
Exploiting Clock Skew Scheduling for FPGA

Sungmin Bae, Prasanth Mangalagiri, N. Vijaykrishnan

Email {sbae, mangalag, vijay}@cse.psu.edu

CSE Department, Pennsylvania State University, University Park, PA 16801, USA

Abstract - Clock skew scheduling (CSS) is an effective
technique to optimize clock period of sequential designs.
However, these techniques are not effective in the
presence of certain design structural constraints that limit
the CSS. In this paper, we present an analysis of several
design structural constraints that affect the CSS and
propose techniques to resolve these constraints.
Furthermore, we propose a CSS FPGA architecture and
a novel clock-period optimization (CPO) flow that tackles
some of these constraints by exploiting the re-
configurability of FPGAs. Experimental results
demonstrate that the proposed FPGA architecture with
the CPO flow achieved an average performance
improvement of 24.4% which was an average
performance improvement of 10.7% over the CPO flow
without considering the constraints.

I. INTRODUCTION

FPGAs are increasingly preferred over ASICs in
various domain specific applications due to short time-
to-market, easy verification, and low non-recurring
costs. However, the relatively slow speeds of FPGAs
when compared to ASICs, have led to efforts targeted
to improve performance at various levels of the design
flow. Among them, clock skew scheduling (CSS) is a
technique that optimize clock period of circuits in a
post place and route phase [1] [2] [3] [4]. Ideally a CSS
optimizes clock period of a design to an average delay
of pipeline stages from a primary input to a primary
output, instead of the slowest pipeline stage delay.
However, the amount of optimization can be limited by
several design structural constraints such as unbalanced
paths, fixed clock skew in external flip flops, self loop
paths and finite clock skew range and granularity.
Ignoring these constraints could result in achieving a
sub-optimal improvement in timing from clock-period
optimizations.

There have been several studies that implement a
clock skew scheduling technique on an FPGA. In [1],
the authors use global clock lines to carry skewed clock
signals to optimize clock period of sequential circuits.
There are various advantages to this method. It incurs
no hardware overhead and numerous combinations of
skew values can be carried on the clock lines. However,
this technique could result in considerable power
consumption overheads, since skewed clocks are
carried over global clock lines. Furthermore, skew
values are limited to the available global clock lines. In
[2], the authors use a clock architecture composed of a

global H-tree and a local row based routing technique.
They control the clock-skew by inserting
programmable delay elements (PDE) at the root and
branch points of the H-tree. Such a hierarchical
placement of PDEs in the clock tree results in a wider
range of global skew values. However, the range of
clock skew is limited when two nodes share the same
parent node. Hence the range of skew values achieved
by hierarchical PDE based clock tree is limited by the
placement of the nodes. Also today’s FPGAs have
multiple global clock trees, placing PDEs at the
branches of each of the clock trees can lead to large
hardware overheads. Authors in [2] also propose skew-
flexibility aware placement algorithms which relax
timing constraints during placement to increase
solution spaces of placement, and use clock-skew
scheduling to compensate for any possible increase in
critical path delay. However, all the above approaches
do not address some of the key structural constraints
that limit the achievable clock period optimization for a
given design.

The paper is organized as follows. In section 2 we
discuss the basic concepts of clock-skew scheduling. In
section 3 we discuss in detail various design-based
structural scenarios that limit the clock period
optimization and techniques resolve such limitations.
Section 4 and 5 present our clock skew scheduling
FPGA architecture and a novel clock period
optimization CAD flow that take in to consideration
the various design limitations during post-layout clock
period optimization, and discuss in detail the various
phases involved. Section 6 discusses the achieved
clock period optimizations results and section 7
concludes the paper.

II. CLOCK SKEW SCHDEULING

In general, the clock period of a design is decided by
its critical path delay. However, using clock skew
scheduling techniques the clock period of a design can
be optimized to improve performance.

Timing Constraints

Fig. 1 depicts paths through combinational logics
between a source and sink flip flop (FF) pair, FFj and
FFk respectively. Since there are no sequential elements
between this pair of FFs, they can be classified as

978-3-9810801-5-5/DATE09 © 2009 EDAA

sequentially-adjacent [3]. Sj and Sk indicate clock skew
from the clock source at FFj and FFk. Dmax (j, k) and
Dmin (j, k) denote the maximum and minimum
combinatorial path delay between the sequentially-
adjacent pair of FFj and FFk, respectively. CP, Tsetup
and Thold denote the clock period, setup and hold time
of the FFs, respectively. Sj denotes the clock skew
value at flip-flop FFj. The two key timing constraints
that must be satisfied in clock skew scheduling, by
every source and sink FF pairs for successful operation
of sequential circuits are as follows.

Dmax (j, k) < CP + Sk – Sj – Tsetup (EQ 1)

Dmin (j, k) > Thold + Sk – Sj (EQ 2)

The data signals propagating from FFj in the n
th clock

cycle towards FFk, must arrive at least Tsetup time
before the (n+1) th clock edge of FFk for successful
sampling. This constraint also known as zero clocking
constraint is depicted in equation 1.

In the presence of clock skews there can be a scenario
in which the data signals from the source flip-flop (FFj)
arrive at the sink too early and disappear before being
sampled due to the clock skew (Sk) at FFk. This
constraint also known as double clocking constraint is
depicted in equation 2. To avoid “data race” conditions
the arrival time of the data signals must be Thold after
the nth clock edge of FFk. The CSS [4] involves
finding the minimum clock period at which all the
sequentially adjacent FFs of the circuit satisfy the
timing constraints show in equations 1 and 2.

Fig. 1. Timing Constraints

III. DESIGN CONSTRAINTS LIMITING CLOCK
PERIOD OPTIMIZATION AND TECHNIQUES
RESOLVING THE CONSTRAINTS

In this section, we analyze some of these key design
structural constraints that limit the clock period
optimization (CPO) in FPGAs and discuss techniques
to enhance clock skew optimization from the
constraints.

A. Unbalanced Path Delays

Minimum clock period of a sequentially adjacent FF
pair is dependent on the difference between the Dmax
and Dmin of the pair [4]. The clock skew assignment at
the sink FF should be less than Dmin, to satisfy the
double clocking constraints (assuming zero clock skew
at the source FF). In example depicted in Fig. 1, the

Dmin value of 1ns obtained from path 2 limits the
extent of clock skew at FFk to 1ns. Such a low skew
value at FFk limits the amount of slack that can be
borrowed by paths 1 and 3 which in turn limits the
improvement in clock period. Therefore, the presence
of unbalanced paths in a design can lead to sub-optimal
solutions to the CSS problem.

Balancing Path Delays

Fig. 2 depicts a scenario where partial re-routing of
paths can resolve an unbalanced path delay incurring
timing constraint violation. We assume that the design
needs to be optimized to achieve a clock period of 7ns,
with the maximum clock skew value as 5ns and
initially all route delays are zero. It can be observed
that the path from FF1 to FF2 violates a zero clocking
constraint. A 2ns more slack has to be borrowed by
either decreasing or increasing the clock skews at
source and sink FFs respectively. However, the
maximum clock skew value of 5ns limits any increase
to the CS of FF2. Hence, the CS value of FF1 needs to
be decreased by 2ns without violating the constraints of
any related paths. It can be observed that reducing CS
at FF1 to 1ns does not cause the zero clocking
constraint violation for FF1 and FF3 pair. However, it
causes a double clocking constraint violation for the
path between FF1 and FF4. With CS of FF3 being
zero, to avoid a zero clocking constraint violation
between FF3 and FF4, the CS of FF4 cannot be
decreased. In such a scenario, by finding an alternate
route which increases the path delay between FF1 to
LB4 by 1ns we can achieve the desired clock period;
the increase in the path delay can be achieved through
partial re-routing in the FPGA. Also the effect of
increased resistances and capacitances of the route to
other paths in the net can be isolated using the routing
buffers in the FPGA.

Fig. 2. Path Balancing

B. Fixed Clock Skew of External FFs

FFs located at a chips I/O have a fixed clock skew to
enable communication with external devices. Such FFs
having a fixed clock-skew are known as external FFs.
On the other hand FFs that can be skew-controlled are
known as internal FFs. Fixed clock-skew for external
communication could be a limitation to the clock
period optimization.

Donor FF Insertion

A donor FF is a dummy FF used only to provide
additional slack in its path. Fig. 3 depicts a scenario
where clock period optimization is not possible due to
a fixed CS value of zero at the external FF. However,
by inserting a donor FF in the path between the
external FF and Logic Block (LB) 2, a 3ns slack can be
borrowed decreasing the CP value to 4ns. Note that
donor FFs should be inserted so that there are no logic
blocks between the donor FFs and the external FFs.
This is necessary to not alter the functionality of the
design. It can be observed that donor FF insertion at the
external FFs increases the pipeline depth of the design
by a single level. Therefore, the insertion can result in
increasing the latency of the design if the clock period
reduction achieved does not compensate for the
increase in pipeline depth.

Fig. 3. Donor FF insertion

C. Self Loop Paths

The data paths in a circuit that originate at a FF
output and have a feedback loop through combinatorial
logic are termed as self-loop paths. The simplest case
of self loop paths (Fig. 4a) occurs when the source and
sink FF are the same. In this case the minimum clock
period is the Dmax of the path itself. Due to the
feedback loop, assigning clock skew at the FF has no
effect. Hence there is no scope to optimize the clock
period by borrowing slack from the faster paths.
Therefore, the optimized clock period must be above
the self-loop path delay. In essence, the self-loop path
constraint decides the set of path delays to be averaged
by CSS.

The second case, depicted in Fig. 4b, occurs
depending on the granularity of clock skew controlling
blocks. Since implementing a clock skew control block
at the granularity of each FF is prohibitive due to huge
hardware overhead, several FFs have to be grouped
together. This clustering can cause the same effect as
self looping for a single FF. In this case, both the
source and sink FFs are placed in the same cluster, and
can only be assigned a single clock-skew value.

In the third case of self loop paths, we take into
consideration FFs that not only belong to a single skew
control cluster but also FFs that pan across different
skew cluster blocks. This design constraint occurs
when a group of FFs are in a circular feedback loop. In
such cases increasing clock skew of FFs in forward

path to borrow slacks results in reducing slacks of the
feedback loop. Fig. 4c depicts such a scenario where
the skew optimization of two FFs belonging to
different clock skew clusters is limited by their
individual CS values.

Fig. 4. Self loop paths (a) Single FF loop
(b) LUTs sharing a single CSCB cluster

(c) LUTs across CSCB clusters

CSS Aware Clustering and Placement Algorithm

The self loop path constraints could be resolved by
CSS aware clustering, placing and routing algorithms
that optimize the timing of self-loop paths. These
algorithms may increase the critical path delay of a
design. However, CSS may further optimize the clock
period of a design without self-loop paths limitation.
Also [2] reported that additional 21% performance
improvement was observed by using their skew
flexibility aware quadratic placement algorithm.

D. Finite Clock Skew Range and Granularity

Implementing clock skew scheduling on FPGAs
requires pre-built clock skew control blocks. The
granularity and the range of clock skews achieved by
the control blocks play an important role in achieving
an optimal clock skew schedule. However, the skew
range and granularity of a block can only have finite
values as the clock skew control logic is implemented
using a chain of inverters and the number of these
blocks and inverters are fixed during the design of the
FPGA. Fig. 5a demonstrates a scenario, assuming no
other limitations exist for the optimization, where a
maximum clock skew range of 2ns at FF2 limits the
optimized clock period only to 5ns. It can be observed
that by increasing the maximum clock skew range to a
3ns clock skew at FF2 can decrease to 4ns, the clock
period.

Fig. 5b shows a scenario where a minimum clock
skew value of 2ns at FF2 prevents the clock period
optimization. It can be observed that by decreasing the
minimum skew value to 1ns clock skew at FF2 can
reduce the clock period from 7ns to 6ns.

Find Optimal Clock Skew Range and Granularity

The clock skew range and granularity of a CSCB are
decided by the domain knowledge of designs
configured on a FPGA. Since, the clock skew block
needs to cover a wide range of their critical path delays,

in order to achieve the desired performance
optimization. Therefore, the decision of the clock skew
range and granularity has dependence on the speed and
size of a FPGA, which decide the range of critical path
delay of designs to be implemented on the FPGA.
However, covering a wider range of clock skews with a
finer granularity of skew values might increase
hardware overheads. Therefore, careful design
considerations are required to find an optimal range
and a granularity in terms of the both average
performance improvement and the incurred area
overhead.

Fig. 5. (a) Effect of finite maximum skew range

(b) Effect of finite minimum skew value

IV. FPGA ARCHITECTURE FOR CLOCK SKEW
SCHEDULING

Implementing the clock skew scheduling on FPGAs
requires techniques that are different from the ones
used in ASICs. In this section, we discuss the various
factors to be taken into consideration, during the design
of a clock skew scheduling FPGA architecture.

A. Clock Skew Control Block Architecture

Fig. 6. (a) Clock Skew Control Block (CSCB)

(b) A CLB with CSCB

Our Clock Skew Control Block (CSCB) architecture,
shown in Fig. 6a is similar to that of a PDE described
in [2]. The output MUX of a CSCB selects varying
number of skew elements implemented using a chain
of inverters, based on the value in the memory cell of
the control unit. Thus CSCBs can provide a range of
clock skew values. In [2] the authors suggest placing
PDEs at every branch of a global clock tree to achieve
hierarchical range of skew values. However, since
FPGAs have multiple global clock trees, placing

CSCBs at the branches each of the clock trees can lead
to large hardware overheads. Hence, in our architecture
we place a single CSCB in every CLB. As shown in
Fig. 6b, output of a CSCB, which is a skewed clock
signal, is connected to all the FFs in a CLB.

B. Clock Skew Enabled I/O Architecture

The external FFs located at a chip I/O are not
allowed to have an intentional clock skew to enable
communication with external devices. In order to
resolve the fixed clock-skew constraint, we propose
clock skew enabled I/O elements (IOE) in the FPGA.
To enable clock skew at the IOE, donor FFs and a
CSCB are required at each IOE. However, with little
modification on an IOE, this can be achieved without
incurring large area overhead for a recent FPGA. Fig.
7a shows a simplified schematic of bidirectional I/O
element (IOE) of the Stratix IV FPGA, which contains
built in programmable delay units in both input and
output paths of the IOE. The clock skew enabled I/O
can be designed adding donor FFs at the input of
output path (Data path of FPGA to external devices)
and utilizing the inactive programmable delay unit at
the input path (Data path of external devices to FPGA)
as a CSCB. In addition, MUXs are added to control
usage of the donor FFs. (See Fig. 7b)

Fig. 7. (a) Simplified Schematic of Original IO Element [10]

(b) Clock Skew Enabled IO Element

C. Hardware Overheads

In this section we evaluate the area overheads, due to
the additional clock skew logic used in our FPGA
architecture.

To determine the range and granularity of clock
skew value we ran experiments on benchmark designs
by varying the maximum skew range and the number
of skew elements for a maximum skew range value.
The skew range of about 25% of critical path delay of
the slowest design and dividing the range to 8 skew
levels was optimal in terms of the both average
performance improvement and the incurred CLB area
overhead. However, this result may vary with
benchmarks used.

 From the result above, each CSCB has 7 skew
elements in a CSCB supporting 8 different clock skew

values ranging from 0 to 7. The delay levels are
achieved by a skew element containing 12 inverters.
Three memory cells and a MUX are used to control the
amount of skew values. We estimated the area
overhead of CLB based on the resources used by the
eight 6-input LUTs of VPR’s CLB architecture from
the number of minimum sized transistors used. The
clock skew control block increases the area of a CLB
by 6.6 %. However, it is well known that the routing
logic dominates the area of an FPGA. If we assume an
FPGA in which CLBs account for a 25% of the total
chip area, then the clock skew logic has only 1.65%
area overhead of the FPGA. Accurately quantifying the
overhead of clock skew enabled IOE is challenging due
to lack of detailed information about the IOE
architecture. However, based on [10], the number of
additional FFs and MUXs are counted as less than 10%
of the original number of FFs and MUXs in the IOE.
Furthermore, considering other units, such as
programmable delay units, input and output buffers,
programmable pull-up resistor, and a bus-hold circuit
etc, we believe that the area overhead of the modified
IOE will be much less than 10% of original IOE.
Pessimistically assuming, MUXs and FFs occupy 50%
of an IOE area, and IOE takes 20% of FPGA area, the
area overhead is about 1.0% of the FPGA. From the
overhead estimations above, the overall area overhead
of the proposed FPGA architecture is expected to be
about 2.7%.

V. CLOCK PERIOD OPTIMIZATION (CPO) FLOW

We present a novel clock skew scheduling tool flow
that takes in to consideration the design constraints,
namely unbalanced path delays and fixed clock skew at
external FFs among all the constraints, and achieves an
enhanced performance improvement by exploiting the
re-configurability of FPGAs; constraints due to self-
loop paths have to be resolved at clustering, and place
and route phases of the design flow and finite skew
range constraints have to be handled at design phase of
the FPGA. In this work, since we perform CPO at post-
place-and-route phase we target constraints due to
unbalanced paths and fixed clock skew at external FFs.
In future, we plan to extend our CPO flow to the
clustering and place and route phases of the design
flow.

Fig. 8 depicts the control flow of our CPO Flow.
The flow starts with a binary search based Clock Skew
Scheduling (CSS) phase to find minimum clock period
(CP) that satisfies the timing constraints with input as
the Dmax and Dmin values of all the sequentially
adjacent FF pairs. We focus on the set of FF pairs
which have violated the timing constraints causing CSS
to fail. We then analyze the failed timing constraints to
extract any design constraints that has to lead the
failure for the failed CP values, which is closest to the
minimum CP value determined by the CSS. If the
violations are caused due to the fixed slack of external
FFs in the causal FF pair, then the donor FFs in the

IOE are enabled. And if the violations are caused by
unbalanced paths, we calculate the required delay
amount of the paths to the Path Balancing Phase to find
an alternative route satisfying the timing constraints.

Our heuristic-based path balancing algorithm is as
follows, when the extent of clock skew variation to
satisfy zero clocking constraints is limited by double
clocking constraints at FFs, the double clocking
constraints are solved by increasing path delays, if the
increase in the path delay does not cause zero clocking
constraints to other paths. To achieve such an increase
in path delay in our CPO flow, we augment the routing
algorithm in versatile place and route (VPR) [7]. The
desired path delay, along with the routing information
of source and sink FF pairs and all other paths
information are given as input to the router. Then all
possible routes between the FFs are explored till the
desired increase in delay is achieved.

Fig. 8. Clock Period Optimization Flow

VI. EXPERIMENTAL RESULTS

In this section we present the CPO flow
experimental results obtained from several large
benchmarks selected from MCNC and ISCAS-89
benchmark suites will be presented.

Versatile place and route (VPR) [6] was used to
perform placement and routing, and calculate path
delays. MicroMagic’s MAX Layout editor was used to
layout design components namely LUTs, CLBs, CSCB
etc and HSPICE was used to calculate various
architectural parameters (such as capacitance,
resistance, delay and power consumptions etc) with
45nm PTM [7]. The benchmarks were configured in
VPR’s island style FPGA architecture, with 6-input
LUTs, and a cluster size of 8. Each benchmark is
placed and routed on minimum sized FPGA and
channel width. Routing segments are bidirectional and
all length of 4 segments with tri-state buffer switches.
And dynamic and leakage power consumption of
CSCBs are estimated based on the Power-modeling
FPGA [9], which considers a transition density and
static probability of each node in a design, and is also
modified to estimate leakage power based on input
vector states on circuits.

The clock period improvements achieved by our
CPO flow from benchmarks are shown in Table 1. The
designs were analyzed after CSO to extract the design
structural constraints limiting CPO. In designs having
the fixed CS of external FFs as key the limiting factor,
donor FF insertion achieved an average performance
improvement of 13.5% over the traditional CSO flow.
In case of designs where unbalanced paths were
limiting factors, an average performance improvement
of 6.17% over a traditional CSO flow was observed.
However, CPO flow did not resolve the unbalanced
path delay constraint for all designs. No alternate
routes satisfying the timing constraint were found
during the flow for tseng benchmark. Run times of the
path balance algorithm on 1.8 GHz Intel Core Duo
CPU with 2gigabytes of memory varied between
1~5mins. Our CPO flow achieves total performance
improvement of 24.37% which was an average
performance improvement of 10.68% over the CSO
flow without the constraints consideration. The average
CSCB power consumption of 0.97% of total FPGA
power consumption was observed, which ranged from
0.6~1.9% depending on the number of skew elements
used and the power consumption of the designs. If we
increase the channel width to reflect actual FPGAs the
CSCB power consumption portion will be decreased.
While, the designs with the self-loop constraints had
average total performance improvement of 16.9%;
clock skew scheduling aware clustering and placement
and routing algorithms are required to get more benefit
from the CSS FPGA architecture.

VII. CONCLUSION

In this paper, we present an analysis of various
design structural constraints that limit clock period
optimization and techniques resolve the constraints.
We also present our CSS FPGA architecture equipped
with clock skew control blocks and clock skew enabled

IO elements. We then present our clock period
optimization flow that takes into account the
limitations due to unbalanced paths and fixed clock
skew of external FFs constraints. Experimental results
from benchmarks show that our CPO flow achieves
total performance improvement of 24.37% which was
an average performance improvement of 10.68% over
the CSO flow without the constraints consideration.

REFERENCES

[1] Deshanand Singh and Stephen D. Brown, "Constrained Clock
Shifting for Field Programmable Gate Arrays," International
Symposium on FPGAs (FPGA.2002), Monterey, CA, Feb 2002, pp.
121-126.

[2] Yeh, C. and Marek-Sadowska, M. 2005. Skew-programmable
clock design for FPGA and skew-aware placement. In Proceedings
of the 2005 ACM/SIGDA 13th international Symposium on Field-
Programmable Gate Arrays (Monterey, California, USA, February
20 - 22, 2005). FPGA '05. ACM, New York, NY, 33-40.

[3] J. L. Neves et al., “Automated synthesis of skew-based clock
distribution networks,” VLSI Design, vol. 7, No. 1, pp. 31-57, 1998.

[4] John P. Fishburn, Clock Skew Optimization, IEEE Transactions
on Computers, v.39 n.7, p.945-951, July 1990

[5] Ivan S. Kourtev, Eby G. Friedman, “Timing Optimization
through Clock Skew Scheduling” Kluwer Academic Publishers.

[6] Betz, V. and Rose, J. 1997. VPR: A new packing, placement and
routing tool for FPGA research. In Proceedings of the 7th
international Workshop on Field-Programmable Logic and
Applications (September 01 - 03, 1997).

[7] Zhao, W. and Cao, Y. 2006. New Generation of Predictive
Technology Model for Sub-45nm Design Exploration. In
Proceedings of the 7th international Symposium on Quality
Electronic Design (March 27 - 29).

[8] T.H Cormen, C.E. Leiserson, and R.L Rivest, Introduction to
Algorithms, McGraw-Hill, 1990.

[9] K.K.W. Poon, A. Yan, S.J.E. Wilton, ``A Flexible Power Model
for FPGAs'', in 12th International Conference on Field-
Programmable Logic and Applications, Sept 2002.

[10] Stratix IV Device HandBook Volume 1

Table 1: Experimental Results of CPO Flow

Bench-
marks

of
LUTS

of
FFs

Without the
Constraints
Consideration

Donor FFs
Path

Balance
Routing
Increase

Total
Improvement

CSCB Power
Consumption Design Constraints

bigkey 1840 224 22.58% 15.81% 6.16% 22 44.54% 1.9% External FFs, Unbalanced Path

clma 8384 33 7.56% 4.52% N/A N/A 12.08% 0.65% External FFs, Self-loop Path

diffeq 1504 377 28.04% N/A N/A N/A 28.04% 0.92% Self-loop Path

elliptic 5040 1122 13.3% N/A N/A N/A 13.3% 0.7% Self-loop Path

frisc 4080 886 12.11% N/A N/A N/A 12.11% 0.63% Self-loop Path

tseng 1056 384 27.75% N/A 0% No Route
Found 27.75% 1.15% Unbalanced Path

dsip 2664 224 14.44% 0.012% 15.96% 15 30.41% 1.16% External FFs, Unbalanced Path

s38584.1 6696 1259 16.52% 6.95% N/A N/A 23.47% 0.83% External FFs, Self-loop Path

s38417 6408 85 12.65% N/A N/A N/A 12.65% 0.59% Self-loop Path

s35932 5456 1728 0% 41.07% N/A N/A 41.07% 1.48% External FFs

s15850 2024 540 3.62% 8.22% 6.98% 7 18.81% 0.73% External FFs, Unbalanced Path

s13207 2400 469 0% 21.403% 1.75% 3 23.14% 0.82% External FFs, Unbalanced Path

s5378 448 160 19.37% 10.05% N/A N/A 29.42% 1.1% External FFs

Average 13.69% 13.5% 6.17% 24.37% 0.97%

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

