An Efficient Path-oriented Bitvector Encoding Width Computation Algorithm for Bit-precise Verification *

Nannan He and Michael S. Hsiao {nhe, mhsiao}@vt.edu
Department of Electrical and Computer Engineering, Virginia Tech Blacksburg, VA, 24061

Abstract

Bit-precise verification with variables modeled as bitvectors has recently drawn much interest. However, a huge search space usually results after bit-blasting. To accelerate the verification of bit-vector formulae, we propose an efficient algorithm to discover non-uniform encoding widths \(W_e \) of variables in the verification model, which may be smaller than their original modeling widths but sufficient to find a counterexample. Different from existing approaches, our algorithm is path-oriented, in that it takes advantage of the controllability and observability values in the structure of the model to guide the computation of the paths, their encoding widths and the effective adjustment of these widths in subsequent steps. For path selection, a subset of single-bit path-controlling variables is set to constant values. This can restrict the search from those paths deemed less favorable or have been checked in previous steps, thus simplifying the problem. Experiments show that our algorithm can significantly speed up the search by focusing first on those promising, easy paths for verifying those path-intensive models, with reduced, non-uniform bitwidth encoding.

1. Introduction

In formal verification, modeling data variables as bitvectors with a bounded width has shown some unique benefits. Bounded modeling is capable of accurately capturing the true semantics of the verification instances constrained by a physical word-size on a computer. Furthermore, with the advances in Boolean and bitvector arithmetic reasoning, SAT (or SMT) based formal verification has the potential to deal with large problems. Many existing software model checking tools (e.g., CBMC [3], SATABSB [4], Saturn [14], F-SOFT [5]) and hardware design validation techniques (e.g., [9, 11]) have taken bitvector modeling.

However, with bitvectors, the search space can be huge after bit-blasting, especially when dealing with large hardware designs and/or software programs. For example, in a large instance, it is extremely challenging to find a satisfying assignment (counterexample) with a full-size encoding. One way to handle this problem is to reduce the encoded bitvector width of the variables, thereby restricting the searching space. Then, the verification is conducted on the restricted model instead of the original one. Several approaches have been proposed to compute the reduced bitvector width for enhancing the verification scalability.

In [10], an abstraction approach was introduced to scale down the data path for formal RTL property checking. Based on the static data dependency analysis and granularity analysis of bitvector equations, it computes an abstract model where the bitvector width of variables is reduced with respect to the property. To alleviate the state explosion in software model checking, the authors of [15] reduce the bitvector width of variables according to their lower and upper bounds determined by a symbolic value range analysis technique. Both approaches are applied as preprocessing steps that directly decrease the modeling width \(W \) of each variable and still preserve the verification property. However, they do not consider the dynamic information during verification.

Recently, a new approach was proposed in an under- and over-approximation based abstraction-refinement framework to iteratively learn the sufficient encoding width \(W_e \) of variables for verification, which is smaller than their individual modeling widths [2]. Starting with a small \(W_e \) for every free variable, their approach enlarges \(W_e \) of some variables in each refinement step by analyzing the abstract counterexample of the over-approximation. For refutable properties (where a counterexample exists), the refinement process continues until a SAT assignment is found (with a smaller \(W_e \)) or when the \(W_e \) of all variables have reached their original \(W \). This approach dynamically computes small values for \(W_e \) during verification instead of scaling down the width beforehand using static analysis as in [10, 15]. Although it is flexible, its claimed efficiency is limited in scenarios where the SAT assignment can be represented with a smaller encoding width. Moreover, the values assigned in the abstract counterexample may be unnecessarily large derived from a large \(W_e \) and thus increases the verification difficulty.

In this paper, we present an efficient path-oriented bitvector encoding width computation algorithm to alleviate the above limitations. Similar to [2], our algorithm embeds the dynamic computation of \(W_e \) in the abstraction-refinement framework. However, it is distinguished by its path-oriented analysis with the guidance of static controllability metric (CM) and observability metric (OM) in three major ways. First, it computes the initial non-uniform \(W_e \) of variables on

*supported in part by NSF grants 0519959, 0524052, NI grant 2005-JC-X-K017.
different paths. By setting a bigger initial \(W_e \) for the variables on the easy-to-control paths while setting a smaller \(W_e \) for the other paths, our approach can greatly increase the chance of finding a SAT assignment in the restricted search space directly without the need to adjust \(W_e \) multiple times. Secondly, in the \(W_e \) adjustment steps (if necessary), our approach gives priority to enlarging the \(W_e \) of the easily-controllable variables first through the manipulating of the abstract counterexample generation guided by CM and OM. This helps to systematically search for the concrete counterexample with a reduced effort. Thirdly, it sets \(W_e \) to zero for some single-bit variables that determine the path(s) selection, thereby enforcing constant values on them to restrict choosing only a subset of paths. This can avoid searching those partitions that have been checked in previous steps, especially the ones on which the variables’ \(W_e \) experienced no increase, thus simplifying the problem.

Outline The remainder of the paper is organized as follows. In Section 2, we will give some preliminaries related to our work. Our proposed encoding algorithm is presented in Section 3. We report our experimental results in Section 4 followed by the conclusion in Section 5.

2 Preliminaries

2.1 Bitvector Formula Encoding

The bitvector arithmetic formula we focus on is a conjunction of terms, where each term is in the format (Identifier \(= \) Identifier [op Identifier]). Every Identifier represents a junction of terms, where each term is in the format (Identifier [op Identifier [op Identifier]]) Every Identifier represents a junction of terms, where each term is in the format (Identifier [op Identifier [op Identifier]]).

The resulting formula can be represented as a directed acyclic graph model. An example is shown in Fig. 1, where three possible paths (highlighted by dash lines) are possible to reach \(p \) from the inputs.

Definition 1. Starting from the least significant bit, the encoding width \(W_e(v) \) of a bitvector variable \(v \) is the number of consecutive bits in the vector whose values have not been assigned, \(0 \leq W_e(v) \leq W(v) \). For each of the remaining \(W(v) - W_e(v) \) bits, the value is set to be constant 0 (or 1).

If the \(W_e \) of individual variables is smaller than their \(W \), the search space can be restricted. For example, a variable \(v \) with \(W = 32, W_e = 6 \), the original value range is \([-2^{31}, 2^{31} - 1]\) and the constrained value range is reduced to \([0, 63]\) by enforcing the 22 most significant bits to 0. When \(W_e \) is set equal to 0, the variable simply becomes a constant. We observe that the selector input of an ITE (if-then-else) variable (called isel) has a special property. (In Fig. 1, \(C_2 \) is an isel.) When constant 0 (1) is enforced to an isel (setting its \(W_e \) to zero), the false (true) branch is always taken and some variables on the true (false) branch may become dangling variables. Thus, it is safe to slice away these dangling variables as they do not feed other portions of the code.

Definition 2. A variable is a Boolean Frontier Variable (BFV) if it is the output of a predicate operator and all its fanouts are variables with Bitwise operators.

In Fig. 1, \(C_1 \) and \(C_3 \) are BFVs. We consider them as pseudo inputs of the Boolean portion of the formula where every variable has \(W = 1 \).

2.2 Controllability/Observability Metrics

CM and OM are two generic metrics widely used to evaluate the testability of a hardware design ([8, 13]) or software components [12]. In [7], CM and OM have been used to estimate the amount of influence that each bitvector variable has on the property verification. Specifically, the CM of a variable approximates the difficulty of setting a value along the paths reaching a target variable from the inputs. The difficulty is defined by two main factors: the lengths of the paths and the computation complexity along these paths. The OM approximates the amount of impact that a value-change on a variable has on the output. It is used to estimate the verification relevance of a variable to the target property of interest.

The CM/OM computation defined in [7] is adopted here. It uses pre-calculated controllability and observability coefficients (COC) of basic bitvector operators to represent the operators’ computational efficiency. COC approximates the different amounts of influence the operators have on the CM and OM. The details of COC values and the formulas of the CM and OM computation are omitted due to the space constraints.

Figure 1. A Formula with its Graph Model
limit. We introduce two properties of our CM/OM computation relevant to this work:

- Larger values of the CM/OM indicate harder controllable/observable.
- On any path from primary inputs (PIs) to a primary output (PO), \(CM(v_1) < CM(v_2) \) and \(OM(v_1) > OM(v_2) \) always hold if \(v_1 \) is the predecessor of \(v_2 \).

However, in [7], the 1- and 0-state CM of the variables in the Boolean portion of the instance were not differentiated. Here, we first estimate the 0-state \(CM^0 \) and 1-state \(CM^1 \) of every BFV \(var \) according to four cases below:

1. \(op(var) \in \{ \geq, \leq, <, > \} : CM^0 = CM^1 = 0.5. \)
2. \(op(var) \in \{ ==, \neq \} \) and at least one argument of \(var \) is fully controllable like PI: \(CM^0 = CM^1 = 0.5. \)
3. \(op(var) \in \{ == \} \) and no arguments of \(var \) is fully controllable: \(CM^0 = 1 - 2^{-W}, CM^1 = 2^{-W}. \)
4. \(op(var) \in \{ \neq \} \) and no arguments of \(var \) is fully controllable: \(CM^0 = 2^{-W}, CM^1 = 1 - 2^{-W}. \)

We propagate the \(CM^0 \) and \(CM^1 \) of BFVs to all other variables in the Boolean portion according to the 1 and 0 probability measure of the corresponding bitwise operator. In Fig. 1(b), it shows CM and OM labeled as a \(< CM, OM > \) pair next to each variable outside or at the boundary of the Boolean portion. It also gives the \(CM^1 \) and \(CM^0 \) next to each variable in the Boolean portion (enclosed by the brace). For example, \(CM^0 \) and \(CM^1 \) of variable \(C_1 \) are both 0.5 based on Case(2) since \(dI \) is a PI. To verify the property \(p == 0, C_1 \) and \(C_3 \) have the same \(CM^1 \). But since \(CM \) of \(C_1 \) is smaller than that of \(C_3 \) which means \(C_1 \) is more easily controllable, the path following the dash line is considered as the easy-to-control path.

3 Our Proposed Algorithm

3.1 Overview of the Steps

To enhance the scalability of bit-precise verification, we propose an efficient path-oriented algorithm to compute a small but verification-sufficient encoding width \(W_e \) of individual variables in the instance. The algorithm exploits not only the dynamic information learned in the abstraction-refinement iterations, but also the high-level static structural information through the guidance of the controllability and observability metrics. We assume a verification instance formulated as a bitvector arithmetic formula whose satisfiability corresponds to the negation of a given property (i.e., SAT means the property is refuted). We also assume many paths exist in the instance, which is common in practical problems. Finally, our current work focuses on refuting properties.

The basic flow of our algorithm is illustrated in Fig. 2. We give an overview of each step in below. Three important steps enclosed with dash line borders will be presented in more details in following subsections.

![Figure 2. Basic Flow of Our Algorithm](image-url)
M\textsubscript{o} have the original modeling width W. The refined M\textsubscript{e} can refute all spurious counterexamples where the assignment of the variable is within the encoded value range of its W\textsubscript{e}, so that it prevents repeated generation of the same spurious counterexample. A theorem on this can be found in [6]. This method is simpler than the technique in [2] whose proof-based abstraction also considers the special usage of Boolean nodes.

5. Guided abstract counterexample generation: Since M\textsubscript{o} is small, it is easy to handle it and find an abstract counterexample \(\gamma \) with certain expectations. This is done by enforcing some extra constraints on M\textsubscript{o} guided by CM and OM to steer the search. To avoid generating a new M\textsubscript{e} that is similar to the previous M\textsubscript{e} in which no SAT assignment was found, we prefer generating \(\gamma \) on M\textsubscript{e} that can help enlarge those least frequently enlarged W\textsubscript{e}. As some variables have values assigned in \(\gamma \) falling beyond the value ranges of their previous W\textsubscript{e} values, it is also preferred that they are the easy-to-control ones.

6. New W\textsubscript{e} computation with guided slicing: Given the abstract counterexample \(\gamma \), we enlarge the W\textsubscript{e} of some variables in the previous M\textsubscript{e} so that the new value ranges can adequately cover their values assigned in \(\gamma \). We update the W\textsubscript{e} of all other data dependent variables in M and apply the new W\textsubscript{e} on variables to building the new under-approximate model M′. To avoid repeatedly searching the same space among the iterations, our algorithm enforces certain constant values on some isels and applies model slicing to remove from the new under-approximate model those variables whose W\textsubscript{e} were not enlarged and have thus become dangling variables. The process goes back to Step 3 to start a new iteration.

Due to the finite search space, the algorithm always terminates. In the worst case, the W\textsubscript{e} of individual variables may need to be enlarged to their original W. However, experiments show that a SAT assignment with small value ranges or on the path with the small number of variables exists in most instances.

3.2 Guided Initial W\textsubscript{e} Computation

The initial W\textsubscript{e} of variables including the constant value C\textsubscript{e} chosen on bits outside of W\textsubscript{e} are very important to the efficiency of our algorithm. We enforce the same constant value C\textsubscript{e} to all bits beyond W\textsubscript{e} starting from the most significant one of bitvector variables. The algorithm of the initial W\textsubscript{e} computation with two phases is shown in Fig. 3. In phase 1, it identifies the PIs on the easy-to-control paths and sets a larger W\textsubscript{e} to them; the other PIs are given a smaller W\textsubscript{e}. Guided by CM and OM, our algorithm first backtraces from the target property along the easy paths in the Boolean portion of the instance to a set of BFVs, then it extracts all non-Boolean part variables in the cone of these BFVs and place them in a new set S. It removes from S any variable on the hard-to-control branches of ITEs connected with the isels in the IS. We empirically set C\textsubscript{e} as 0, choose 6 as the initial W\textsubscript{e} for the PIs in S and 2 for the remaining PIs.

In phase 2, our algorithm adjusts the computed W\textsubscript{e} and C\textsubscript{e} considering the effects of constants in M. We observe from experiments that it is preferable to give the same negative or positive polarity for the variables with which the constant is computed. We set the W\textsubscript{e} of variables that allow their encoded value range to cover the absolute value of the constant, especially for predicate operations. This is to avoid fixing the output value of such predicate operations. For example, consider the constraint \(a > -4 \), its value is not fixed only when setting W\textsubscript{e} bigger than 2 and C\textsubscript{e} = 1 for a. Finally, the adjusting of W\textsubscript{e} and C\textsubscript{e} on PIs are also propagated to all internal variables while considering computation consistency on the operators along the paths.

3.3 Abstract Counterexample Generation

In this step, our algorithm sequentially enforces two kinds of constant values on M\textsubscript{e} to steer the search for an abstract counterexample as shown in Fig. 4. The set S\textsubscript{p} which consists of some BFVs and isels included in the M\textsubscript{e} is constructed beforehand. A combination of constant values is first imposed to the variables in the set S\textsubscript{p} so as to restrict searching on a subset of paths. The function pathsSelGen, which returns such constant assignments \(\{C_1, \ldots, C_K\} \), starts enumerating variables in S\textsubscript{p}, at the first iteration and stops until the verification is finished. Since no SAT assignment was found in M\textsubscript{e}, we assume a low chance that a SAT one
//Choose K path selection variables from first M_o-model to set S_p
 Cex_gen(M_o, S_p)
 1. while (1)
 2. (C_1,...,C_K) = pathsSelGen(S_o);
 3. Enforce (C_1,...,C_K) assignment on M_o to get M_o^*
 4. if(M_o^* is SAT) break;
 5. endwhile
 6. Sort all pseudo PIs of M_o w.r.t. CM in increasing order;
 7. Divide all sorted pseudo PIs into L groups;
 8. Enforce current We for all pseudo PIs to get M**;
 9. for i = 1 to L
 10. Refine M** by enlarging We for pseudo PIs in group i;
 11. if(Refined M** is SAT) CEXRET = SAT-SOL;
 12. break;
 13. endif
 14. endfor
 15. endfor
 16. end

Figure 4. Abstract Counterexample Generation

exists on the partition of the instance similar to M_o, and we expect that the new M_o bears the least similarity to the previous M_o in the search space. So, our goal is to return a value combination with the least similarity to the last one and not found as infeasible so as to constrain the search in a different subset of paths. Once a value assignments is found satisfying M_o, we apply it to M_o to restrict the search space to ease the generation task. Next, small encoding widths W_e's are applied to some pseudo PIs of M_o to further constrain the search. A greedy search starts from the most easily controllable PIs. The goal is that the value assignments on the harder-to-control pseudo PIs in the returned counterexample can still be covered by their present W_e.

Theorem 1. An infeasible assignment on M_o is also infeasible in M.

Proof. Since the set of clauses β_o of M_o is a subset of CNF clauses β of M, if an assignment v_0, ... v_n cannot satisfy β_o, this same assignment also cannot satisfy β because at least a subset (β_o) cannot be satisfied in β.

With this theorem, we can safely check the invalidity of some assignments in the M_o with a low cost. It is especially efficient to identify a subset of infeasible paths using M_o.

3.4 New W_e with Guided Slicing

We focus on introducing the guided slicing process as illustrated in Fig. 5. First, we apply the assignments \{C_1, ..., C_K\} that were obtained from M_o^* to the new M_o and slice away any dangling variables. In Fig. 5(a), the isSel whose value is enforced controls the ITEs of M both inside M_o and outside of M_o. So more branches can be sliced away of the new M_o compared to M_o. Next, the branches of the ITEs controlled by isels in IS on which variables had no enlarged W_e are removed. In Fig. 5(b), the variables whose W_e need to be changed are in the center cone. The path branches shown in the bottom are outside of this cone and are removed from the new M_o.

Figure 5. Two-Steps Guided Slicing

4 Experimental Results

To validate the effectiveness of our approach, we implemented the proposed method in C++, which is called C2BIT-2, and applied it to the bitvector arithmetic benchmarks [1] in the following suites: Spear and TACAS07. There are two main reasons that 14 benchmarks were chosen: Either 1) a benchmark is path intensive that has a large amount of isels or BFV's, or 2) verification takes a long time by existing tools. They are all refutable properties (a satisfiable solution exists). C2BIT-2 uses Booleofieve v1.0 to extract UNSAT core in the UNSAT case, and uses MINISAT v1.14 to generate abstract counterexamples and verify the satisfiability of the under-approximate model. The experiments were conducted on an Intel Xeon 2.8GHz processor with 2 GB RAM.

The results are reported in Table 1. First, for every benchmark, the characteristics of the original bitvector formula are given: Vars# reports the number of bitvector variables including constants; isSel# reports the number of isels both before and after pruning. After pruning the formula instance, we found that only about one-third of isels are unique. For example, in log vc331256, only 1019 out of 3110 isels are unique. This implies that multiple ITE variables may share the same isel. Furthermore, these isels have no dependency to each other and their inputs are close to PIs, thus they are very controllable. For the last benchmark, isel# is zero which means no ITE variables but the number of BFV's is big shown in parentheses. Next, the runtime of Spear v2.6 is reported. We apply three methods on the benchmarks: 1) uniform initial W_e with the proof-based refinement as in [2]; 2) uniform initial W_e with CM/OM guided refinement; 3) non-uniform initial W_e < max, min > with CM/OM guided refinement (C2BIT-2). For each benchmark, the initial/final modal value of encoding widths after refinement are reported, followed by the number of refinement iterations and total runtime (including pruning, encoding, UNSAT core extraction and solving time) of these three methods. For instance, in innd33359, the initial uniform W_e is 8 and the final mode of W_e after two iterations is 32 for method 1 and 12 for method 2. With method 3) the non-uniform initial W_e is < 12, 2> (variables on easy-to-control paths have width of 12 and the rest have widths of 2), and the final mode of W_e is still 12 as only few variables have the enlarged W_e after refinement. All methods need 2 iterations to find the SAT solution for this particular instance but C2BIT-2 is the fastest.
Table 1. Results Comparison (Benchmarks from Spear, TACAS07)

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Vars</th>
<th>isels</th>
<th>Spear (s)</th>
<th>Proof-Based</th>
<th>CM/OM Guided</th>
<th>C2BIT-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>log_331256</td>
<td>27773</td>
<td>3110/1019</td>
<td>314.42</td>
<td>4/12 2</td>
<td>117.71</td>
<td>4/6 2</td>
</tr>
<tr>
<td>log_331257</td>
<td>27369</td>
<td>3149/994</td>
<td>437.13</td>
<td>4/12 2</td>
<td>76.59</td>
<td>4/12 2</td>
</tr>
<tr>
<td>log_331190</td>
<td>23188</td>
<td>2656/852</td>
<td>632.33</td>
<td>4/12 2</td>
<td>46.96</td>
<td>4/12 2</td>
</tr>
<tr>
<td>log_331211</td>
<td>23554</td>
<td>2681/877</td>
<td>515.31</td>
<td>4/12 2</td>
<td>91.20</td>
<td>4/12 2</td>
</tr>
<tr>
<td>inmd_33359</td>
<td>1368</td>
<td>77/33</td>
<td>49.66</td>
<td>8/32 2</td>
<td>41.28</td>
<td>8/12 2</td>
</tr>
<tr>
<td>inmd_33725</td>
<td>1025</td>
<td>52/22</td>
<td>55.26</td>
<td>8/32 2</td>
<td>43.32</td>
<td>8/12 2</td>
</tr>
<tr>
<td>nrnpd_21453</td>
<td>1330</td>
<td>76/32</td>
<td>20.94</td>
<td>8/18 2</td>
<td>47.21</td>
<td>8/18 3</td>
</tr>
<tr>
<td>wget_17909</td>
<td>1042</td>
<td>37/32</td>
<td>380.74</td>
<td>8/18 2</td>
<td>520.3</td>
<td>8/18 2</td>
</tr>
<tr>
<td>wget_18506</td>
<td>1062</td>
<td>38/30</td>
<td>39.86</td>
<td>8/18 2</td>
<td>30.26</td>
<td>8/18 2</td>
</tr>
<tr>
<td>cli_1225314</td>
<td>17481</td>
<td>1991/604</td>
<td>40.45</td>
<td>4/12 2</td>
<td>33.52</td>
<td>4/12 2</td>
</tr>
<tr>
<td>cli_1225757</td>
<td>18171</td>
<td>2090/616</td>
<td>25.02</td>
<td>4/12 2</td>
<td>36.79</td>
<td>4/12 2</td>
</tr>
<tr>
<td>cli_1225783</td>
<td>18766</td>
<td>2139/637</td>
<td>51.06</td>
<td>4/6 2</td>
<td>57.80</td>
<td>4/6 2</td>
</tr>
<tr>
<td>cli_1225832</td>
<td>19867</td>
<td>2273/665</td>
<td>65.25</td>
<td>4/12 2</td>
<td>75.28</td>
<td>4/12 2</td>
</tr>
<tr>
<td>S-40-50</td>
<td>1321</td>
<td>0(156)/0</td>
<td>14.36</td>
<td>4/32 4</td>
<td>98.47</td>
<td>4/16 2</td>
</tr>
</tbody>
</table>

Compared with Spear, C2BIT-2 has achieved significant speedups. Some were even greater than 10×. Note that the assignment found for each benchmark was validated using the CNF file and the variable mapping file generated by Spear. We also observe that the maximum W_e computed by two refinement methods are the same or similar for many benchmarks. One reason is that modern SAT solvers typically return a ‘maximally-false’ solution that contains as many false bits as possible that can produce small value assignments. However, with the CM/OM guidance, the enlargement of variables’ encoding widths focuses on the subset of paths so that the slicing can be conducted to reduce the model size and solving time. With C2BIT-2, the SAT assignment for 10 out of 14 benchmarks can be obtained in just one iteration with our initial non-uniform bitwidth encoding. It shows that this encoding effectively increases the chances of finding a SAT solution on the easy paths and invokes the little effort of searching on hard-to-control paths.

5 Conclusion

We have presented an efficient algorithm of computing small encoding widths for bitvectors by utilizing a path-oriented abstraction-refinement framework. This algorithm exploits both the high-level structure and dynamic verification knowledge to effectively steer the search. It takes advantage of the controllability and observability metrics to guide three major steps: initial encoding width computation, abstract counterexample generation, and under-approximate model slicing. Experiments show that our proposed algorithm can reduce the solving time significantly, especially in verifying the paths-intensive designs.

References

