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Abstract—Linear Model-based Test and Diagnosis (MbT&D)
has been successfully applied to single-block modules like Digital-
to-Analog Converters (DACs) with a static non-linear transfer
characteristic. For Multi-block modules, a diagnosis methodology
is needed that can deal with cascades of several linear and non-
linear blocks.

In contrast to non-linear methods, linear MbT&D methods
only require matrix operations associated with relatively low
computational effort. A modification of the linear MbT&D in
combination with Volterra series is presented that can be applied
to cascaded non-linear systems, for example, a DAC followed
by a low-pass filter. A simultaneous identification of numerous
frequency domain Volterra kernels is enabled, and thus, to test
the compliance to data sheet specifications.

I. INTRODUCTION

An RF transceiver, as shown in Fig. 1, is a typical example
of a mixed-signal circuit used in wireless communication
systems. It consists of a cascade of functional blocks such
as amplifiers, mixers and filters. The realization as Systems-
on-Chip (SoC) or System-in-Package (SiP) accommodates the
drive for increased system integration, while a SiP offers the
option of mixing fabrication technologies on a block-by-block
basis for optimizing system performance and cost.

Even if efficient test and diagnosis strategies are available
for individual standalone blocks, e.g. data converters [1], [2]
and linear filters [3], [4], the limited access to internal nodes
poses a significant test problem.

One alternative to block-level test is to perform specification
oriented system-level tests, which require a full functional
test of the system properties – but the increasing number of
specification values, summarized in a system specification, and
the complexity of their measurement has led to ever-increasing
test time and test costs [5].

We aim for a structural test strategy [6], [7] that exploits
the knowledge of the system structure. When this structure is
represented by a parameterizable model, we call this strategy
“Model-based Test” (MbT) [8], [9], [10]. Pass/fail decisions
are made by comparing the system performance parameters
(like Total Harmonic Distortion, Third-Order Intercept Point,
etc.) of the model with the specification. The performance
parameters of the the Device Under Test (DUT) are computed
from the parameters of the model, identified by key measure-
ments on the DUT. The number of the key measurements
is less than the number of measurements, which would be
necessary measuring the performance parameters directly on
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Fig. 1. Typical RF transceiver architecture with transmit (Tx) and receive
(Rx) paths. Encircled are the baseband blocks DAC, amplifier, and low-pass
filter of the I-channel of the transmit path.

the DUT. Moreover, the model parameters can be used for
model-based fault diagnosis [1], [4], [11].

Various MbT methods have been developed by a number
of research groups world wide. In [12], an RF subsystem is
modeled by applying multivariate adaptive regression splines.
Linear MbT was originally proposed in [13] by the National
Institute of Standards and Technologies (NIST) and has been
introduced in high-volume production [14] in order to reduce
the cost of testing an 11-bit video-DAC architecture. In [8]
an Artificial Neural Network (ANN) has been applied to
model a direct conversion receiver. A comparison of a direct
implementation of the NIST approach and a Wavelet based
method applied to a single-block programmable gain amplifier
is given in [15].

In the present work, linear MbT is made applicable uti-
lizing frequency domain Volterra series [16], which offers
the interpretation of model parameters in order to estimate
numerous DUT performance parameters at once [17]. As a
consequence test time and thus, test costs can be reduced.
A simultaneous identification of multiple Volterra kernels is
realized by applying only one multi-tone test signal, but differs
from other measurement techniques with multi-tone test signal
[18], [19].

The paper starts in Sec. II with an explanation of Model
based Test and Diagnosis. Afterwards, in Sec. III the DUT
is introduced and the identification of the system model
parameters as well as the creation of the system model
follow in Sec. V and IV, respectively. The verification of the
model parameter identification is given in Sec. VI and VII.
The calculation of performance parameters of the DUT from
identification results is shown in Sec. VIII. Sec. IX concludes
the paper.
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Fig. 2. General block diagram for Model-based Testing; the prediction error
signal E( f ,p, p̃) is calculated from the test signal responses y(t,p) and ỹ(t, p̃).

II. TEST AND DIAGNOSIS

A. Model-based Test

Assume a physical device has to be tested. Numerous system
level tests would have to be performed on a device realized
as a SiP with complex system structure. The effort of such a
time consuming test can be reduced by applying Model-based
Test (MbT). Fig. 2 shows the general structure of MbT.

For MbT, a system model of the DUT is created. The model
has a set of ν parameters, denoted by a parameter vector

p̃ = [p̃0, . . . , p̃ν−1]
T , (1)

while the DUT has a set of µ true parameters, denoted by a
parameter vector

p = [p0, . . . , pµ−1]
T . (2)

The structure and the number of parameters of the DUT
and of the system model do not have to be identical. The
model is intended to imitate the Input/Output (I/O) behavior
of the DUT. Ideally, the model structure is such, that the
I/O behavior of the DUT is matched. The system model
parameters have to be determined by applying only a small set
of measurements on the DUT using the test signal x(t). The
parameter identification is performed by the parametrization
block (Fig. 2) based on the response y(t,p) of the DUT.

The output signal ỹ(t, p̃) of the parameterized system model
can be postprocessed in the same way as it is done with the
DUT response (DSP blocks). Hence, measurements on the
DUT can be replaced by using the system model. In our case
the DSP blocks calculate the power spectra P( f ,p) and P̃( f , p̃)
of the DUT and system model responses in order to calculate
an error signal E( f ,p, p̃) for rating the parameter identification
accuracy.

Having the correct system model parameter set p̃, DUT-
hardware measurements can be replaced by computations
utilizing the system model in order to determine the perfor-
mance parameter values of the DUT. Thus, from the known
performance parameter values, a test decision can be obtained
in the conventional way. The accuracy of the MbT depends
on the capability of the system model to reproduce the I/O
behavior of the DUT and on the accuracy of the parameter
identification. A more detailed description of MbT is given
in [10], [20].

B. Model-based Diagnosis

The system model is derived from the DUT, taking its specific
structure into account. Hence, there is a relationship between
the system model parameters and the DUT parameters. Thus,
the MbT approach offers a capability to identify the root
causes of performance degradations.

If the parameter vector p̃ of the system model is identified
by applying MbT to a specific DUT, the parameters p̃i and
the associated system model blocks, causing the performance
degradation, can be localized. There is a relationship between
the system model parameter set p̃ and DUT parameters p j
associated with dedicated DUT blocks. Hence, the system
model parameters, that indicate a performance degradation,
identify the degraded DUT blocks.

As an example in [21] and [11] descriptions of diagnosing
hard faults and parametric deviations for data converters, based
on linear MbT, are given.

C. Prediction Error

The MbT approach requires a sufficiently detailed and accurate
model. Assuming that we can obtain such a model, the
advantage of this approach is that the test and diagnosis tasks
are reduced to a model parameter identification problem.

In general, the determined parameters deviate from the ideal
parameters, for the system model to imitate the DUT in the
best way. Applying identical input signals results in output
signals of DUT and system model, which differ from each
other. Therefore, a figure of merit is necessary in order to rate
the accuracy of the parameter identification.

Fig. 2 shows the block diagram for the evaluation of the
response mismatching between a DUT and a system model. A
test signal x(t) is applied to the parameterized system model
and the DUT and yield in the responses ỹ(t, p̃) and y(t,p),
respectively. The output signals are post processed to the
corresponding power spectra P̃( f , p̃) and P( f ,p) in order to
obtain the prediction error signal as defined in [20]:

E( f ,p, p̃) = P̃( f , p̃)−P( f ,p). (3)

In our case of prediction error calculation, the DSP blocks in
Fig. 2 accomplish a Fast Fourier Transformation (FFT) and
convert the amplitude spectrum to a power spectrum.

Several DUTs of the same structure differ in their parameter
sets pk, where k indicates the k-th DUT and thus, the k-th
parameter set. Ideally, after tuning the associated parameter
set p̃k for a DUT, the prediction error signal E( f ,pk, p̃k) is
zero for every arbitrary input signal x(t).

Because noise is not predictable in power spectrum and we
are only interested in significant spectral lines resulting from
the deterministic input signal, we define a set F of relevant
spectral lines in the output power spectra. Frequency bins,
with pure noise and no signal contributions, are excluded from
the prediction error calculation. The worst case value of the
relevant frequencies in the prediction error signal of a specific
DUT defines the prediction error:

Emax(p, p̃) = max
∀ fi∈F

‖E( fi,p, p̃)‖. (4)
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Fig. 3. The Device Under Test as cascade of a nonlinear block followed by
an LTI-filter. The internal signal sNL(t) is not accessible.

TABLE I
NOMINAL DUT PARAMETERS.

Parameter p0 p1 p2 p3 p4

Value 0.50 10.00 0.05 −0.01 1/(2π ·100 Hz)

The smaller Emax(p, p̃) is, the better the system model ap-
proximates the DUT with respect to the performance measure
that would result from a test signal response from raw DUT
measurements.

III. DUT DESCRIPTION

In Fig. 1 the first stages in the Tx path of an RF transceiver
are encircled. This subsystem consists of three devices: a
DAC, followed by an amplifier and a low pass filter. This
cascade converts the digital input signal to the analog domain
in preparation for the subsequent up-conversion to the RF
domain.

The observation of effects concerning MbT does not neces-
sitate a realistic DUT. That is why our DUT is confined to the
baseband function of one Tx path in Fig. 1. In the following,
the DUT is reduced to a two block device as depicted in Fig. 3.
It consists of a static Non-Linearity (NL) followed by an LTI
filter. The nonlinear block is intended to mimic the behavior of
both together, the DAC and the amplifier. Gain and nonlinear
distortions are set by parameters in the equation for the static
nonlinear block:

sNL(t) = p0 + p1x(t)+ p2x2(t)+ p3x3(t). (5)

The functionality of the smoothening filter is represented by
a passive LTI filter with the frequency domain characteristic

Y (s) =
1

1+ p4s
SNL(s) = G(s)SNL(s). (6)

The signals SNL(s) and Y (s) denote the Laplace transforms of
the input and output signals of the LTI block. According to
Eq. (6) the LTI block realizes a first-order low pass filter.

The entire parameter set can be summarized in a parameter
vector

p = [p0, p1, . . . , p4]
T . (7)

The DUT has five parameters, with the nominal (design) values
listed in Table I. The 3 dB cut-off frequency of the LTI filter
is 100 Hz. This set is denoted in the following by the nominal
parameter vector p0.

IV. SYSTEM MODEL

The system model block in Fig. 2 is a model, which is derived
from the block structure of the DUT. As in [20] and [22]
different system models have been combined with linear MbT,
the time domain Volterra model (applied as system model)
yields the highest parameter identification accuracy. Hence,
the Volterra series approach [16] offers a convenient way to
apply linear MbT to our DUT.

The limited interpretability of time domain Volterra kernels
motivates a frequency domain Volterra kernel identification.
Moreover, the frequency domain is the common data format
in RF-measurement pratice and the nonlinearity of the DUT
is of limited order, which consequently limits the length of
the frequency domain Volterra series. This series is used to
represent the system model block (Fig. 2).

The nonlinear block of the DUT is characterized by a
Volterra series:

SNL( f ) = HNL,0( f )+HNL,1( f )X( f )

+
∞∫
−∞

HNL,2( f1, f − f1)X( f1)X( f − f1)d f1

+
∞∫
−∞

∞∫
−∞

HNL,3( f1, f2, f − f1− f2)

X( f1)X( f2)X( f − f1− f2)d f1d f2 (8)

with

HNL,0( f ) = p0δ( f ) (9)
HNL,n( f1, . . . , fn) = pn for n = 1,2,3. (10)

The frequency domain Volterra kernels of the nonlinear block
are denoted by HNL,n( f1, . . . , fn) and the input signal in fre-
quency domain is denoted by X( f ). The frequency domain
Dirac Delta is denoted by δ( f ) and the transfer function of the
LTI-Filter block is denoted by G( f ). Hence, the relationship
between the LTI-filter input signal and DUT output signal is:

Y ( f ) = HLTI,1( f )SNL( f ) = G( f )SNL( f ). (11)

The elimination of SNL yields the resulting Volterra series.
Because only harmonic input signals are intended to be used,
the frequency domain representation consists of Dirac deltas.
Because of the sifting property of the Dirac delta, the integrals
in Eq. (8) turn into sums. Then, the resulting Volterra series,
which exactly imitates the I/O characteristic of the DUT is

Y ( f ) = H0( f )+H1( f )X( f )+
∞

∑
f1=−∞

H2( f1, f − f1)X( f1)X( f − f1)+

∞

∑
f1=−∞

∞

∑
f2=−∞

H3( f1, f2, f − f1− f2)X( f1)

·X( f2)X( f − f1− f2) (12)



where

H0( f ) = G( f )p0δ( f ) (13)
H1( f ) = G( f )p1 (14)

Hn( f1, . . . , fn) = G( f1 + · · ·+ fn)pn ; n = 2,3 (15)

and

f = f1 + · · ·+ fn (16)
G( f ) = G( f1 + · · ·+ fn). (17)

Eqs. (13)–(15) describe the relationship between the DUT
parameter set p and the system model parameter set
p̃ = [H0 . . .Hν−1]T :

p̃ = f (p). (18)

V. SYSTEM MODEL PARAMETER IDENTIFICATION

The system model parameter identification is realized by the
parameterizing-block depicted in Fig. 2. The parametrization is
intended to be realized using a linear model [13], [21], because
it promises an accurate and fast parameter identification.

The linear model is realized and used as follows. For fi ∈F ,
the DUT’s output spectrum Y ( fi,p) is written as a vector b. A
linear system of equations is created modeling the relationship
between the vector b and the nominal DUT output amplitudes
Y ( fi,p0) in a vector b0:

b = Aestx̃+b0. (19)

The vector x̃ ∈ Cl represents the parameters of the linear
model. The matrix Aest is a model matrix which provides the
relationship between the model vector x̃ and the complex DUT
output signal amplitudes Y ( fi,p).

A second model matrix Apred is used to predict the system
model parameter set p̃ which depends on the model parameter
set x̃ ∈ Cl as follows:

p̃ = Apredx̃+ p̃0. (20)

Because the vector b represents measurement values, the
parameter set p̃ is predicted as an approximation of the DUT
parameter set p utilizing both matrices Aest and Apred. The
matrix Apred provides the relationship between the model
vector x̃ and the system model parameter set p̃.

The matrices Aest and Apred are created from ”noise-free”
measurements of the system model parameters (Volterra ker-
nels [18], [19]) and from the test signal responses for a subset
of the DUTs in run up of the production test. The generation
of the linear model matrices is explained in detail in [10].

VI. SIMULATION SETUP

A. DUT and System Model Setup

As done in [20] and [22], two sets of DUTs are created. Each
DUT k has its individual parameter set pk. The parameters pk

i
are Gaussian distributed around the nominal parameter values
p0

i with a standard deviation of 1% in the first set and 10%
in the second set.

There are some changes in the general MbT-setup shown in
Fig. 2: The system model block is replaced by the frequency

TABLE II
MULTI-TONE TEST SIGNAL DEFINITION.

f/Hz 70 80 91 103 116 149 200

φ/ rad 2.21 0.70 0.75 4.49 4.73 0.69 5.99
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Fig. 4. Power spectrum P( f ,p0) of the response y(t,p0) of the DUT with
nominal parameters.

domain Volterra model (Sec. IV), which requires a frequency
domain input signal X( f ), while the DUT input signal x(t) is
in time domain. The parametrization block applies the linear
model from Sec. V and uses the frequency domain output
signal from the DUT in order to estimate the Volterra kernels
of the system model.

The outputs of DUT and system model are post-processed
in order to obtain the output spectra and the prediction error
Emax(p, p̃) for rating the model accuracy.

B. Test Signal

A general frequency dependency inhere in the Volterra kernels:
Hn( f1, . . . , fn). Assume, there is a test signal with a finite num-
ber of harmonics. The variation of the harmonic’s frequencies
determines such Volterra kernels, which contributes to the test
signal response. Hence, only those Volterra kernels can be
identified, which are addressed by the test signal harmonics.
The parameter identification using the linear modeling allows
the simultaneous identification of all addressed Volterra ker-
nels. Thus, a multi-tone test signal can be used

x(t) =
7

∑
l=1

Al cos(2π flt +φl) . (21)

In our case, it consists of seven frequency components as de-
tailed in Table II. The amplitudes of the sine waves comprising
this test signal are all equal, thus Al = 10 mV.

The simulation of the DUT results in a steady-state re-
sponse, which is sampled at a rate of fs = 16.384 kHz for the
duration of one second. After applying an FFT to the output
signal a power spectrum is obtained as shown in Fig. 4. The
frequency resolution is f0 = 1 Hz and the spectral lines are
located at f = m · f0, with integer numbers m.



VII. IDENTIFICATION RESULTS

A. Previous Work

In [20], two identification methods have been applied to the
DUT in Fig. 3 with the system model and the DUT structure
being identical. A very time consuming nonlinear optimization
yield the system model parameter set p̃ associated with a
small prediction error of 10−7 dB, limited only by computation
inaccuracies. In contrast, the fast parameter identification using
the linear modeling (Sec. V) yield large prediction errors of
approximately 10−5 dB and 10−3 dB for a 1% and a 10%
DUT parameter standard deviation, respectively.

In [22], a time domain Volterra model as system model
successfully enabled the application of linear modeling to a
time domain version of the DUT. The prediction error was
smaller than 10−8 dB.

B. Simulation Results

According to Sec. VI two sets of DUTs have been created
with a 1% and 10% standard variation from the nominal DUT
parameters. With the setup shown in Fig. 2 the linear parameter
identification procedure from Sec. V was used to estimate the
frequency domain Volterra kernels of each DUT in both sets.

The prediction error Emax(pk, p̃k) has been calculated from
the output signal of each DUT k and of the output signal
corresponding system model – parametrized by the identified
Volterra kernels. The mean prediction error over all DUTs in
each set is depicted in Fig. 5 and is marked with dots and
circles for a standard variation of 1% and 10%, respectively.
It settles at about 10−6 dB for both sets.

The model order l defines the length of the linear model
vector x̃ in Eq. (19) and, thus, indicates the computational
effort to calculate the system model parameters from the DUT
response. In case of 1% standard variation, there is only a
model order of l = 13 necessary. In case of 10% standard
variation a model order of l = 22 is needed to reach the
minimum prediction error. Increasing the model order does
not result in lower prediction errors.

For comparison, the best prediction error reached in [22] for
a time domain Volterra kernel identification is 2.1 · 10−9 dB
and is marked by a dash-dotted line in Fig. 5.

The frequency domain Volterra kernel estimation is de-
graded in accuracy in comparison to the time domain Volterra
kernel identification. Within the noiseless consideration of
the signals, the accuracy of the parameter identification is
only influenced by the computational accuracy. One drawback
calculating the output signal from frequency domain Volterra
kernels is, that numerous Volterra kernels and powers of input
signal amplitudes have to be multiplied and accumulated.
Because both can differ by orders of magnitude, the compu-
tational accuracy can be deficient and large prediction errors
may result.

VIII. DUT PERFORMANCE

The multi-tone test signal response provides information about
the DUT performance parameters which traditionally would
be sequentially measured with numerous single- and two-tone
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Fig. 5. Mean prediction error of a set of 100 DUTs with a standard deviation
from nominal parameter values of 1% and 10%, respectively. The resimulation
was realized using the frequency domain Volterra model. The dashed line
marks the minimum prediction error reached in [22].

measurements. Such measures would be e.g. Total Harmonic
Distortion (THD), Spurious-Free Dynamic Range, Third-order
Intercept Point (IP3), etc.

A concrete example of THD calculation was shown in [20],
where a seven-tone test signal, designed for multi-tone THD
estimation, had been applied. There, the THD for a specific
excitation frequency is defined as

T HD( f ,p) = 10log10
|Y ( f ,p)|2

3
∑

i=2
|Y (i · f ,p)|2

dB (22)

and evaluates in 95.0227 dB for our DUT at a frequency of
70 Hz for the nominal parameter set p0 and the multi-tone
test signal as specified in Sec. VI-B. An equivalent single-
tone measurement yields a THD of 95.0223 dB.

Instead of applying measurements to the DUT or making
simulations with the system model, performance parameters
like THD and IP3 can be directly calculated from Volterra
kernels [23], [17]. Then, the THD as defined in [20] is
calculated:

T HD( f ,p)≈ 10log10
|H1( f ,p)X( f )|2

3
∑

i=2
|Hi( f , . . . , f︸ ︷︷ ︸

i-times

,p)X i( f )|2
. (23)

Where X( f ) is the complex amplitude of the virtual
single-tone test signal at the specific test frequency f and
|X( f )|= A0/2. With the Volterra kernels of the nominal DUT
follows a THD of 95.0223 dB. Inherently, there is a small sys-
tematic error in Eq. (23), because the third order contributions
to the amplitude at the frequency f are neglected.

For each DUT of the sets from Sec. VI-A the THD
has been calculated using the predicted Volterra kernels
(→ T HDV ) from multi-tone measurement and applying
single-tone measurements (→ T HDM). In both cases the
test frequency was 70 Hz. Fig. 6 shows the mean differ-
ence ∆T HD = |T HDV −T HDM| vs. the model order over
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100 DUTs. With increasing model order the value of ∆T HD
decreases. This behavior corresponds with the prediction error
shown in Fig. 5. For both sets of DUTs ∆T HD settles at
10−6 dB.

In contrast to the single-tone THD measurement, the multi-
tone based estimation of the Volterra kernels also provides
information about the intermodulation properties (e.g. IP3),
which can be calculated from the simultaneous estimated
additional Volterra kernels [23].

IX. CONCLUSION

For evaluating the accuracy of Model-based Test and Diagno-
sis methodologies the prediction error as a figure of merit has
been introduced. Exemplary for a cascaded DUT topology of
a DAC followed by a filter a linear MbT method has been
presented, which allows to estimate simultaneously numerous
frequency domain Volterra kernels with low prediction error –
using only one multi-tone test signal. The kernel identification
is reduced to one measurement associated with solving a linear
system of equations of 13 to 22 unknown complex variables,
with dependency from the DUT parameter standard variation.

Identifying frequency domain Volterra kernels can be used
for Model-based Test of the DUT’s compliance to data sheet
specifications. In addition, the Volterra modeling approach
allows us to achieve the same quality of the test and diagnosis
as obtained for nonlinear identification methods, but at a
fraction of the computational cost.
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