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Abstract
A novel 16-bit flexible Application-Specific Instruction-

set Processor for an MMSE-IC Linear Equalizer, used in
iterative turbo receiver, is presented in this paper. The
proposed ASIP has an SIMD architecture with a special-
ized instruction-set and 7-stage pipeline control. It sup-
ports diverse requirements of MIMO-OFDM wireless stan-
dards such as use of QPSK, 16-QAM and 64-QAM modula-
tion in 2×2 and 4×4 spatially multiplexed MIMO-OFDM
environment. For these various operational modes, anal-
ysis of MMSE-IC LE equations and corresponding com-
plex data representations was conducted. Efficient compu-
tational and storage resource sharing is proposed through:
(1) Matrix Register Banks (MRB) multiplexing, (2) 16-bit
Complex Arithmetic Unit (CAU) comprised of 4 combined
complex adder/subtractor/multiplier units, 2 real multipli-
ers, 5 complex adders, and 2 complex subtractors, and (3)
flexible 32-bit to 16-bit data conversion at multipliers’ out-
put.

With this architecture, the designed ASIP ensures, along
with flexibility, high performance in terms of throughput
and area. Logic synthesis results reveal a maximum clock
frequency of 546 MHz and a total area of 0.37 mm2 using
90 nm technology. For 2×2 spatially multiplexed MIMO
system, the proposed ASIP achieves a throughput of 273
MSymbol/Sec.

1. Introduction

Turbo equalization is a well established concept to
jointly solve the equalization and decoding tasks [1][6].
Initially this concept was used in the removal of Inter
symbol Interference (ISI) caused by multipath fading us-
ing optimal maximum likelihood (ML) algorithm. How-
ever, with the use of higher data rates and bigger constella-
tions of modulation, low-complexity suboptimal algorithms
such as Zero Forcing (ZF) and Minimum-Mean-Square-
Error Interference-Canceller (MMSE-IC) linear equalizers
were developed [10][7]. Later on, with the introduction of
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Figure 1. MIMO turbo receiver scheme

OFDM and MIMO in new standards of mobile communi-
cation, OFDM provides robustness against the ISI caused
by multipath while the concept of turbo equalization can be
used to remove the interference caused by MIMO channel.

A MIMO receiver using turbo equalization is shown
in Fig. 1. The symbols corrupted through noise and
co-antenna interference are received in the MMSE-IC lin-
ear equalizer (LE). The interference is partially cancelled
through MMSE-IC LE and the symbols are demapped into
Log Likelihood Ratios (LLR) and deinterleaved. The MAP
decoder receives these LLR and removes the effect of noise
and outputs extrinsic information again in shape of LLR.
These LLRs are interleaved and mapped to generate de-
coded symbols in the feedback path. Decoded symbols
serve equalizer as a priori information to improve its out-
put. This iterative process continues till required error rate
performance is achieved at the output of the decoder.

Recent wireless standards support the MIMO use in
2×2 and 4×4 spatial multiplexing configuration along with
QPSK, 16-QAM and 64-QAM as modulation types. To sup-
port such requirements, most of existing work has been fo-
cused on the inversion of variable-sized complex-numbered
matrices. In [2] the authors focus is on transforming sys-
tolic array architecture for matrix inversion into linear array
architecture and hence saving computational elements at the
cost of control logic. Similar work has been carried out in
[8] where authors have proposed a SGR and CORDIC based
LMMSE detector. Matrix inversion through block-wise an-
alytical method has been implemented in [3]. The presented
processor-based work does not consider a turbo environ-
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ment and hence use floating-point arithmetic to attain the
required precision. Using analytic method of matrix inver-
sion, a fully dedicated architecture for MMSE-IC LE for
2×2 turbo MIMO system with precoding has been proposed
in [5]. It achieves high throughput, however lacks flexibility
and induces significant silicon area due to the large number
of used computational elements.

To the best of our knowledge, none of the existing works
has tackled the complete equalizer design in an turbo con-
text considering flexibility and performance tradeoff. We
propose in this paper the first flexible and high perfor-
mance ASIP model for MMSE-IC LE supporting 2×2 and
4×4 spatially multiplexed turbo MIMO applications using
QPSK, 16-QAM and 64-QAM modulations.

The rest of the paper is organized as follows. Next sec-
tion presents the MMSE-IC LE algorithm. Section 3 de-
tails the proposed ASIP architecture model. Section 4 illus-
trates the designed instruction set while section 5 is dedi-
cated for simulation and synthesis results. Finally section 6
concludes the paper.

2. MMSE-IC LE Algorithm

At the inputs of the equalizer, the received symbol vector
y is given by the following expression.

y = Hx + η (1)

where y is a vector of size of number of receive antennas
(Nr), x is a vector of size of number of transmit antennas
(Nt), H is channel matrix of size NrxNt and the η is col-
umn vector of Additive White Gaussian Noise(AWGN) of
size Nr. The output x̃ of the equalizer using time invariant
approximation as proposed by [7] is given by:

x̃k = λkpH
k (y −Hx̂ + x̂khk) (2)

where k = 1, 2, ...Nt, x̂ is vector of decoded symbols of
size Nt and x̂k is kth element of this vector, hk is kth col-
umn of H matrix and (.)H is Hermitian operator. The other
parameters λk, and pk are given by:

pk = E−1hk (3)

E = (σ2
x − σ2

x̂)HHH + σ2
wI (4)

where σ2
x, σ2

x̂ and σ2
w are variances of transmitted symbols,

decoded symbols and noise. I is identity matrix.

λk =
σ2

x

1 + σ2
x̂βk

where βk = pH
k hk (5)

Eq. (2) can be rewritten in the form

x̃k = λkpH
k (y −Hx̂) + λkpH

k x̂khk

= λkpH
k (y −Hx̂) + gkx̂k

(6)

where gk is equivalent bias of AWGN noise whose real part
is used in demapper. In the above mentioned equations, two
types of computations can be identified, those which are
performed once for whole block of symbols for which chan-
nel has been considered as constant (eq. (3) to eq. (5) along
with computation of λkpH

k and gk) and those which are per-
formed repeatedly to estimate each symbol of transmitted
block (eq. (6)). In other words these two type of compu-
tations use similar resources but not concurrently. Thus,
computational resource sharing can be efficiently exploited.

3. ASIP Architecture for MMSE-IC LE

Tradeoffs between ASIC high performance and pro-
grammable processor flexibility are achieved by the
Application Specific Instruction Set Processor (ASIP)
[9]. Besides the possibility of computational resource
sharing presented in the previous section, selecting an ASIP
approach provides the flexibility required to meet diverse
demands of current and future wireless standards.

3.1. Context of Architectural Choices
Regarding architectural choices, an effort has been made

to derive basic instructions which can be used to perform
complex numbered matrix computations involved in the
processing of target algorithm. The derived instructions
are further decomposed into micro operations like addition,
subtraction and multiplication which are performed in dif-
ferent stages of pipeline. As first step, while transforming
the floating point representation of the reference application
software model into fixed point, it was found that at maxi-
mum 16-bit signed representation with different bits for in-
teger and fractional part is sufficient to represent all the pa-
rameters involved during different computational steps of
MMSE-IC LE algorithm.

To ensure the reuse of resources for different computa-
tions, involving operands with different fixed point repre-
sentations, certain rules have been set. First of all, while
reading input data from memories, the data which is repre-
sented in less than 16-bits, is sign extended to 16-bit. Sec-
ondly, a programmable 32 to 16-bit conversion is performed
at the outputs of multipliers. Last of all, to avoid the haz-
ards caused by overflow/underflow during an arithmetic op-
eration, mechanism is provided to fix the output at its max-
imum/minimum limit.

3.1.1 Complex Addition / Subtraction / Multiplication

The complex number addition and subtraction/conjugate
uses two real adders and subtractors respectively. The im-
plementation of multiplication of two complex numbers is
achieved using following expression.

(a+bj)(c+dj) = a(c+d)−d(a+b)+{a(c + d) + c(b− a)} j
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Figure 2. Combined complex adder/subtractor/
multiplier (CCASM)

This process of complex multiplication is spread over three
stages. The combined architecture of complex adder, sub-
tractor and multiplier (CCASM) is shown in Fig. 2.

3.1.2 Complex Number Inversion

The inverse of a complex number can be computed using
following expression:

1
a + bj

=
a

a2 + b2
− b

a2 + b2
j

3.1.3 Matrix Inversion

The expression for the inversion of 2×2 matrix through an-
alytical method is given by:[

a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
For a 4×4 matrix, the matrix is divided into four 2×2 matrix
and inversion can be achieved block wise.[

A B
C D

]−1

=
[

W X
Y Z

]
where

W = A−1 + A−1B(D − CA−1B)−1CA−1

X = −A−1B(D − CA−1B)−1

Y = −(D − CA−1B)−1CA−1

Z = (D − CA−1B)−1

3.2. ASIP Architecture
The ASIP is mainly composed of Matrix Register Banks

(MRB), Complex Arithmetic Unit (CAU) and Control Unit
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Figure 3. ASIP block diagram

(CU) beside its memory interface. The input to the ASIP
are through ”Channel Data Memory” and the soft mapper
as shown in Fig. 3. The data bus of all inputs is set to 16
(32 bit for complex number). This provides flexibility to
use upto 16 bit data representation and in case of smaller
data widths, signed/unsigned extension can be done exter-
nally. The memories are connected to host processor which
is responsible to assign tasks to the ASIP. The ASIP has 7
pipeline stages named as; FETCH, AD SU MUL1, MUL2,
MUL3, 2ADD, 1ADD and OUT.

3.2.1 Matrix Register Banks

To store a complex number two separate 16-bit registers
have been used, one storing the real and the other imagi-
nary part. Based on the requirements of the eq. (6) for a
4×4 spatially multiplexed MIMO system, 12 MRBs have
been proposed, where each MRB can store 4 complex num-
bers (Fig. 3). H-MRB (H0, H1, H2, and H3) which are
connected to the memory, can store 4 rows or columns of
Channel Matrix. Four V-MRB (V0, V1, V2, and V3) store
16 entries of λkpk. GP0, GP1,GP2, and GP3 are assigned
the storage of gk , x̂k, y and the estimated symbols x̃ re-
spectively. Other than this specific use, these registers save
the intermediate results of computation performed in eq. (3)
to eq. 5. Three other registers of 16 bits store the vari-
ances of Noise, modulation symbol and decoded symbols ;
pipeline registers and registers for REPEAT instruction.
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3.2.2 Complex Arithmetic Unit

The CAU of the ASIP has the computational resources to
perform 4 concurrent complex additions, subtractions, com-
plex conjugation and multiplications; and inversion ( 1

x ) of
a complex number. The overall resources and their use in
different pipeline stages is shown in Fig. 4. The resources
in each stage of pipeline are arranged in order to be used
maximally and efficiently. In MUL3 stage, 32-bit to 16-bit
transformation is performed according to the information
provided in multiply instruction. The inversion process of
a complex number in different pipeline stages is shown as
dotted area of Fig. 4. For this particular operation, addi-
tional resources are required as Look-Up Tables (LUT), two
32 to 16-bit converters, and two real multipliers.

3.2.3 Control Unit

The ASIP control unit is based on 7-stage pipeline as men-
tioned above. It controls the flow of the program over the
designed datapath (MRBs, CAU) during the different stages
of the pipeline.

4. ASIP Instruction Set

The instructions of ASIP is 20 bit long and are catego-
rized as follows.

4.1 LOAD, MOVE, REPEAT, NOP
LOAD instruction is used to load Channel Matrix into H-

MRB while MOVE instruction is used to transfer data be-
tween MRBs. REPEAT instruction repeats a block of code
as many times as given in REPEAT SIZE Register. NOP
instruction is used to add some empty cycles during the ex-
ecution of program.

4.2 NEGATION, CONJUGATE

In case of NEGATION all four complex numbers of any
one of H-MRB are subtracted from zero and transferred to
respective V-MRB. In case of CONJUGATE only imagi-
nary part of complex numbers are subtracted from zero. The
real parts of complex numbers are saved, as they are, in cor-
responding places in V-MRB.

4.3 ADD, SUBTRACT

In these instructions any one of H-MRB can be added or
subtracted from any one of V-MRB and the result is stored
in GP0-MRB.

4.4 MULTIPLY

This category is the most demanding one in the MMSE-
IC LE. Different fields of the multiply instruction are de-
tailed in Fig. 5(a). Eight different opcodes fall under this
category to use complex multipliers for multiplication of
4×4 and 2×2 matrices, multiplication of 4 complex num-
bers, 3 different MAC instructions and two instructions to
compute the output symbols x̃.

Different possible sources to complex multipliers are
shown in the Fig. 5(b). Depending upon the fields
”Source1” and ”Source2” of the instruction, 4 operands are
selected as source1 and 4 as source2 for 4 complex multi-
pliers. To obtain different 16-bit fixed-point representations
from 32-bit output of complex multipliers, 32 to 16-bit con-
verters are designed. These converters (Fig. 5(c)) select one
of 16 consecutive bits from 32-bit multiplication result de-
pending upon the ”16-bit Control” field of the instruction. A
combinational logic has also been provided to detect over-
flow/underflow with each choice of bit selection and con-
sequently saturate the output value to maximum/minimum
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bounds. The ”Destination” field of instruction selects the
destination for the result.

4.5 DIVIDE
This instruction is used to invert a complex number. The

first operation during execution of this instruction starts in
the third stage of the pipeline to use the real multipliers.
LUT have been used to store the inversion values. The over-
all operation is shown as dotted area of Fig. 4.

5. Simulation and Synthesis Results

In our work we have used the Processor Designer frame-
work from CoWare Inc. which is based around LISA
ADL[4] and allows the automatic generation of ASIP soft-
ware development tools along with VHDL and Verilog
codes for hardware synthesis and system integration. Thus,
the proposed ASIP architecture was described in LISA
ADL. Using this description, software development tools
were generated through Processor Designer framework.

CONJ HO VO
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HHH

HHH

;HH in V Banks

HHH
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Figure 6. Sample programs for (a) 2×2 and (b) 4×4
MIMO equalization

FPGA Synthesis Results(Xilinx Virtex5 xc5vlx330)
Slice Registers 3,174 out of 207,360 (1%)
Slice LUTs 11,299 out of 207,360 (5%)
DSP48Es 14 out of 192(7%)
Frequency 130 MHz
ASIC Synthesis Results (Synopsis Design Compiler)
Technology ST 90nm
Conditions Worst Case (0.9V ; 105oC)
Area 0.37mm2

Frequency 546 MHz

Table 1. Synthesis Results

The application program was written in assembly language
for 2×2 and 4×4 MIMO system with QPSK modulation,
which was compiled and linked. Later on the results were
verified using Processor Debugger. Parts of assembly lan-
guage programs for two use cases are shown in Fig. 6. Fig.
6(a) shows the computation of E (eq. (4)) and few steps
of E−1 and Fig. 6(b) shows the steps for computation of
HHH . Flexibility for higher modulation types is achieved
through the support of various fixed-point representations
required by these modulations.

Using the Processor Generator tool, VHDL description
of the ASIP architecture was generated which is synthe-
sized for FPGA and ASIC implementation. The result of
synthesis are arranged in Table. 1. Table. 2 shows the num-
ber of clock cycles required for the computation of different
steps of target algorithm. With these results, a throughput of
273 MSymbol/sec for 2×2 and 145 MSymbol/sec for 4×4
MIMO system, can be achieved at a frequency of 546 MHz.

Most of the available existing solutions in literature



Expression MIMO 2×2 MIMO 4×4
(Cycles) (Cycles)

E (Ref. eq. 4) 13 39
E−1 (Ref. eq. 4) 18 68
pk (Ref. eq. 3) 9 27
βk (Ref. eq. 5) 7 16
λk (Ref. eq. 5) 16 20
λkpH

k , gk (Ref. eq. 5) 7 15
Total (Ref. eq. 3 to 5) 70 185
Symbol x̃ Throughput 4 symbols 4 symbols
(Ref. eq. 6) / 8 cycles / 15 cycles

Table 2. ASIP computation time for MMSE-IC LE
equations

Matrix Inversion (Clock Cycles)
MIMO 2×2 MIMO 4×4

Ref. [2] 81 350
Ref. [3] 13 90
Our ASIP 18 68

Computation of pk Eq. 3 (Clock Cycles)
Ref. [8] 415 -
Ref. [5] 15 -
Our ASIP 40 144
Operational Frequency MHz (ST 90nm ASIC tech.)
Ref. [3] 500
Our ASIP 546

Table 3. Performance Comparison

present limited contributions to specific parts of MIMO
equalization like matrix inversion or parameters like ma-
trix size. An effort has been made to compare certain pa-
rameters with available state of the art implementations as
shown in Table. 3. Obtained results demonstrate that the
proposed solution outperform exiting implementations in
terms of flexibility and/or execution time.

6. Conclusion

In this paper, we have presented a novel high through-
put ASIP implementing an MMSE-IC linear equalizer for
turbo equalization application. Analysis and simulation
of MMSE-IC LE equations allowed to identify potential
complex-numbered computational resource sharing and dif-
ferent data representations.

Combination of MRB and CAU enables efficient re-
source sharing through specialized instruction set. Pro-
grammable data converters provides required flexibility for
16-bit fixed point arithmetic operations while handling
overflow/underflow situations.

Flexibility of the presented ASIP architecture allows

its reuse for any 2×2 or 4×4 spatially multiplexed turbo
MIMO application with QPSK, 16-QAM, and 64-QAM.
The proposed architectural optimizations enable a maxi-
mum throughput of 273 MSymbol/sec for 2×2 and 145
MSymbol/sec for 4×4 MIMO systems with an equiva-
lent 85 KGates area. The presented original contribution
demonstrates promising results using ASIP approach to im-
plement MMSE-IC LE and promotes its reuse for other
MMSE-based applications.
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