We provide theoretical and experimental evidence

to demonstrate that speculative reduction is fundamental to

the scalability of the redundancy identification process un-

der various proof techniques. We also propose several tech-

niques to speed up induction-based redundancy identifica-

tion. Experiments demonstrate the effectiveness of our tech-

niques in enabling substantially faster redundancy identifi-

cation, up to six orders of magnitude on large designs.

1 Introduction

Sequential redundancy identification is the process of

demonstrating that two gates in a design always evaluate

to the same or opposite values in all reachable states. Once

a pair of redundant gates are identified, the design may be

simplified by merging one of the gates onto the other. Ef-

ficient redundancy identification algorithms are at the core

of scalable sequential equivalence checking [1] as well as

sequential synthesis [2] frameworks.

For scalability, many sequential redundancy identifica-

tion frameworks adopt an assume-then-prove [3, 4, 5, 6, 7]

paradigm, where using assume-guarantee reasoning, cer-

tain suspected redundancies may be assumed to simplify the

proof that others hold. A variety of proof techniques includ-

ing simple induction [4], k-step induction [8, 6, 7], and syn-

ergistic transformation and verification algorithms [6] have

been proposed to identify sequential redundancy. Regard-

less of the proof technique, the scalability of redundancy

identification hinges on the way redundancy assumptions

are modeled in the assume-then-prove framework.

A technique called speculative reduction was proposed

in [6] to efficiently model redundancy assumptions through

structural logic simplifications. Speculative reduction is key

to the scalability of induction-based techniques; the gain

in runtime due to speculative reduction can be several or-

ders of magnitude as noted in [2]. Furthermore, speculative

reduction is critical to enable the efficient use of arbitrary

transformation and verification algorithms to prove redun-

dancy assumptions [6].

In this paper, we provide a detailed study of the tech-

nique of speculative reduction. We first provide a theoret-

ical justification of how speculative reduction is critical to

the efficiency of sequential redundancy identification. We

next provide detailed experimental evidence to illustrate the

benefit of speculative reduction to induction-based proofs.

We additionally present several new techniques to speed up

this process, which collectively enable up to six orders of

magnitude speedup. We also provide an empirical study on

the necessity of speculative reduction to enable the appli-

cation of algorithms such as interpolation [9] and localiza-

tion [10] to identify non-inductive redundancy. While sev-

eral prior works have noted the benefit of speculative reduc-

tion (e.g., [6, 2]), this paper is the first to study this benefit

in detail, both theoretically and experimentally.

2 Preliminaries

We represent our design as a netlist, which is a tuple

〈〈V,E〉, G〉 comprising a directed graph with vertices V

and edgesE ⊆ V ×V . FunctionG : V 7→ types represents

a mapping from vertices to gate types, including constants,

primary inputs, registers, and combinational gates with var-

ious functions. A state is a valuation to the registers of the

netlist. Registers have designated initial states which define

the time-0 state of the netlist, as well as next-state functions

which define the time i + 1 state of the netlist. A trace is a

temporal sequence of Boolean valuations to netlist vertices

which is consistent with G.

Given a netlist, redundancy identification frameworks

based on the assume-then-prove paradigm such as those

of [3, 4, 5, 6, 7] operate as per the algorithm of Figure 1.

Step 1 of this algorithm guesses the redundancy candidates,

using a variety of techniques which includes both semantic

and syntactic approaches [6].

Once the redundancy candidates are guessed, the next

step is to create a netlist which includes the verification

goals necessary to prove those candidates correct. For ef-

ficiency, it is desirable to be able to assume candidate re-

 

978-3-9810801-5-5/DATE09 © 2009 EDAA 

 



1. Guess the redundancy candidates – sets of equivalence classes of gates,

where each gate g in equivalence class Q(g) is suspected to be
equivalent to every other gate in the same class, along every trace.

2. Select a representative gate R
`

Q(g)
´

from each equiv. class Q(g).
3. Construct the speculatively-reduced netlist by replacing the source gate

g of every edge (g, h) ∈ E by R
`

Q(g)
´

. Additionally, for each gate g,

add a miter representing function g 6≡ R
`

Q(g)
´

.

4. Attempt to prove that each of the miters is unassertable.

5. If any miters cannot be proven unassertable, refine the equivalence

classes to separate the corresponding gates; go to Step 2.

6. All miters have been proven unassertable; return the accurate equivalence

classes which reflect true redundancy.

Figure 1: Sequential redundancy identification framework

j j

f and g suspected to be equivalent
Original Netlist N1 Speculatively-reduced Netlist N2

Merge fanout references of f to g

Add miter mf,g to validate the merge

f

g

h

mf,g

f

g

h

Figure 2: Illustration of speculative reduction

dundancies to simplify these proof obligations. Speculative

reduction was proposed in [6] to efficiently model these

assumptions at the netlist level. The netlist is first specu-

latively reduced by merging the fanout references of each

candidate gate onto a representative from its equivalence

class. Next, to prove the correctness of the assumptions,

a miter is added to check whether the candidate and its rep-

resentative can be differentiated as illustrated in Figure 2.

Finally, proof analysis is performed on the speculatively-

reduced netlist to attempt to validate the correctness of the

redundancy candidates, represented by the un-assertability

of the miters. Failed proofs, whether falsified or inconclu-

sive (e.g., due to resource limitations), cause a refinement

of the candidates and another proof iteration.

3 Speculative Reduction

In this section, we detail the ways in which the scalabil-

ity of sequential redundancy identification hinges on spec-

ulative reduction. These advantages will be experimentally

justified in Section 5.

First, speculative reduction simplifies proof obligations

by minimizing the logic in the fanin of each miter. For ex-

ample, in Figure 2, gate f no longer will appear in the logic

driving gate h. Cumulatively, the set of all speculative re-

ductions often enables a dramatic reduction in the size of

the speculatively-reduced netlist, and even in the number

of distinct miters to be solved. For example, if the dan-

gling inputs of gates h and j in Figure 2 are redundancy

candidates, the miter for h 6≡ j would trivially be 0 since

h and j would hash to the same gate in the speculatively-

reduced netlist. Speculative reduction plays a similar role

to cut-pointing in combinational equivalence checking; if

pairs of corresponding registers of designs being sequen-

tially equivalence checked are speculatively reduced, the

complexity of the equivalence checking problem [11] may

be reduced from PSPACE to NP, precluding any need for

sequential reasoning. Though unlike cut-pointing which

replaces registers by inputs and thus loses reachability in-

formation, speculative reduction preserves netlist behav-

ior (provided that the redundancy candidates are correct),

hence does not yield false failures e.g. if a miter checks the

equivalence of two logic cones which were optimized using

unreachability conditions.

Speculative reduction is also key to enabling arbi-

trary transformation and verification algorithms to effi-

ciently discharge complex non-inductive miters [6]. Ex-

periments confirm that transformation and verification algo-

rithms are much more effective after the speculative merg-

ing. For example, speculative merging helps share logic

across the netlist comprising two designs being equivalence

checked, in turn enabling sharing-aware logic rewriting al-

gorithms [12] and min-area retiming [13] to further re-

duce the speculatively-reduced netlist in ways that would

not be possible otherwise. Speculative merging can also

increase the capability of structural isomorphism detec-

tion [14] to suppress isomorphic miters. In equivalence

checking frameworks, abstraction algorithms such as local-

ization [10] – which seeks to eliminate logic irrelevant to

the current proof obligation through cutpointing – will be

ineffective without speculative merging, often requiring the

entire logic cones driving the two redundancy candidates.

With speculative merging, only the subset of logic required

to enforce adequate satisfiability don’t cares over the locally

redesigned logic being equivalence checked will be neces-

sary as noted in [6]. Verification algorithms also face bottle-

necks without speculative reduction. Interpolation [9] is a

verification algorithm that we have found to be very useful

to solve non-inductive miters. Our experiments demonstrate

that in the absence of speculative reduction, interpolation

rarely converges and has run-times and memory consump-

tion that are several orders of magnitude higher.

The last and possibly biggest advantage of speculative

reduction is that it enables the efficient elimination of sim-

pler miters, allowing heavier-weight proof algorithms to fo-

cus solely on the inherently most complex miters. To illus-

trate this advantage, consider the two designs being equiv-

alence checked in Figure 3(a), each having two compo-

nents C1 and C2. Assume that the changes to C1 enable

induction-based techniques to prove C1 ≡ C ′

1
. However

induction cannot prove C2 ≡ C ′

2
. For the design in Fig-

ure 3(a), we can apply induction to first merge the outputs

of C1 and C ′

1
and then use heavier-weight algorithms to

address C2 ≡ C ′

2
. Speculative reduction is not needed to

solve this problem given the appropriate miter scheduling,



b) C1 ≡ C ′
1
– non inductive due to feedback

C ′
1

C2

C ′
2

C ′
2

C2C1

C ′
1

C ′
2

C2C1

C ′
1

c) C1 ≡ C ′
1
– inductive due to speculative merging

C2 ≡ C ′
2
– non-inductive, amenable to heavier-weight proof algorithms

C2 ≡ C ′
2
– non-inductive C2 ≡ C ′

2
– non-inductive

C1

a) C1 ≡ C ′
1
– inductive

Figure 3: Advantages of speculative reduction

e.g., using a levelized scheduling as in combinational equiv-

alence checks [15]. Now consider Figure 3(b), where there

is feedback from C2 to C1. In this case, the equivalence

check between C1 and C ′

1
will no longer be inductive. The

inability to inductively prove C1 ≡ C ′

1
will make the proof

of C2 ≡ C ′

2
even more difficult since there is no merge of

the outputs of C1 with C ′

1
without speculation. However,

if we use speculative reduction as illustrated in Figure 3(c),

the feedback fromC2 is no longer a bottleneck for induction

to prove C1 ≡ C ′

1
, hence these miters may be easily dis-

charged allowing heavier-weight algorithms to focus solely

on the simplified proof of C2 ≡ C ′

2
.

4 Refining the Redundancy Candidates

It is easy to understand why the efficiency of redundancy

identification is dependent on efficiently solving the miters.

However, the efficiency of the refinement process also has a

big role in overall performance, since there may be as many

refinements (and hence proof attempts) as there are gates in

the netlist. Techniques for guessing redundancy candidates

are practically inexact, hence many initial candidate guesses

may be incorrect requiring refinement. Moreover, the in-

conclusive nature of algorithms such as resource-bounded

induction also entails refinements due to the inability to

prove even accurate candidates.

k-induction frameworks used to prove miters operate as

follows.

• Base Case: Validate that the miters are unassertable in
the first k time-steps starting from the initial states.

• Inductive Case: Assuming that the miters are

unassertable for the first k time-steps from any state,

check whether they can be asserted at time-step k + 1.

The key observation is that when induction fails to prove

a miter unassertable, it will provide a trace starting from

either an initial state or an inductive state showing how

the miter can be asserted. Due to resource limitations,

traces from the base case will only exhibit candidate in-

equivalences which may be demonstrated in earlier time-

steps. The inductive step may yield traces both for candi-

dates which may become inequivalent only at a deeper time-

step than the base case could reach, or spurious traces from

unreachable states due to the incompleteness of resource-

bounded k-induction. While the induction counterexample

traces may be spurious, for efficiency it is nonetheless de-

sirable to identify all candidates which may be differenti-

ated by a given induction trace (similar to the reuse of SAT

sweeping traces for combinational analysis [15, 16]) so that

it is not necessary to compute a redundant counterexample

asserting such miters. The set of differentiated candidates

may be computed by simulating the behavior of the original

netlist with the inductive state and input sequence from the

induction trace. Two enhancements that we have discovered

for this process are as follows.

(1) During simulation of the induction trace, in addition

to merely checking whether other miters for the current re-

finement iteration can also be asserted by that trace, we can

check for mismatches between candidates of the equiva-

lence classes being refined for the next iteration which do

not yet have miters constructed. In other words, this simu-

lation can look for mismatches between candidates and their

representatives against the evolving window of equivalence

classes being refined from the current to the next refinement

iteration. This enhancement does not alter the final identi-

fied redundancy, since every refinement effectively weak-

ens the induction hypothesis. If the gates in the new equiv-

alence classes can be differentiated by the induction trace

with an inductive starting state that corresponds to the pre-

refinement induction hypothesis, they can be safely refined

since a failed proof attempt under the previous stronger in-

duction hypothesis implies that proof attempts will fail un-

der the weaker post-refinement induction hypothesis.

(2) We can sequentially extend the induction trace by a

number of time-steps (randomly generating input valuations

for the additional time-steps) and check whether equiva-

lence classes can be further refined during simulation of the

extended trace. This extension does not alter the final identi-

fied redundancy because the inductive starting state already

adheres to the current “stronger” induction hypothesis, and

each extended time-step will by construction adhere to the

“weaker” induction hypothesis which would hold in a sub-

sequent iteration after equivalence class partitioning.

It is noteworthy that both of these optimizations enable

maximal incrementality for efficiency, vs. rebuilding the

speculatively-reduced netlist upon every refinement. The

induction counterexamples can be used for refining as noted

above irrespective of the nature of the SAT-solver used for

induction, i.e., whether it is CNF-based or circuit-based. In

practice, we have observed that a circuit SAT solver [17] is

more powerful than a CNF-based SAT solver [18] due to its



native ability to produce minimal assignments in counterex-

amples. Any unassigned inputs may be randomly assigned,

which further randomizes the inductive starting state. This

enables a huge reduction in the number of counterexam-

ples generated by the SAT-solver and thereby in overall re-

sources. Without this capability, resimulation is often less

effective, motivating the use of approximating tricks such

as distance-1 simulation which resimulates all traces re-

sulting from flipping a single input valuation in the orig-

inal complete counterexample [16]. Post-processing CNF

traces to minimize assignments [19] may be equally effec-

tive, though at an additional cost.

5 Experimental Results

In this section we provide experiments to illustrate the

power of speculative reduction and our accelerating tech-

niques. All experiments were run on a 2.1GHz processor,

using the IBM internal verification tool SixthSense.

We first provide experimental results for induction-based

redundancy identification, to illustrate the advantages of us-

ing speculative reduction and the techniques for acceler-

ated refinement proposed in Section 4. The benchmarks

include a mixture of difficult industrial sequential equiva-

lence checking and synthesis examples. IBUF, SSC,MIS1,

MIS2, MIS3, SDQ and SBIU are sequential equivalence

checking examples, whileDAA, SMM, FIER,CIU and L2

are synthesis examples. Five different flavors of SAT-based

simple induction were run on these benchmarks. These in-

clude: (1) speculative reduction disabled, (2) speculative

reduction enabled, (3) speculative reduction with induction

traces resimulated to check for additional miter assertions,

(4) speculative reduction with induction traces resimulated

to differentiate newly-generated equivalence classes (item

(1) from Section 4), and (5) speculative reduction with in-

duction traces sequentially extended by 2 time-steps (item

(2) from Section 4).

The first two columns in Table 1 indicate the benchmark

name and size of the original netlist. Columns 3-11 indi-

cate the runtime for each flavor of induction along with the

improvement in runtime compared to the previous inferior

flavor. Column 12 indicates the cumulative improvement.

Column 5 illustrates the importance of speculative reduc-

tion for improving the scalability of induction-based redun-

dancy identification. Speculative reduction results in an av-

erage speedup of 21.94×. Simulation of induction coun-

terexamples is a powerful extension to this technique, en-

abling an additional 11.65× speedup on average by trans-

ferring some of the burden to assert miters from SAT to

simulation. The early refinement techniques described in

Section 4 enable a speedup of 104.56× on average over the

use of counterexample simulation alone.

A particularly interesting testcase is L2. Using our tech-

niques, we were able to identify all inductively-provable

redundant gates in 165 seconds. If speculative reduction

were disabled, we are only able to complete 4 iterations of

the “assume-then-prove” algorithm before we hit a timeout

of 48 hours. Extrapolating, it would have taken almost 10

years to reach the fixed-point if we had continued to run

all 6860 iterations necessary as per the run with speculative

reduction with simulation (induction flavor (3)).

To identify the precise source of these runtime improve-

ments, we provide additional experimental results to com-

pute the total number of miters solved by SAT (Table 2)

and the number of refinement iterations and induction coun-

terexamples (Table 3). As illustrated in Table 2, specu-

lative reduction results in a 11.31× reduction on average

in the total number of miters solved by SAT. This is due

to the fact that speculative merging reduces the number of

distinct nontrivial miters. Our accelerated refinement tech-

niques enable an additional average reduction by 815.8× in

the number of miters solved by SAT. There are two reasons

for this reduction: (1) early refinement shields SAT from

receiving certain miters that are destined to fail through in-

duction, and (2) since the number of refinement iterations

is reduced by this technique, induction need not re-solve as

many identical unassertable miters across iterations.

Table 3 illustrates the advantage of using simulation to

assert miters instead of relying on SAT-based analysis. Here

we list the total number of induction traces and the number

of refinements to reach a fixed-point for various flavors of

induction. Trace simulation enables 27.04× reduction on

average in the number of traces generated during induction.

This is due to its ability to preclude SAT from needing to

solve the corresponding miters. Our accelerated refinement

techniques further reduces the number of induction traces,

by 124.02× on average. This is due to the ability to drasti-

cally reduce the number of refinement iterations, by an av-

erage of 113.45×.

Speculative reduction is also indispensable for speed-

ing up sequential equivalence checking in the presence of

recorded synthesis history [20]. In this work, a History

And-Inverter Graph (HAIG) is constructed during sequen-

tial synthesis to represent the original, intermediate, and fi-

nal circuit structures. Recorded along with these structures

are proof obligations which validate each synthesis step.

Miters may be constructed to represent the equivalence of

each pre- and post-synthesis component; if all miters are

successfully proven as un-assertable, the synthesis process

has been proven as correct often with dramatically lesser re-

sources than would be required by an overall input-output

equivalence check across the sum of the synthesis steps. Be-

cause these miters each correlate to suspected equivalences,

speculative reduction can be used to simplify the overall

verification problem. Though space does not allow us to

provide detailed experiments for this application, we have

measured a speedup of 20.5× across a testsuite of 12 HAIG



Design Spec. Red. Spec. Red. Spec. Red. & Spec. Red. & Spec. Red. &

Info Disabled (1) Enabled (2) Cex Sim (3) Cex Analysis (4) Seq Cex Extension (5)

Name Gates Time (s) Time (s) Improve. Time (s) Improve. Time (s) Improve. Time (s) Improve. Improve.

w.r.t. Col 3 w.r.t. Col 4 w.r.t. Col 6 w.r.t. Col 8 w.r.t. Col 3

IBUF 11424 9963.54 7525.14 1.32× 1670.70 4.50× 27.03 61.88× 11.74 2.31× 849.06×

SSC 16385 6492.82 5235.01 1.24× 1120.95 4.67× 74.46 15.05× 28.32 2.63× 229.42×

MIS1 21044 22928.14 1304.81 17.57× 288.31 4.53× 18.53 15.58× 7.36 2.52× 3100.10×

MIS2 22772 67861.09 1040.27 65.23× 222.53 4.67× 20.20 11.01× 8.84 2.29× 7698.75×

MIS3 18094 39752.06 6869.12 5.79× 1156.71 5.94× 88.88 13.01× 26.69 3.33× 1489.82×

SDQ 26666 16736.32 7263.21 2.30× 2082.55 3.49× 84.80 24.56× 40.05 2.12× 417.94×

SBIU 30442 8408.64 4828.65 1.74× 820.21 5.89× 88.53 9.27× 31.91 2.77× 263.55×

DAA 31424 41027.82 32449.83 1.26× 5926.20 5.48× 199.36 29.71× 90.43 2.20× 452.49×

SMM 85574 846.11 83.46 10.13× 81.56 1.02× 8.55 9.6× 5.78 1.46× 145.38×

FIER 89943 158938.12 15028.18 10.57× 9357.58 1.61× 20.30 461.00× 15.01 1.35× 10617.11×

CIU 92232 6744.56 166.07 40.63× 138.58 1.2× 12.73 10.91× 10.61 1.19× 637.30×

L2 374977 172800 (4 / 6860) 172800 (420 / 6860) 105× 28404.73 96.75× 214.24 132.54× 165.02 1.30× 1748739.80×

AVG. 68415 21.94× 11.65× 66.18× 2.12× 147886.66×

Table 1: Induction-based redundancy identification results

Design Spec. Red. Spec. Red. Spec. Red. & Spec. Red. &

Info Disabled (1) Enabled (2) Cex Analysis (4) Seq Cex Extension (5)

Name Miters Miters Improvement Miters Improvement Miters Improvement Improvement

Solved Solved w.r.t. Col 2 Solved w.r.t. Col 3 Solved w.r.t. Col 5 w.r.t. Col 2

IBUF 1970075 1588746 1.24× 11978 132.64× 7318 1.64× 269.20×

SSC 1182197 794239 1.49× 35554 22.34× 18028 1.97× 65.65×

MIS1 2850774 642594 4.44× 13466 47.72× 6785 1.98× 420.51×

MIS2 3180878 351192 9.06× 13784 25.49× 6870 2.00× 463.36×

MIS3 3351149 1374897 2.44× 46505 29.56× 26145 1.78× 128.30×

SDQ 719262 567757 1.27× 18456 30.76× 9538 1.93× 75.39×

SBIU 1705755 1054606 1.62× 24062 43.83× 13792 1.74× 123.54×

DAA 4836934 4147228 1.67× 44949 92.27× 28321 1.58× 244.56×

SMM 172579 161487 1.07× 2743 58.87× 2221 1.23× 77.79×

FIER 40101056 5161148 7.77× 9137 564.86× 8265 1.10× 4852.02×

CIU 334274 92709 3.61× 7577 12.23× 5376 1.41× 62.17×

L2 6207648900 61660373 100.07× 62334 989.19× 59169 1.05× 103937.65×

AVG. 11.31× 170.81× 1.62× 9226.67×

Table 2: Miters solved by SAT during induction-based redundancy identification

Design Spec. Red. Spec. Red. & Spec. Red. & Spec. Red. &

Info Enabled (2) Cex Sim (3) Cex Analysis (4) Seq Cex Extension (5)

Name Induction Cexs; Induction Cexs; Improvement Induction Cexs; Improvement Induction Cexs Improvement Improvement

Refinements Refinements w.r.t. Col 2 Refinements w.r.t. Col 3 Refinements w.r.t. Col 5 w.r.t. Col 2

IBUF 552623; 988 13712; 988 40.30× 1561;22 8.78×; 44.90× 701; 11 2.22×; 2.00× 787.91×; 89.80×

SSC 202892; 537 20974; 537 9.67× 1869; 38 11.22×; 14.13× 794; 19 2.35×; 2.00× 255.40×; 28.26×

MIS1 230457; 709 9310; 709 24.75× 1511; 29 6.16×; 24.45× 497; 18 3.04×; 1.61× 463.51×; 39.39×

MIS2 136217; 408 8275; 408 16.46× 1391; 30 5.95×; 13.60× 468; 16 2.97×; 1.88× 291.10×; 25.50×

MIS3 368629; 564 13060; 564 28.23× 2145; 32 6.09×; 17.63× 649; 19 3.30×; 1.68× 568.21×; 29.68×

SDQ 177672; 407 10827; 407 16.41× 1974; 10 5.48×; 40.70× 440; 7 4.48×; 1.43× 403.46×; 58.14×

SBIU 372830; 767 24403; 767 15.28× 4711; 22 5.18×; 34.86× 1436; 17 3.28×; 1.29× 259.66×; 45.12×

DAA 969845; 1633 49374; 1633 19.64× 6118; 25 8.07×; 65.32× 2484; 16 2.46×; 1.56× 390.35×; 102.06×

SMM 157002; 428 6097; 428 25.75× 392; 14 15.55×; 30.57× 327; 10 1.19×; 1.40× 476.49×; 42.80×

FIER 5157805; 3199 638443; 3199 8.08× 704; 6 906.88×; 533.16× 579; 5 1.22×; 1.20× 8939.66×; 639.80×

CIU 89946; 340 8263; 340 10.89× 692; 22 11.94×; 15.45× 431; 14 1.60×; 1.57× 208.76×; 24.29×

L2 29625219; 6860 271791; 6860 109.00× 1701; 30 159.78×; 228.66× 1502; 29 1.13×; 1.03× 19680.10×; 236.55×

AVG. 27.04× 95.92×; 88.62× 2.44×; 1.55× 2727.05×; 113.45×

Table 3: Induction traces and refinement iterations during redundancy identification

examples using speculative reduction. This benefit is not

as pronounced as for redundancy identification since it does

not require refinement, though is nonetheless substantial.

To illustrate the advantage of applying transformation

and verification algorithms on the speculatively-reduced

netlist, we performed a set of experiments which are de-

tailed in Table 4. For SDQ, we ran interpolation (ITP) on

both the speculatively-reduced netlist as well as the original

netlist checking overall input-output equivalence. ITP was

able to solve all the miters (including the original equiva-

lence obligations) in the speculatively-reduced netlist in 51

seconds, consuming only 54 MB of memory. Without spec-

ulative reduction, ITP could not solve any original equiv-

alence checks within 48 hours, consuming 10.5 GB. This

clearly illustrates the advantage of speculative reduction for

interpolation. For IFU, we did three sets of experiments: (1)

localization (LOC) followed by interpolation on the origi-

nal netlist without speculative reduction, (2) LOC followed

by interpolation on the speculatively-reduced netlist, (3)

interpolation directly on the speculatively-reduced netlist.

LOC yields several orders of magnitude reduction in the

size of each miter (a single representative miter is illus-



SDQ Spec. Red. Disabled ITP Spec. Red. Enabled ITP

Registers 3655 178200s 1833 51s

Gates 27429 10575.5 MB 11220 54 MB

Miters 2141 2141 61 2141

IFU Spec. Red. Disabled LOC ITP Spec. Red. Enabled LOC ITP Spec. Red. Enabled ITP

Registers 66421 15441 178200 s 33231 4 646 s 33231 178200s

Gates 686790 241461 1678 MB 303620 22 832 MB 303620 7184 MB

Miters 33879 1 1 1035 1 0 1035 435

SYNTH3 Spec. Red. Disabled COM MOD RET COM Spec. Red. Enabled COM MOD RET COM

Registers 5180 5180 5167 1343 810 5180 2439 2437 7 35.81s

Gates 68389 68377 54750 70449 48359 57477 32399 25176 39378 103 MB

Miters 2293 2293 2293 2293 2000 1631 294 294 294 0

IOC Spec. Red. Disabled COM MOD COM ISO Spec. Red. Enabled COM MOD COM ISO

Registers 5382 5319 5319 3268 2194 5324 5125 5124 896 669

Gates 35219 33747 76773 30636 20160 29235 23080 31541 4417 3698

Miters 4119 4077 4034 2557 1678 3967 3658 3550 1169 380

Table 4: Multi-algorithmic benefit of speculative reduction

trated) and this enables ITP to easily solve these miters.

This example illustrates that speculative reduction alone is

insufficient to enable certain ITP-based proofs, which times

out at 48 hours leaving 435 miters unsolved. The advantage

of speculative reduction for localization is also illustrated

by this example. Applying LOC on the original netlist re-

sults in a localized netlist with 15441 registers as opposed to

4 when applying LOC on the speculatively-reduced netlist.

ITP times out on this much larger netlist, though efficiently

solves the reduced netlist.

SYNTH3 and IOC illustrate the advantage of speculative

reduction across a larger set of algorithms. For SYNTH3,

the application of phase abstractionMOD [21] followed by

min-area retiming RET [13] and combinational optimiza-

tion COM [12] on the speculatively-reduced netlist is able

to efficiently solve all miters. For IOC, MOD and COM

followed by structural isomorphism detection ISO dramat-

ically simplifies the speculatively-reduced netlist.

6 Conclusion

In this paper, we have demonstrated theoretically and

empirically that speculative reduction is fundamental to the

scalability of redundancy identification, irrespective of the

proof technique used therein. We also introduced new tech-

niques which enable several orders of magnitude speedup

in induction-based redundancy identification.

References

[1] J. Baumgartner, H. Mony, V. Paruthi, R. Kanzelman,

and G. Janssen, “Scalable sequential equivalence checking

across arbitrary design transformations,” in ICCD, 2006.

[2] A. Mishchenko, M. Case, R. Brayton, and S. Jang, “Scal-

able and scalably-verifiable sequential synthesis,” in ICCAD,

Nov. 2008.

[3] D. Stoffel and W. Kunz, “Record & play: A structural fixed

point iteration for sequential circuit verification,” in ICCAD,

Nov. 1997.

[4] C. A. J. van Eijk, “Sequential equivalence checking without

state space traversal,” in DATE, Feb. 1998.

[5] Shi-Yu Huang et al., “AQUILA: An equivalence checking

system for large sequential designs,” TCAD, 2000.

[6] H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman,

“Exploiting suspected redundancy without proving it,” in

DAC, June 2005.

[7] F. Lu and K.-T. Cheng, “IChecker: An efficient checker for

inductive invariants,” in HLDVT, Nov. 2006.

[8] P. Bjesse and K. Claessen, “SAT-based verification without

state space traversal,” in FMCAD, Nov. 2000.

[9] K. L. McMillan, “Interpolation and SAT-based model check-

ing,” in CAV, 2003.

[10] Dong Wang et al., “Formal property verification by abstrac-

tion refinement with formal, simulation and hybrid engines,”

in DAC, June 2001.

[11] J.-H. Jiang and R. Brayton, “Retiming and resynthesis: A

complexity perspective,” in TCAD, vol. 25, Dec. 2006.

[12] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware

AIG rewriting: A fresh look at combinational logic synthe-

sis,” in DAC, July 2006.

[13] A. Kuehlmann and J. Baumgartner, “Transformation-based

verification using generalized retiming,” in CAV, July 2001.

[14] G. S. Manku, R. Hojati, and R. K. Brayton, “Structural sym-

metry and model checking,” in CAV, July 1998.

[15] A. Kuehlmann, “Dynamic transition relation simplification

for bounded property checking,” in ICCAD, Nov. 2004.

[16] A. Mishchenko et al., “Improvements to combinational

equivalence checking,” in ICCAD, 2006.

[17] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Robust

Boolean reasoning for equivalence checking and functional

property verification,” TCAD, vol. 21, Dec. 2002.

[18] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and

S. Malik, “Chaff: Engineering an efficient SAT solver,” in

DAC, June 2001.

[19] K. Ravi and F. Somenenzi, “Minimal satisfying assignments

for bounded model checking,” in TACAS, 2004.

[20] A. Mishchenko and R. K. Brayton, “Recording synthesis his-

tory for sequential verification,” in FMCAD, 2008.

[21] P. Bjesse and J. Kukula, “Automatic generalized phase ab-

straction for formal verification,” in ICCAD, Nov. 2005.


	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index




