
Accelerating FPGA-based Emulation of
Quasi-Cyclic LDPC Codes with Vector Processing

Xiaoheng Chen, Jingyu Kang, Shu Lin and Venkatesh Akella
Department of Electrical and Computer Engineering

University of California
Davis, California 95616, USA

Email: {xhchen, jykang, shulin, akella}@ucdavis.edu

Abstract—FPGAs are widely used for evaluating the error-floor
performance of LDPC (low-density parity check) codes. We pro-
pose a scalable vector decoder for FPGA-based implementation
of quasi-cyclic (QC) LDPC codes that takes advantage of the
high bandwidth of the embedded memory blocks (called Block
RAMs in a Xilinx FPGA) by packing multiple messages into the
same word. We describe a vectorized overlapped message passing
algorithm that results in 3.5X to 5.5X speedup over state-of-the-
art FPGA implementations in literature.

I. INTRODUCTION

LDPC codes, discovered by Gallager in 1962 [1], were
rediscovered and shown to approach Shannon capacity in the
late 1990s. Today LDPC codes are being considered for a wide
variety of emerging applications such as high-density flash
memory, satellite broadcasting and mobile WiMAX. Rapid
performance evaluation of LDPC codes is very desirable to de-
sign better codes for these applications. For some applications
(such as storage systems), it is necessary to prove the absence
of error-floor down to 10−12 which is almost impractical on
a conventional CPU.

As a result, FPGAs are being widely used to emulate the
performance of LDPC codes. Zhang et. al [2], [3] and [4]
proposed techniques to realize partially parallel architectures
to implement LDPC decoders efficiently on an FPGA. As a
result, FPGAs are being widely used to emulate the perfor-
mance of LDPC codes. Recently, researchers at Berkeley [5],
[6], [7] describe a Virtex-II Pro based hardware emulation
platform LDPC decoders. Saunders et. al [8] merge multiple
messages into a single SISO message to save total memory
bits of FPGA. As described in the next section, the message
passing algorithm [9] is often used to decode the LDPC codes.
Variable-to-check messages and check-to-variable messages
are computed by variable nodes and check nodes processing
units and are passed along the edges in the Tanner graph.
One iteration of message passing contains two steps: check
node update and variable node update. The two steps can
be overlapped to increase decoding throughput, which is
referred to as overlapped message passing (OMP) [4], [10].
The conventional scheduling without overlapping the two
steps is referred to as non-OMP method. In a FPGA-based
implementation of the message passing algorithm (both OMP
and non-OMP methods), the variable to check node and check
node to variable node messages are stored in the embedded

memory blocks, called Block RAMs in a Xilinx FPGA. We
call these scalar decoders because a single message is stored
in each Block RAM word.

Scalar decoders do not take the full advantage of the
high bandwidth capability of Block RAMs in modern FPGA,
especially given that typically messages do not require more
than 5 or 6 bits of precision [2]. For example, in a Virtex-5
FPGA, Block RAMs can have 18, 36, or 72 bit wide ports,
which means that a scalar implementation potentially waste a
significant fraction of the available memory bandwidth. In this
paper, we propose a technique called VMP (vector message
passing) that treats the wide word in a Block RAM as a short
vector, that holds multiple messages, which are loaded and
stored simultaneously. VMP introduces new challenges for
data packing and alignment which can be solved by taking
advantage of the configurable logic resources of an FPGA.
This allows us to build a customized vector processor for
a given LDPC code and desired data precision to improve
the decoding throughput over conventional scalar decoders.
However, this improvement comes at the expense of addi-
tional logic resources (flip-flops and slices) to implement the
additional functional units to support vector processing and
the required data alignment and addressing. For large LDPC
codes this might result in a given decoder not fitting inside
an FPGA. So, a careful design space exploration is needed
to select the appropriate vector length for VMP, to maximize
the decoding throughput given the resource constraints of the
FPGA available for emulation. We built a tool, called QCSyn,
to facilitate the exploration of the design space of vector LDPC
decoders on a given FPGA platform. QCSyn is used to derive
the results described in this paper.

The rest of the paper is organized as follows. We start with
an overview of the design, construction, and decoding of QC-
LDPC codes using the iterative message-passing algorithm.
This is followed by the details of the vector decoding archi-
tecture and the VMP algorithm. We conclude with the results
of our implementation and directions for future work.

II. QC LDPC CODES

A. Code Construction

A (γ, ρ) binary quasi-cyclic (QC) LDPC code is defined as
the null space of a sparse parity-check matrix H over GF(2)
with the following structural properties: (1) each row has

978-3-9810801-5-5/DATE09 © 2009 EDAA

constant weight (regular) or multiple weights no greater than
ρ (irregular). (2) each column has constant weight (regular)
or multiple weights no greater than γ (irregular). (3) no two
rows (or two columns) can have more than one position where
they both have 1-components. (4) the H matrix is composed
of γ × ρ block matrices showed below:

H =


A0,0 A0,1 · · · A0,ρ−1

A1,0 A1,1 · · · A1,ρ−1

...
...

. . .
...

Aγ−1,0 Aγ−1,1 · · · Aγ−1,ρ−1


where Ai,j refers to either a m × m all-zero matrix or a
circulant permutation matrix (CPM) for 0 ≤ i ≤ γ − 1 and
0 ≤ j ≤ ρ− 1. A CPM is a circularly shifted identity matrix
with certain offset. The size of the H matrix is (γm)× (ρm).
The code rate is no less than 1− (γ/ρ).

Binary QC LDPC codes are constructed based on algebraic
and combinatorial tools, such as finite geometries, balanced
incomplete block designs, Reed-Solomon codes with two
information symbols, and finite fields [11]. The density of
an H matrix can be reduced by replacing a set of CPMs by
zero matrices. The replacement of CPMs with zero matrices
is referred to as masking [11]. Masking results in a new array
whose Tanner graph has fewer edges and hence has fewer short
cycles and possibly larger girth.

2

m = 31

m

offset = 2

1 2 4 8 16

5 10 20 9 18

25 19 7 14 28

Fig. 1. Code structure of a (3,5) regular QC-LDPC code

Figure 1 shows the code structure of a (3, 5) regular QC-
LDPC codes. The H matrix has 3 block rows and 5 block
columns. Each block matrix is a 31 × 31 CPM with certain
offset displayed in the square symbol. The concept of CPM is
further explained by a CPM with offset 2. The entries along
the dashed line of the CPM are 1, while other entries are 0.

B. Message Passing Decoding

An LDPC code can be decoded under iterated message
passing algorithm for Shannon capacity approaching error
performance. The sum-product algorithm (SPA) and log-
likelihood-ratio (LLR)-based SPA gives the best performance
among soft-decision decoding. However, they require com-
plex computations including nonlinear functions. An approx-
imated version of LLR-SPA, called the min-sum algorithm
(MSA) [12] requires less decoding complexity at the expense
of some performance degradation. However, for LDPC codes
with large check node degrees, the performance degradation of
MSA compared to SPA could be as large as 1 dB. To address

this problem, the normalized min-sum algorithm (NMSA) was
introduced [12] and shown to be a better approximation of
SPA. Besides, NMSA does not need any channel statistics.
Therefore, we use NMSA for evaluating the performance of
LDPC codes.

A QC-LDPC code defined by a H matrix size of (γm×ρm)
has ρm bits per codeword and γm parity checks checking the
code bits. In the Tanner graph of a QC LDPC code, each bit is
represented by a variable node and each parity check is repre-
sented by a check node. An edge exists between the variable
node v and the check node c if hcv = 1 in the H matrix. Let
the set M(v) denote the set of check nodes connecting the
variable node v. Let the set N (c) denote the variable nodes
connected to the check node c. Let y = (y0, y1, · · · , yρm−1)
be the soft-decision received sequence at the input of the
decoder. Let z = (z0, z1, · · · , zρm−1) be the posterior soft-
decision information. At the i-th iteration, for 0 ≤ c < γm
and 0 ≤ v < ρm, let qvc and σcv be the message from variable
node v to check node c and the message from check node
c to variable node v. In every iteration, the variable-to-check
messages and the check-to-variable messages are updated. The
normalized min sum algorithm is presented below.

STEP 1 Initialization: Set i = 0 and the maximum number
of iterations to Imax. Set qvc = yv .

STEP 2 Check node update: at check node 0 ≤ c ≤
γm− 1, for 0 ≤ v < ρm− 1, compute σ

(i)
cv by

σcv = α · min
v′∈N (c)\v

|qcv′ | ·
∏

v′∈N (c)\v

sign (qcv′)

STEP 3 Variable node update: At variable node 0 ≤ v <
ρm− 1, for 0 ≤ c ≤ γm− 1, compute qvc and zv by

qvc = yv +
∑

c′∈M(v)\c

σc′v

zv = yv +
∑

c∈M(v)

σcv

STEP 4 Tentative decode: If sign (z) ·HT = 0 or Imax is
reached, go to (5). Otherwise, i← i + 1 and go to (2).

STEP 5 Termination: Take sign (z) as the decoded code-
word and stop the decoding process.

III. VECTOR DECODER FOR QC LDPC CODES

A. Decoder Architecture Overview

In a FPGA-based partially parallel QC-LDPC codes de-
coder, the intrinsic messages (y in NMSA), extrinsic mes-
sages (qvc, σcv) and hard decision bit (sign(z) in NMSA) are
grouped based on CPM locality and mapped to embedded
memory (Block RAMs in Xilinx). A modulo counter is associ-
ated with each memory to generate the corresponding memory
address, which always counts from certain initial value and
then wraps around to the starting address. (γ + 2) embedded
memory are required for a regular (γ, ρ) QC-LDPC code
decoder, among which γ × ρ memory are used for extrinsic
messages, ρ memory are used for intrinsic messages, and ρ
memory are used for hard decision bit. To differentiate from

the proposed vector decoder, we name refer to this as a scalar
decoder. Given that the scalar decoder uses a memory word
to store one message, only one message can be read out or
written per memory access.

E2,0 E2,1
CNU

VNU

E2,2 E2,3 E2,4

E1,0 E1,1
CNU

E1,2 E1,3 E1,4

E0,0 E0,1
CNU

E0,2 E0,3 E0,4

VNU VNU VNU VNU

I0 I1 I2 I3 I4

Fig. 2. A vector decoder for code depicted in figure 1 when K = 2

We exploit the wider bitwidth and configurability of embed-
ded memory blocks to propose a vector decoder architecture.
For example, in a Xilinx Virtex FPGA, a 18K Block RAM
(BRAM) can be configured in different aspect ratios such as
8k 2-bit words or 512 36-bit words. For normalized min sum
algorithm, the intrinsic and extrinsic message is usually 6-
8 bit wide, thus up to six 6-bit messages can be packed in
one memory word in the 512 36-bit aspect ratio. We define
the number of messages packed into one memory word as
K. Figure 2 shows a vector decoder for our example (3,5)
code when K = 2. CNU denotes the check node unit, which
perform the check node update and parity check (Step 2
and Step 4 in NMSA). VNU denotes the variable node unit,
which perform the variable node update (Step 3 in NMSA).
I denotes the intrinsic memory, which stores the intrinsic
messages. E denotes the extrinsic memory, which stores the
extrinsic messages and hard decision bit. The hard decision bit
is computed by VNU and appended at the head of the variable-
to-check messages. The vector decoder for a regular (γ × ρ)
code requires K × γ CNUs, K × ρ VNUs, and (γ + 1) × ρ
embedded memory. The decoding steps in NMSA are mapped
to the vector decoder architecture as below.

STEP 1 Initialization Load the received intrinsic messages
to both the ρ intrinsic message memory I and the γ × ρ
extrinsic message memory E. K × ρ messages are load at
one clock cycle.

STEP 2 Check node update and tentative decode:
The K × γ CNUs read the variable-to-check messages and
update the check-to-variable messages simultaneously. Each
CNU read ρ messages from ρ extrinsic memory of the same
block row. For example, the 1st and the 2nd CNUs read
messages from and update messages to extrinsic memory
E0,0, E0,1, E0,2, E0,3, E0,4 in Figure 2. Besides, the CNUs
extract hard decision bits from the variable-to-check messages
and check the parity.

STEP 3 Variable node update: The K × ρ variable node

units (VNUs) read the intrinsic messages and the check-to-
variable messages, and update the variable-to-check messages
simultaneously. Each VNU read γ messages from γ extrinsic
memory of the same block column. For instance, the 3rd and
the 4th VNUs read messages from I1, E0,1, E1,1, E2,1 and
update the corresponding messages in Figure 2.

STEP 4 Termination: The hard decision bits are extracted
from the extrinsic memory at the same block row and stored
to data sink.

The vector decoder architecture outperforms the scalar
decoder in two ways. First, the embedded memory port can
be configured wide to read and write multiple message per
port access without sacrificing clock frequency, thus we can
exploit higher memory bandwidth for throughput gain by
incorporating K-times processing units. Second, the vector
decoder embeds the hard decision bits in the variable-to-check
messages, and thus save ρ embedded memory and routing
resources.

B. Message Packing and Alignment

0

1

30

CNU Memory

29

.
.
.

0 1 2 3

4 5 6 7

24 25 26 27

.
.
.

.
.
.

.
.
.

.
.
.

28 29 30

29 30 0 1

2 3 4 5

22 23 24 25

.
.
.

.
.
.

.
.
.

.
.
.

26 27 28

CNU CNU CNU CNU

CNU Write

Alignment

VNU VNU VNU VNU

VNU Write

Alignment

VNU Memory

CNU VNU

(a) K=1 (b) K=4

Fig. 3. Message packing when K = 1 and K = 4 for CPM depicted in
figure 1

In the scalar decoder, which is same as a vector decoder
with K = 1, a message is packed in one memory word.
The memory structure can be modeled as a one dimensional
array L[m], as shown in Figure 3(a). For simplicity, all the
indices, addresses, and pointers are assumed to start at 0.
The message is packed in the row major order of the CPM,
i.e., the message in the i-th CPM row is packed in L[i]. The
location for message L[i] stores σcv at step (2) and qvc at
step (3), i.e., the extrinsic messages are updated in place. For
standard decoding scheduling, the CNU starts from the 0-th
CPM row, i.e., in the order of L[0], L[1], · · · , L[m − 1]. The
VNU starts from the 0-th CPM column, i.e., in the order of
L[m− offset], · · · , L[m− 1], L[0], · · · , L[m− offset− 1].

For the vector decoder architecture, K > 1 messages
are packed in one memory word. We use double buffering
technique to eliminate memory conflict for CNU and VNU
access. The extrinsic memory is divided into two parts: one
for CNU to read out and VNU to write into (denoted as CNU
memory), another for VNU to read out and CNU to write into

(denoted as VNU memory). Although double memory is being
used, it does not change the number of Block RAMs used,
which is important because the key limitation to the size of
the LDPC code that can be accommodated on a given FPGA
is limited by the number of Block RAMs not the memory
capacity.

When K > 1, each CNU or VNU memory has dm/Ke
memory words and K messages per word. The CNU and VNU
memory can be modeled as two dimensional arrays, denoted
by Lc and Lv . Figure 3(b) shows the packing details for a
CPM with m = 31 and offset 2 when K = 4. The variable-to-
check messages are packed in the CNU memory by the CNU
access order, i.e., the message L[0] is packed as Lc[0][0]. The
check-to-variable messages are packed in the VNU memory
by the VNU access order, i.e., the message L[m − offset] is
packed as Lv[0][0]. Generally, the message L[k] is packed to
the location Lc[bk/Kc][k mod K] in the CNU memory and
Lv[b((k+offset) mod m)/Kc][((k+offset) mod m) mod K]
in the VNU memory.

As L[k] is mapped to different locations in the CNU mem-
ory and VNU memory except when offset = 0, the messages
need to be aligned before they are written into the memory. As
shown in Figure 3(b), messages L[0], L[1], L[2], L[3] are read
out and processed by four CNUs simultaneously. However,
L[0], L[1] and L[2], L[3] are aligned by CNU Write Alignment
unit and written into different memory words in the VNU
memory. Besides, when L[0] is not mapped to the 0th column
of the VNU memory, or L[m−offset] is not packed in the 0th

column of the CNU memory, the starting row for write will be
accessed twice. For instance, the 0th row of the VNU memory
in Figure 3(b) will be accessed twice in the check node update
step, since L[29], L[30] and L[0], L[1] are packed into the same
row. The CNU Write Alignment and VNU Write Alignment
units are implemented using registers and multiplexors.

C. Vector Message Passing

CNU

VNU

CNU

VNU

CNU

VNU

...

...

1
st

iteration

2
nd

iteration n-th iteration

(d) Vector OMP, K=2

CNU

VNU

CNU

VNU

CNU

VNU...

1
st

iteration

w

w

(c) OMP, K=1

2
nd

iteration

...

n-th iteration

VNU CNUCNU VNU CNU VNU...

1
st

iteration 2nd iteration n-th iteration

(a) Non-OMP, K=1

VNUCNU ...

1
st

iteration

VNUCNU

2
nd

iteration

(b) Vector Non-OMP, K=2

~w

~w

Fig. 4. Comparison of Scheduling Schemes

Overlapped message passing (OMP) method was proposed
by [4] and further optimized by [10] to reach the maximized
concurrency and avoid memory access conflicts. As showed
in Figure 4(a,b), the non-OMP-based vector decoder reduces
sub-iteration time by vector processing, and thus increases
throughput. Based on the OMP method, we propose a vector

overlapped message passing (VMP) scheme to exploit the
vector processing architecture. Let w̃ denote the number of
waiting clock cycles between CNU update and VNU update
of the same iteration. We minimize w̃ as below.

(1) Apply the OMP method: Let c = {c0, c1, · · · , cγ−1}
denote the starting CPM rows for CNUs. Let v =
{v0, v1, · · · , vρ−1} denote the starting CPM columns for
VNUs. Let w denote the waiting time between intra-iteration
CNU and VNU computations. We apply the OMP method
described in [10] to get c, v, and w.

(2) Message packing: We use the same memory model
and notation system described in the previous subsection to
explain the packing scheme. For an extrinsic memory Ei,j ,
the CNU starts from the CPM row ci, and the VNU starts
from the CPM column vj . The variable-to-check messages
are packed in the CNU memory by the CNU access order, i.e.,
the message L[ci] is packed as Lc[0][0]. The check-to-variable
messages are packed in the VNU memory by the VNU access
order, i.e., the message L[vj − offset mod m] is packed as
Lv[0][0]. Generally, the message L[k] is packed to the location
Lc[b(k − ci)/Kc][(k − ci) mod K] in the CNU memory and
to Lv[b((k−vj +offset) mod m)/Kc][((k−vj +offset) mod
m) mod K] in the VNU memory.

(3) Compute the starting read and write word address at the
1st iteration. The starting CNU or VNU read address is 0. The
starting write message for CNU is L[ci], which is packed in
Lv[xc(i, j)][yc(i, j)] in the VNU memory, where

xc(i, j) = b((ci − vj + offset) mod m)/Kc
yc(i, j) = ((ci − vj + offset) mod m) mod K

Likewise, the starting write message for VNU is L[vj −
offset mod m], which is packed in Lc[xv(i, j)][yv(i, j)] in the
CNU memory, where

xv(i, j) = b(vj − ci − offset) mod m)/Kc
yv(i, j) = (vj − ci − offset) mod m) mod K

(4) Compute the minimum waiting time for VMP by

w̃ = max
0≤i<γ,0≤j<ρ

{dm/Ke − xc(i, j), dm/Ke − xv(i, j)}+1

(5) Compute the number of clock cycles for sub-iteration
time by

m̃ =

 dm/Ke if
γ∑

i=0

ρ∑
j=0

(yc(i, j) + yv(i, j)) = 0

dm/Ke+ 1 otherwise

The above steps (2-5) can be applied to vector decoders with
non-OMP scheduling, for which ci = vj = 0. The starting read
and write address for CNUs and VNUs increases cyclically
with the increment of m̃− 1 for every new iteration for data
dependency.

For OMP or VMP scheduling scheme, CNUs and VNUs
may read and write the extrinsic memory at the same time,
thus quad port memory is required. As the block RAM runs at
the frequency as high as 500 MHz, which is much larger than
twice the clock rate of the critical path within our decoder,

CNU Data Out

VNU Data Out

Port A

Dual-Port RAM

DIN

ADDR

CLK

WE

DOUT

Port B

DIN

ADDR

CLK

WE

DOUT

D

D

Q

Q

CNU Write Addr

VNU Write Addr

CNU Write Enable

VNU Write Enable

CNU Read Addr

VNU Read Addr

CLK

CLK 2x

CNU Data In

VNU Data In

Fig. 5. Transform dual port memory to quad-port memory

we emulate quad-ported memory by clocking the memories
at twice the clock frequency and time-multiplexing without
frequency loss. As shown in figure 5, ‘Port A’ of the dual-
port RAM emulates a dual-port read-only memory, while ‘Port
B’ emulates a dual-port write-only memory. Hence we have
two read ports and two write ports. The clock signal ‘CLK
2x’ is generated by the clock management unit within FPGA.
The main clock signal ‘CLK’ is used as the select signal for
multiplexors.

Based on the formula in [10], we derive a general formula
for computing the throughput of the vector decoder as follows
-

Tp =

{
ρ×m×f

M+(M×Niter+W) if W ≤ bM/2c
ρ×m×f

M+(W×(2Niter−1)+M) if W > bM/2c

where f is the clock frequency, Niter is the average iteration
number, W is the number of clock cycles for intra-iteration
wait, and M is the number of clock cycles for loading
or updating messages. The denominator denotes the number
of clock cycles to decode a codeword, and contains two
parts: overlapped load/store time M , and iteration time. The
formula applies to four cases: (1) scalar decoder with non-
OMP scheduling, W = M = m. (2) scalar decoder with
OMP scheduling, W = w, M = m. (3) vector decoder with
non-OMP scheduling, W = M = m̃. (4) vector decoder with
OMP scheduling, W = w̃, M = m̃.

IV. RESULTS AND DISCUSSION

We have developed and implemented a tool, called QCSyn,
in python to automate the creation of vector decoder archi-
tecture. The QCSyn tool takes the description of a regular or
irregular QC-LDPC code and the desired vector width (K)
writes synthesizable decoder description file in verilog. We
use Xilinx 10.1 for synthesis and implementation. ModelSim
6.3f is used for simulation.

First, we implement a regular (3,6) QC LDPC decoder for
a code with m = 256 using the same setting as [10]: Xilinx
Virtex 2 XC2V6000-5 FPGA, 8-bit quantization scheme, and
min-sum algorithm to benchmark our implementation against
the best known technique from literature. Table I shows that
although the decoder in [10] uses a deeper pipeline and
thus has slightly higher clock rate, our vector architecture
has throughput gain up to 5.5 when K = 4. Furthermore,

our implementation uses only 24 Block RAMs instead of 36
BRAMs used by the implementation in [10]. This is because
of our optimization of embedding hard decision bit in the
extrinsic messages.

Method Lehigh [10] K=1 K=2 K=3 K=4
Slices 1616 1784 3256 6354 6828
Flip Flops 1073 1613 2996 6367 6828
4-input LUTs 2887 3026 5185 9716 10911
BRAMs 36 24 24 24 24
f (MHz) 148.7 116.9 109.9 99.6 98.4
Niter at 4.5 dB 3 3 3 3 3
W 63 63 33 22 17
M 256 256 129 87 65
Tp (Mbps) 99.1 165.2 307.5 413.5 545.6
Tp Gain 1 1.67 3.1 4.17 5.5

TABLE I
REGULAR (3,6) CODE WITH m = 256

Next, we evaluate our technique on a regular and an
irregular QC-LDPC code of moderate code length which
is representative of codes being considered for storage and
wireless communications. (8192, 7171) code is a (γ = 4, ρ =
128,m = 256) regular code, which is constructed on the prime
field GF(257) [11] where as (3369, 3213) is a (γ = 12, ρ =
63,m = 63) irregular code, which is constructed by masking
the GF(26)-based base matrix. We use NMSA (α = 0.5)
and 6-bit quantization scheme to design the decoder when
K = 1, 2, 3, 4. The synthesis result of (8192, 7171) code using
Xilinx Virtex 4 XC4LX160-10 FPGA is listed in the Table II.
The synthesis result of (3369, 3213) code using Xilinx Virtex
5 XC5VSX240T-2 FPGA is listed in the Table III. (Different
FPGAs were used because Virtex 4 does not have sufficient
number of Block RAMs for the more complex irregular code).
The results indicate that the decoding performance increases
linearly with vector length (K). The logic resources increase
proportionally to support the additional functional units and
alignment logic. However, with each successive generation
of FPGAs, the number of resources in terms of slices, flip-
flops and LUTs is increased significantly, so the proposed
technique can be used to scale the decoding performance as
bigger FPGAs become available. QCSyn makes this effortless
by automating the selection of the appropriate vector length
given a code and a target FPGA.

K 1 2 3 4
Slices 6926 13282 26465 28603
Flip Flops 3945 9005 21993 19722
4 input LUTs 12813 24419 48388 52811
BRAMs 160 160 160 160
f (MHz) 92.6 92.2 93.2 92.8
Niter 10 10 10 10
W 150 76 51 38
M 256 129 87 65
Tp (Mbps) 225.6 443.8 668.0 892.3
Tp Gain 1 1.97 2.96 3.96

TABLE II
REGULAR (8192,7171) CODES RESULTS

K 1 2 3 4
Slices 44047 65942 76766 103367
Flip Flops 23511 33059 36974 46926
6 input LUTs 42270 60968 71154 95319
BRAMs 134 134 134 134
f (MHz) 124.2 124.5 124.5 124.5
Niter 10 10 10 10
M 63 33 22 17
W 63 33 22 17
Tp (Gbps) 0.332 0.636 0.953 1.234
Tp Gain 1 1.91 2.87 3.71

TABLE III
IRREGULAR (3369,3213) CODES RESULTS.

V. CONCLUSIONS AND FUTURE WORK

We have developed a vector decoding architecture and
vector message passing algorithm to take advantage of the
configurable Block RAMs available in modern FPGAs to
improve the throughput of QC-LDPC code. We have showed
that the proposed implementation can improve the throughput
by a factor of 3.5X to 5.5X for a variety of codes of moderate
to high complexity for regular and irregular QC-LDPC codes.
We are developing techniques to virtualize the Block RAMs
to handle arbitrary length QC-LDPC codes.
Acknowledgement: This research was supported by NSF
under the grants of CCF-0429154 and CCF-0727478.

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory,
vol. 8, no. 1, pp. 21–28, 1962.

[2] T. Zhang and K. Parhi, “A 54 MBPS (3, 6)-regular FPGA LDPC
decoder,” IEEE Proc. of SIPS, pp. 127–132, 2002.

[3] T. Zhang, “Efficient VLSI Architectures for Error-Correcting Coding,”
Ph.D. dissertation, University of Minnesota.

[4] Y. Chen, K. Parhi, D. Center, T. Inc, and T. Dallas, “Overlapped message
passing for quasi-cyclic low-density parity check codes,” IEEE Trans.
Circuits and Syst. I, vol. 51, no. 6, pp. 1106–1113, 2004.

[5] Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, and M. Wainwright,
“Investigation of error floors of structured low-density parity-check
codes by hardware emulation,” IEEE Proc. of Globecom, 2006.

[6] E. Yeo, B. Nikolic, and V. Anantharam, “Architectures and Imple-
mentations of Low-Density Parity Check Decoding Algorithms,” in
Proceedings of the IEEE Midwest Symposium on Circuits and Systems,
vol. 45, 2002.

[7] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, “High throughput
low-density parity-check decoder architectures,” in Global Telecommu-
nications Conference.s IEEE, vol. 5, 2001.

[8] P. Saunders and A. Fagan, “A High Speed, Low Memory FPGA Based
LDPC Decoder Architecture for Quasi-Cyclic LDPC Codes,” in IEEE
Proc. of FPL, 2006, pp. 1–6.

[9] J. Chen and M. Fossorier, “Near optimum universal belief propagation
based decoding of low-density parity check codes,” IEEE Trans. Com-
mun., vol. 50, no. 3, pp. 406–414, 2002.

[10] Y. Dai, Z. Yan, and N. Chen, “Optimal Overlapped Message Passing
Decoding of Quasi-Cyclic LDPC Codes,” IEEE Trans. on VLSI Syst.,
vol. 16, no. 5, pp. 565–578, 2008.

[11] L. Lan, L. Zeng, Y. Tai, S. Lin, and K. Abdel-Ghaffar, “Constructions
of quasi-cyclic LDPC codes for the AWGN and binary erasure channels
based on finite fields and affine mappings,” Proc. Int. Symp. Info. Theory,
ISIT, pp. 2285–2289, 2005.

[12] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative
decoding of low-density parity checkcodes based on belief propagation,”
IEEE Trans. Commun., vol. 47, no. 5, pp. 673–680, 1999.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

