
Selective State Retention Design
using Symbolic Simulation

Ashish Darbari, Bashir M. Al Hashimi
School of Electronics and Computer Science

University of Southampton
Southampton, England

{ad06v,bmah}@ecs.soton.ac.uk

David Flynn, John Biggs
ARM, Cambridge, England

{david.flynn,john.biggs}@arm.com

Abstract—Addressing both standby and active power is a ma-
jor challenge in developing System-on-Chip designs for battery-
powered products. Powering off sections of logic or memories
loses internal register and RAM states so designers have to weigh
up the benefits and costs of implementing state retention on
some or all of the power gated subsystems where state recovery
has significant real-time or energy cost, compared to resetting
the subsystem and re-acquiring state from scratch. Library
IP and EDA tools can support state retention in hardware
synthesized from standard RTL, but due to the silicon area costs
there is strong interest in only retaining certain selective state
for example the “architectural state” of a CPU to implement
sleep modes. Currently there is no known rigourous technique
for checking the integrity of selective state retention, and this
is due to the complexity of checking that the correctness of
the design is not compromised in any way. The complexity is
exacerbated due to the interaction between the retained and the
non-retained state, and exhaustive simulation rapidly becomes
infeasible. This paper presents a case study based on symbolic
simulation for assisting the designers to design and implement
selective retention correctly. The main finding of our study is
that the programmer visible state or the architectural state
of the CPU needs to be implemented using retention registers
whilst other micro-architectural enhancements such as pipeline
registers, TLBs and caches can be implemented using normal
registers without retention. This has a profound impact on power
and area savings for chip design. By selectively retaining the
state of the programmer’s “architectural” model and not the
increasing proportion of extra state, one can incorporate energy-
efficient sleep modes. To the best of our knowledge this is the
first study in the area of rigourous design and implementation
of selective state retention.

I. INTRODUCTION

Power consumption and battery life in particular are major
challenges in the design of ever more complex System-on-
Chip designs at the heart of many products. Minimizing the
standby power consumption as well as the active power is
crucial. Power gating (or MTCMOS) [1, 2] is an effective
technique for switching off sections of a design which is
gaining support in mainstream EDA tools.

State-Retention can be supported in power gated designs
either explicitly in software or transparently in hardware using
a balloon latch [1, 3]. Total hardware state retention, and power
gating, can be implemented with current EDA tools, together
with the addition of unified power format [4] (UPF) annotation
of power intent today. UPF specifies the supply network,

switches, isolation, retention and other aspects relevant to
power management of an electronic system. Much like clock
gating that can be inferred transparently from a RTL design de-
scription that has been coded to meet certain style guidelines,
retention of all registers may be inferred transparently without
re-coding of the RTL. RTL descriptions in fact assume state
retention globally; every sequential process relies on the fact
that every logical state value is persistent between activation
events.

Hardware state retention of every register in a design
however has a cost. A retention register has a larger footprint
than a normal (volatile) register. The impact on a design with
many registers may not just be an increase in area but also a
drop in performance due to the longer wires.

Selective, or partial, state retention sounds attractive since
the area cost of retention can be scaled down in proportion
to the state being retained. As much as the idea of selective
state retention is compelling, to ensure that it can be done
safely and correctly is a major challenge in low power design.
Traditionally, a designer validates the behavior of a design
from reset, using simulation or formal verification techniques.
With selective retention the problem grows with the product
of the number of different logical states that the selective
retained state could arbitrarily hold. Conventional simulation
(using 0s and 1s) rapidly becomes infeasible [5] even when
there is no retention. In case of retention the state-space grows
massively because of the interaction between the retained and
non-retained state.

Recently some work has been done in the area of functional
verification of low-power designs. Crone and Chidolue [6]
have investigated RTL level verification of power management
techniques for low power designs. Although the general theme
of their work and ours appear very similar - the use of
verification or symbolic simulation for low power, there is a
fundamental difference. In our work we use symbolic simula-
tion and verification to design and implement “selective” state
retention for low power circuits, whereas in [6] they verify
a low-power design with a given power management scheme
usually given by a UPF format.

To the best of our knowledge this is the first study in
the area of rigourous design and implementation of selective
state retention. This paper presents a case study based on

978-3-9810801-5-5/DATE09 © 2009 EDAA

symbolic simulation for assisting the designers to design and
implement selective retention correctly. We believe that an
approach such as ours that is grounded in symbolic simulation
and model checking, is the right step towards sound design
and implementation of selective retention for modern day
low power SOC design. The main finding of our study is
that the programmer visible state or the architecural state of
the CPU needs to be implemented using retention registers
whilst other micro-architectural enhancements such as pipeline
registers, translation look-aside buffers (TLBs) and caches can
be implemented using normal registers without retention. This
has a profound impact on power and area savings for chip
design.

II. SELECTIVE STATE RETENTION

If implemented using a special register known as a retention
register, it is possible to restore the entire subsystem to match
the RTL abstraction before and after entering low power mode
provided every state-bit is preserved. Retention registers have
some form of “sleep” or “retain” control that enables the
register to retain a state. An example retention register is
shown below in Figure 1. When NRET is high, the register
works like a normal register (without retention), and we say
it is in sample mode. When NRET is held low, the register
goes in a hold mode and retains the state it was in just before
NRET was held low. In order to reset the register one can
assert NRST low.

D Q
CLK

NRET

NRST

Fig. 1. An Emulated Retention Register

Note that the register shown in Figure 1 is an emulation
of a retention register shown at the gate-level. In practice [2],
retention registers have standard manufacturing scan support
multiplexing and capture state into a weak, low-leakage,
retention latch structure.

Since every retention register contributes to additional leak-
age power, so partial state retention instead of full retention
should result in lower standby power, and a reduction in high-
fan-out buffers of retention controls. However, selective state
retention designs are more complex to design and verify than
full-state retention designs. Take the case of a microprocessor
core, where there is typically a certain state (register banks,
processor status flags and mode information for example) that

is visible to the programmer and must be preserved from the
software perspective by any hardware state retention scheme.
As a starting point the task that the programmer or operating
system requires, appears to be a minimum level of state to
retain. However, in a system that supports virtual memory,
the program counter and address pointers assume that the
memory management is programmed and persistent. Therefore
the entire kernel-level configuration and programming state
must also be retained. Caches are another example of state
that may be desirable to retain in some modes of power-down.
Although the cache is theoretically transparent to the user-state
program, the cost of discarding and re-loading the cache is
costly in terms of both energy and time.

A. Challenges with selective retention

As much as the idea of selective state retention is com-
pelling to design and implement, to ensure that it can be done
safely and correctly is a major challenge in low power design.

One of the goals of our project has been to discover the
minimal architectural state of the CPU that needs to be retained
in case of selective state retention without compromising the
correctness. The aim (shown in Figure 2) is to ensure that
a design with selective retention makes the transition from
present state via the sleep state to a resumed state such that
when it makes a transition to a next state from the resumed
state, the next state is identical to the state that is reached from
present state without retention.

For our analysis we are mostly concerned with the ar-
chitectural state of the CPU also sometimes known as the
programmer visible state. This usually comprises state of the
PC, register banks, and instruction and data memory. When
we use the term state, we mean the architectural state.

sleep state

 next
 state

present
 state

sleep

resume resume
 state

Fig. 2. Selective State Retention. The goal is to ensure that a design with
selective retention makes the transition from present state via the sleep state
to a resumed state such that if a transition is made from the resumed state
to the next state (on a clock edge) the resulting next state is identical to the
next state reached from the present state without retention.

III. SYMBOLIC SIMULATION AIDED APPROACH

We made use of the formal model checking technique
called Symbolic Trajectory Evaluation (STE). STE has been
used successfully in large-scale datapath verification [7]
of microprocessors and it gains its strength by combining
the ideas of ternary modelling (using 0, 1 and X) with
symbolic simulation (using symbolic variables) over time.
The presence of Xs provides abstraction necessary to handle

the complexity of verifying symbolic properties during model
checking. This happens by assuming a monotonicity property
of the simulation algorithm — any binary value resulting when
simulating patterns containing X’s would also result when each
X is replaced by either a 0 or a 1.

Symbolic trajectory evaluation employs a ternary circuit
state model, in which the usual binary values 0 and 1 are
augmented with a third value X that stands for an unknown.
We introduce a partial order relation v, with X v 0 and X v 1.
The relation orders values by information content: X stands
for a value about which we know nothing, and is therefore
below the specific values 0 and 1. This ordering is lifted to an
ordering over three-valued states and sequences.

Specifications in STE, take the form of what are known as
symbolic trajectory formulas . Formally, we define the syntax
of formulas [7, 8] as follows:

Definition 1. Syntax of STE formulas

f
4= n is 0 - node n has value 0
| n is 1 - node n has value 1
| f1 and f2 - conjunction of formulas
| f when G - f is asserted only when G is true
| Nf - f holds in the next time step

where f1 and f2 range over formulas, n ∈ string ranges over
the nodes of the circuit, and G is a propositional formula
over Boolean variables (i.e. a Boolean ‘function’) called a
guard . The advantage of using a Boolean expression is in
specifying conveniently many different operating conditions in
a compact form. The various guards that occur in a trajectory
formula can have variables in common, so this mechanism
gives STE the expressive power needed to represent inter-
dependencies among node values. We also use a convenient
form of expressing the temporal formula, by using from and
to functions [9].

f from i to j
4= Nif and Ni+1f and . . . and Nj−1f

where the convention is that N0f = f .
The key feature of STE logic is that for any trajectory

formula f and assignment φ, there exists a unique weakest
sequence that satisfies f . This sequence is called the defining
sequence for f and is written as [f]φ.

Definition 2. Defining Sequence

[m is 0]φ t n
4= if (m=n) ∧ (t=0) then 0 else X

[m is 1]φ t n
4= if (m=n) ∧ (t=0) then 1 else X

[f1 and f2]φ t n
4= ([f1]φ t n) t ([f2]φ t n)

[f when G]φ t n
4= if (φ |= G) then ([f]φ t n) else X

[Nf]φ t n
4= if (t 6=0) then ([f]φ (t−1) n) else X

Defining trajectory of a formula is its defining sequence
with the added constraints on state transitions imposed by the
circuit model M.

Definition 3. Defining Trajectory

[[f]] φ M 0 n
4= [f]φ 0 n

[[f]] φ M t n
4= [f]φ t n t M ([[f]] φ M (t−1)) n

Verification takes place by testing the validity of an
assertion or property against a given model . A property is
of the form (A ⇒ C), where both A and C are trajectory
formulas. Intuitively, the antecedent A provides the stimuli to
the circuit model M, and the consequent C expresses what
the designer expects to see.

At the heart of STE model checking is an efficient imple-
mentation algorithm, that relies on the calculation of finite
weakest sequences (defining sequence) and trajectories (defin-
ing trajectory) of the formulas, and comparing them (via the
lattice ordering v), point-wise for all nodes in C, up to the
depth of the next-time operators in C [8].

M |= A ⇒ C
4= ∀t n. [C]φ t n v [[A]] φ M t n

In practice, every successful STE run i.e., a run that returns
the value True, is a theorem that holds for all the Boolean
variables mentioned in the property. However, when the out-
come of an STE model checking run is a counter-example, it
is an indication of a bug in the hardware, and in the context
of STE, it means that if we can come up with a satisfying
assignment of Boolean values True (logic 1) and False (logic
0) to the Boolean variables in the counter-example, one can
explicitly reveal the trace (consiting of 0s and 1s) that would
be responsible for the bug. Usually there is more than one
way to satisfy the counter-example, and this means that in
one symbolic model checking run, we can succintly capture
all the possible traces.

A. Proposed Approach

To evaluate the effect of selective state retention we archi-
tected a 32-bit RISC core adapted from [10]. Retention register
shown in Figure 1 was used for all the state holding elements
that comprise the programmer visible state namely the PC, the
Instruction Memory, Register Banks and Data Memory. The
core is then synthesized using Altera’s Quartus II to a Berkeley
Logic Interchange Format (BLIF). The BLIF model is then
compiled to a finite-state machine (FSM) using exlif2exe that
is provided with the STE model checker Forte [11]. We then
carried out property checking using STE to check if the
selectively retained state ensures that the CPU goes from a
given arbitray present state to the next state through the sleep
and resume modes. Retention has priority over reset. This
means that if NRET is in sample mode or held high, reset will
have the usual effect of resetting the retained state. To prevent
the contents of the retained state from being reset, NRET needs
to be held low. The desired sequence of operations to put the
CPU in sleep mode is as follows:

1. Stop the clock.

2. Assert NRET low, i.e., put it in hold mode.
3. Reset NRST is then asserted active low.

The resume mode is chronologically reverse of the sleep mode.
To resume, we assert NRST as high, then NRET as high
and start the clock. We usually give a unit delay in between
switching these on and off.

In our approach we use the logic of STE to write properties
to specify:

1) Any arbitrary present state of the CPU.
2) Specify when (what times) and how (by controlling

clock, NRET, and NRST), the CPU goes to sleep and
resumes afterwards.

3) State of the CPU during sleep and after resume.
4) Expected next state
The challenge is in precisely mapping these events onto

STE properties and to ensure that the resulting properties
are verified efficiently. Fundamental to our property checking
approach is the constrcution of two sets of properties for each
functional unit in question such as fetch, decode, control,
execute and write-back. The skeleton of the first set of
properties (Property I) is shown below:

Property I

M |= clock and A and (NRET is T from i to j) ⇒ C

where i and j are natural numbers postulating the start and
stop times for NRET.

This property is designed to verify that the CPU works
correctly (as if without retention) in the case when NRET
is held high throughout a given run. This is done to check
the fact that when NRET is in sample mode it makes the
retention registers behave as normal registers and therefore
enables the CPU to function as if there is no retention at
all. The trajectory formula clock specifies an uninterrupted
rising edge clock while the antecedent A specifies the present
(but arbitrary) state, and C the desired next state. Because
we use Boolean symbolic variables to denote the states and
these variables can take any combination of scalar 0s and 1s,
a single symbolic state is an abstraction of many diffferent
states obtained by instantiating the variables to 0 and 1. In
the next step we introduce the sleep and resume operations
making sure we preserve the sequence of operations outlined
above. Thus, a sleep operation (sleep) specifies that the
clock is stopped first, then NRET is held low, and then
NRST is asserted. Similarly, a resume operation (resume)
asserts that the reset NRST is de-asserted first, then NRET
is asserted high, followed by the resumption of clock. The
skeleton of the second set of properties (Property II) we
verify, is presented below:

Property II

M |= (clock and sleep and resume and A) ⇒ C

The formula clock in this case represents the rising edge
clock specifying the start of the simulation. Note that we do

sleep next state

clock

NRET

NRST

resumepresent state

Fig. 3. Waveforms showing how the present state evolves to the next state
through the sleep and resume states. The sleep (sleep) and resume operations
(resume) are specified by controlling the clock, NRET, and NRST. In our
approach using STE, the antecedent specifies the present state, and sleep
and resume operations. The consequent specifies the next state, and the
sleep and resume state.

stop this clock and restart again, but this is defined by sleep
and resume operations as explained above. Present state is
given by A, whilst the consequent C describes the state of the
CPU during sleep, resume state, and the expected next state.
Note the difference between sleep and resume operations
and sleep and resume states. We define the operations by
specifying the state of the clock, NRET, and NRST, whilst
the respective states would typically be specified for all the
nodes in a given functional unit. For example the sleep and
resume states could talk about the state of the PC during sleep
and after resumption, in case of Fetch unit. Figure 3 shows
the relationship between the sleep and resume operations and
their impact on how the present state evolves via the sleep and
resume states to a next state.

B. Selective Retention in Control Unit

Using the above approach we constructed a suite of STE
properties describing all the functional units of the 32-bit
RISC core shown in Figure 4. The motivation to keep the core
unpipelined was to discover a minimal architectural state that
needs to be retained during sleep mode. In total for Property
I, we developed 26 properties (2 for fetch, 6 for decode, 11
for control, 6 for execute and 1 for write back), to check the
functionality of the core in the presence of NRET being held
high throughout the simulation.

In line with Property II, these properties were then modi-
fied to incorporate the sleep and resume operations, and were
then re-checked again to see if they still hold.

What we discovered in this process was that when the
CPU would resume post a sleep operation, most of the
programmer visible state was retained properly, however the
control unit would malfunction. The reason is that during
sleep, an asynchronous reset (NRST) signal resets the input
values of the control unit, and we need to properly initialise
them after the resume operation, or else, the state of the control
would be some incorrect value that would subsequently cause
an incorrect operation of the CPU. Programmer visible state
was retained properly because it was designed using retention
registers. To fix this problem, we inserted a 6-bit pipeline

register - Instruction Fetch Register (IFR) (designed using
normal non-retention registers) between Instruction[31 :26]
and the control unit. On a reset, the values of this register
would be reset. Subsequent to the resume operation, (see
Figure 3), correct values would be updated from the retained
Instruction Memory on the next rising edge of the clock. We
do not pipeline Instruction[25 :0] since these values are
not affected during the reset operation. But in theory one can
pipeline these as well without compromising correctness. In a
unpipelined, simple CPU, an IFR is not necessary. In a more
realistic pipelined CPU design the instruction access would run
in parallel with internal decode/execute (and the data would
only become available late in the memory access cycle) so a
local “IFR” is introduced to capture and hold the instruction
for a full cycle. This state is not “architectural” like the general
purpose registers - but arises from micro-architectural features.

4

PC
Read
Address

Instruction
Memory

Instruction
[31-0]

Control
Unit

RegDst
Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-11]

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
Data 1

Read
Data 2

Zero

ALU
Result

ADD
ADD

Result
Shift
Left

2

Address

Write
Data

Data
Memory

Read
Data

AADDDD

Sign
Extend

16 32

ALU
ControlInstruction

 [5-0]

0

1

1

0

0

1

0

1

PC + 4

ALU

Registers

Instruction
[]31-26

I

F

R

Fig. 4. 32 bit RISC Core showing programmer’s visible state comprising
the PC, the Instruction Memory, Register Banks and Data Memory. Retention
registers are used for all these whilst the register IFR is designed using
ordinary register.

Now we shall present the property that checks that the state
of the control unit is adequately retained in presence of the
6-bit pipeline register IFR. This property is an instance of
Property II shown in Section III-A. Due to lack of space
we omit the instance for Property I. We shall begin by
constructing assertions that describe the initial state of the
instruction Memory, the memory read and the write signals,
and the read and the write addresses. We will then write to the
memory with a new data and would subsequently read it out
as the Instruction stream. We will then show that this output
Instruction stream from bits 31 downto 26 is preserved across
the sleep and resume operations, and accordingly updates the
next state of the IFR register on the rising edge of the clock
post resume. For illustration, our Instruction Memory is 256
deep and 32 bits wide. It is initialised with a symbolic state
by defining a trajectory formula IM that assigns symbolic val-
ues mem0,. . .,mem255 to memory locations IMem0, . . . , IMem255

respectively, between time 0 and 1. We define the trajectory
formula WData that states that the Write port of the memory
takes on a symbolic 32-bit vector WD vector from time 0 to 1.

let WData = “WriteData[31 : 0]” is WD from 0 to 1

Similarly we assume the existence of symbolic BDD vari-
ables (RA) and (WA) for ReadAddress and WriteAddress ports
respectively. We define the assertion WAdd that the WriteAd-
dress port takes on the symbolic WA value.

let WAdd = “WriteAdd[7 :0]” is WA from 0 to 1

For the ReadAddess port a similar assertion RAdd is defined.
We define that Memory Write (MemWrite) is asserted between
0 and 1 and de-asserted afterwards. MemRead is shown below.
let MemRead = “MemRead” is F from 0 to 2 and

“MemRead” is T from 2 to 6 and

“MemRead” is F from 6 to 9 and

“MemRead” is T from 9 to 10

The Boolean expression that expresses the condition under
which the memory is read after write is given by the RAW
below. This function states the fact that if we write to a location
i and read it back from the same location we should get the
new data else the old content. Zero, One, . . . , TwoFiftyFive
are 32-bit scalar (over 0s and 1s) representations of addresses.

let RAW =

(RA = Zero) → ((we ∧ (WA = Zero)) → WD | mem0)

| (RA = One) → ((we ∧ (WA = One)) → WD | mem1)
...

| (RA = TwoFiftyFive) →

((we ∧ (WA = TwoFiftyFive)) → WD | mem255)
We now show the property that captures our intention of

reading the Instruction Memory correctly across the pipeline
register IFR in presence of sleep and resume modes of the
CPU. The formulas that describe the symbolic Read Address
and Write Address are denoted by RAdd and WAdd respectively.

let A = WAdd and RAdd and MemWrite and MemRead and

WData and IM and (“NRST” is T from 0 to 6) in

let clock = (“clock” is F from 0 to 1) and

(“clock” is T from 1 to 2) and

(“clock” is F from 2 to 3) and

(“clock” is T from 3 to 4) in

let Sleep = (“clock” is F from 4 to 9) and

(“NRET” is T from 0 to 5) and

(“NRET” is F from 5 to 8) and

(“NRST” is F from 6 to 7) in

let Resume =(“NRST” is T from 7 to 10) and

(“NRET” is T from 8 to 10) and

(“clock” is T from 9 to 10) and

(“clock” is F from 10 to 11) in

let C = (“IFR Instr[31 :26]” is RAW from 3 to 6) and

(“IFR Instr[31 :26]” is [F, F, F, F, F, F] from 6 to 9)

and (“IFR Instr[31 :26]” is RAW from 9 to 10)

in (clock and Sleep and Resume and A) ⇒ C

This property shown above also checks that the Instruction
Memory itself is designed correctly enuring the read and write
work correctly. Thus we are able to preserve the state of the
Control using a pipelined register IFR. Because IFR is only
a 6-bit register it would not matter much if this was also
implemented using retention registers for our study, but if
this is to be done for all the different pipelined stages for
example, in a multi-stage pipelined CPU it would have an
extremely detrimental effect on the increase in area and drop
in performance.

Using model checking, the most complex properties to
check are the ones that involve parts of the data path with
state holding elements [12]. However, using a combination
of property decomposition [9] and symbolic indexing [13]
we are able to cut down on verification time and the size
of BDDs. For example, the use of symbolic indexing reduces
the linear time and space complexity of symbolically checking
SRAMS, to logarithmic. It took us 10.83 seconds to check the
above property on an Intel Centrino 1.7 Ghz machine with 2
GB RAM running Linux in a virtual machine. This was the
maximum time taken to check any property amongst the ones
we checked for the CPU.

The key benefit of our approach is that it scales very well
with the size of the CPU, primarily due to the fact that we
extensively employ property decomposition techniques using
STE inference rules [9]. For example, verifying a pipelined
CPU would involve the decomposition of the properties that
describe the functionality of the whole data path into several
smaller properties across each pipelined stage, which in turn
can be checked using model checker. Detailed expositions
demonstrating how STE inference rules are used in practice
exist in [7, 9].

IV. CONCLUSION

We have presented a case study based on symbolic simu-
lation and model checking, to design and implement selective
retention safely. The main finding of our study is that the
programmer visible state or the architectural state of the CPU
needs to be implemented using retention registers whilst other
micro-architectural enhancements such as pipeline registers,
TLBs and caches can be implemented using normal registers
without retention. This has a profound impact on power and

area savings for chip design. For a 3-stage, 5-stage and 7-stage
CPU the programmers visible “architectural state” is basically
the same but the micro-architectural state roughly doubles
every generation as more complex write buffering, branch
prediction and address translation/virtual memory structures
grow to improve the CPU performance. Only implementing
hardware state retention for the programmers model is highly
desirable given that retention registers may be 25-40% larger
area per flop.

In our experience implementing selective state retention
without the support of rigourous formal analysis, is somewhat
ad-hoc. One needs to do a careful analysis to identify a micro-
architectural state that is definitely not required after sleep
states. For example, a CPU entering a wait-for-interrupt sleep
state, would typically have to empty the write buffer of any
pending write transactions. Therefore, by design, though it
is possible to not implement retention on this write buffer
subsystem, and simply reinitialize state on wake-up - and
check this with standard event simulation, in practice such
an approach is not scalable to generic non architectural CPU
state. Using symbolic simulation, we can apply our methods
to any generic pipelined CPUs.

To the best of our knowledge this is the first study in the
area of rigourous design and implementation of selective state
retention.

REFERENCES

[1] S. Shigematsu, S. Mutoh, Y. Matsuya, Y. Tanabe, and J. Yamada, “A 1-
V High-Speed MTCMOS Circuit Scheme for Power-Down Application
circuits,” IEEE Journal of Solid State Circuits, vol. 32, pp. 861–869,
1997.

[2] Michael Keating, David Flynn, Rob Aitken, and Alan Gibbons, Low
Power Methodology Manual, 1st ed. Springer, 2007.

[3] V. Zyuban and S. V. Kosonocky, “Low Power Integrated Scan-Retention
Mechanism,” in Proceedings of ISLPED 2002. ACM, 2002, pp. 98–102.

[4] “Accellera UPF Standard Version 1.0,” February 2007.
[5] Paul Hoxey and Clayton McDonald, and David Guinther, “An Introduc-

tion to Symbolic Simulation,” published at http://www.eetimes.com/, Sep
2005.

[6] Allan Crone and Gabriel Chidolue, “Functional Verification of Low
Power Designs at RTL,” in Integrated Circuit and System Design. Power
and Timing Modeling, Optimization and Simulation. Springer, 2007,
pp. 288–299.

[7] C.-J. H. Seger, R. B. Jones, J. W. O’Leary, T. Melham, M. D. Aagaard,
C. Barrett, and D. Syme, “An Industrially Effective Environment for
Formal Hardware Verification,” IEEE TCAD, vol. 24, no. 9, pp. 1381–
1405, 2005.

[8] C.-J. H. Seger and R. E. Bryant, “Formal Verification by Symbolic
Evaluation of Partially-Ordered Trajectories,” Journal of FMSD, vol. 6,
no. 2, pp. 147–189, 1995.

[9] S. Hazelhurst and C.-J. H. Seger, “A Simple Theorem Prover Based
on Symbolic Trajectory Evaluation and BDDs,” IEEE Tran. on CAD of
Integrated Circuits, vol. 14, no. 4, pp. 413–422, 1995.

[10] James O. Hamblen and Michael Furman, Rapid Prototyping of Digital
Systems: A Tutorial Approach, 2nd ed. Springer, 2001.

[11] “The Forte Formal Verification System,” available from
http://www.intel.com/.

[12] B. Siarkowski, “Memory Overwhelms Current Verification Techniques,”
published at http://www.eetimes.com/, April 2003.

[13] M. Pandey, R. Raimi, R. E. Bryant, and M. S. Abadir, “Formal Veri-
fication of Content Addressable Memories Using Symbolic Trajectory
Evaluation,” in Proceedings of DAC 1997. ACM Press, New York, NY,
USA, pp. 167–172.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

