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Abstract - Clock skew scheduling (CSS) is an effective 
technique to optimize clock period of sequential designs. 
However, these techniques are not effective in the 
presence of certain design structural constraints that limit 
the CSS. In this paper, we present an analysis of several 
design structural constraints that affect the CSS and 
propose techniques to resolve these constraints. 
Furthermore, we propose a CSS FPGA architecture and 
a novel clock-period optimization (CPO) flow that tackles 
some of these constraints by exploiting the re-
configurability of FPGAs. Experimental results 
demonstrate that the proposed FPGA architecture with 
the CPO flow achieved an average performance 
improvement of 24.4% which was an average 
performance improvement of 10.7% over the CPO flow 
without considering the constraints. 

I. INTRODUCTION 

FPGAs are increasingly preferred over ASICs in 
various domain specific applications due to short time-
to-market, easy verification, and low non-recurring 
costs. However, the relatively slow speeds of FPGAs 
when compared to ASICs, have led to efforts targeted 
to improve performance at various levels of the design 
flow. Among them, clock skew scheduling (CSS) is a 
technique that optimize clock period of circuits in a 
post place and route phase [1] [2] [3] [4]. Ideally a CSS 
optimizes clock period of a design to an average delay 
of pipeline stages from a primary input to a primary 
output, instead of the slowest pipeline stage delay. 
However, the amount of optimization can be limited by 
several design structural constraints such as unbalanced 
paths, fixed clock skew in external flip flops, self loop 
paths and finite clock skew range and granularity. 
Ignoring these constraints could result in achieving a 
sub-optimal improvement in timing from clock-period 
optimizations. 

There have been several studies that implement a 
clock skew scheduling technique on an FPGA. In [1], 
the authors use global clock lines to carry skewed clock 
signals to optimize clock period of sequential circuits. 
There are various advantages to this method. It incurs 
no hardware overhead and numerous combinations of 
skew values can be carried on the clock lines. However, 
this technique could result in considerable power 
consumption overheads, since skewed clocks are 
carried over global clock lines. Furthermore, skew 
values are limited to the available global clock lines. In 
[2], the authors use a clock architecture composed of a 

global H-tree and a local row based routing technique. 
They control the clock-skew by inserting 
programmable delay elements (PDE) at the root and 
branch points of the H-tree. Such a hierarchical 
placement of PDEs in the clock tree results in a wider 
range of global skew values. However, the range of 
clock skew is limited when two nodes share the same 
parent node. Hence the range of skew values achieved 
by hierarchical PDE based clock tree is limited by the 
placement of the nodes. Also today’s FPGAs have 
multiple global clock trees, placing PDEs at the 
branches of each of the clock trees can lead to large 
hardware overheads. Authors in [2] also propose skew-
flexibility aware placement algorithms which relax 
timing constraints during placement to increase 
solution spaces of placement, and use clock-skew 
scheduling to compensate for any possible increase in 
critical path delay. However, all the above approaches 
do not address some of the key structural constraints 
that limit the achievable clock period optimization for a 
given design. 

The paper is organized as follows. In section 2 we 
discuss the basic concepts of clock-skew scheduling. In 
section 3 we discuss in detail various design-based 
structural scenarios that limit the clock period 
optimization and techniques resolve such limitations. 
Section 4 and 5 present our clock skew scheduling 
FPGA architecture and a novel clock period 
optimization CAD flow that take in to consideration 
the various design limitations during post-layout clock 
period optimization, and discuss in detail the various 
phases involved. Section 6 discusses the achieved 
clock period optimizations results and section 7 
concludes the paper. 

II.  CLOCK SKEW SCHDEULING  

In general, the clock period of a design is decided by 
its critical path delay. However, using clock skew 
scheduling techniques the clock period of a design can 
be optimized to improve performance.  

Timing Constraints 

Fig. 1 depicts paths through combinational logics 
between a source and sink flip flop (FF) pair, FFj and 
FFk respectively. Since there are no sequential elements 
between this pair of FFs, they can be classified as 
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sequentially-adjacent [3]. Sj and Sk indicate clock skew 
from the clock source at FFj and FFk. Dmax (j, k) and 
Dmin (j, k) denote the maximum and minimum 
combinatorial path delay between the sequentially-
adjacent pair of FFj and FFk, respectively. CP, Tsetup 
and Thold denote the clock period, setup and hold time 
of the FFs, respectively. Sj denotes the clock skew 
value at flip-flop FFj. The two key timing constraints 
that must be satisfied in clock skew scheduling, by 
every source and sink FF pairs for successful operation 
of sequential circuits are as follows. 

Dmax (j, k) < CP + Sk – Sj – Tsetup       (EQ 1) 

Dmin (j, k) > Thold + Sk – Sj                  (EQ 2) 

The data signals propagating from FFj in the n
th clock 

cycle towards FFk, must arrive at least Tsetup time 
before the (n+1) th clock edge of FFk for successful 
sampling. This constraint also known as zero clocking 
constraint is depicted in equation 1. 

In the presence of clock skews there can be a scenario 
in which the data signals from the source flip-flop (FFj) 
arrive at the sink too early and disappear before being 
sampled due to the clock skew (Sk) at FFk. This 
constraint also known as double clocking constraint is 
depicted in equation 2. To avoid “data race” conditions 
the arrival time of the data signals must be Thold after 
the nth clock edge of FFk. The CSS [4] involves 
finding the minimum clock period at which all the 
sequentially adjacent FFs of the circuit satisfy the 
timing constraints show in equations 1 and 2.  

              
Fig. 1. Timing Constraints 

III. DESIGN CONSTRAINTS LIMITING CLOCK 
PERIOD OPTIMIZATION AND TECHNIQUES 
RESOLVING THE CONSTRAINTS 

In this section, we analyze some of these key design 
structural constraints that limit the clock period 
optimization (CPO) in FPGAs and discuss techniques 
to enhance clock skew optimization from the 
constraints. 

A. Unbalanced Path Delays 

Minimum clock period of a sequentially adjacent FF 
pair is dependent on the difference between the Dmax 
and Dmin of the pair [4]. The clock skew assignment at 
the sink FF should be less than Dmin, to satisfy the 
double clocking constraints (assuming zero clock skew 
at the source FF). In example depicted in Fig. 1, the 

Dmin value of 1ns obtained from path 2 limits the 
extent of clock skew at FFk to 1ns. Such a low skew 
value at FFk limits the amount of slack that can be 
borrowed by paths 1 and 3 which in turn limits the 
improvement in clock period. Therefore, the presence 
of unbalanced paths in a design can lead to sub-optimal 
solutions to the CSS problem.  

Balancing Path Delays 

Fig. 2 depicts a scenario where partial re-routing of 
paths can resolve an unbalanced path delay incurring 
timing constraint violation. We assume that the design 
needs to be optimized to achieve a clock period of 7ns, 
with the maximum clock skew value as 5ns and 
initially all route delays are zero. It can be observed 
that the path from FF1 to FF2 violates a zero clocking 
constraint. A 2ns more slack has to be borrowed by 
either decreasing or increasing the clock skews at 
source and sink FFs respectively. However, the 
maximum clock skew value of 5ns limits any increase 
to the CS of FF2. Hence, the CS value of FF1 needs to 
be decreased by 2ns without violating the constraints of 
any related paths. It can be observed that reducing CS 
at FF1 to 1ns does not cause the zero clocking 
constraint violation for FF1 and FF3 pair. However, it 
causes a double clocking constraint violation for the 
path between FF1 and FF4.  With CS of FF3 being 
zero, to avoid a zero clocking constraint violation 
between FF3 and FF4, the CS of FF4 cannot be 
decreased. In such a scenario, by finding an alternate 
route which increases the path delay between FF1 to 
LB4 by 1ns we can achieve the desired clock period; 
the increase in the path delay can be achieved through 
partial re-routing in the FPGA. Also the effect of 
increased resistances and capacitances of the route to 
other paths in the net can be isolated using the routing 
buffers in the FPGA. 

 
Fig. 2. Path Balancing 

B.  Fixed Clock Skew of External FFs 

FFs located at a chips I/O have a fixed clock skew to 
enable communication with external devices. Such FFs 
having a fixed clock-skew are known as external FFs. 
On the other hand FFs that can be skew-controlled are 
known as internal FFs. Fixed clock-skew for external 
communication could be a limitation to the clock 
period optimization.  



Donor FF Insertion  

A donor FF is a dummy FF used only to provide 
additional slack in its path.  Fig. 3 depicts a scenario 
where clock period optimization is not possible due to 
a fixed CS value of zero at the external FF. However, 
by inserting a donor FF in the path between the 
external FF and Logic Block (LB) 2, a 3ns slack can be 
borrowed decreasing the CP value to 4ns.  Note that 
donor FFs should be inserted so that there are no logic 
blocks between the donor FFs and the external FFs. 
This is necessary to not alter the functionality of the 
design. It can be observed that donor FF insertion at the 
external FFs increases the pipeline depth of the design 
by a single level. Therefore, the insertion can result in 
increasing the latency of the design if the clock period 
reduction achieved does not compensate for the 
increase in pipeline depth.  

  
Fig. 3. Donor FF insertion 

C.  Self Loop Paths 

The data paths in a circuit that originate at a FF 
output and have a feedback loop through combinatorial 
logic are termed as self-loop paths. The simplest case 
of self loop paths (Fig. 4a) occurs when the source and 
sink FF are the same. In this case the minimum clock 
period is the Dmax of the path itself.  Due to the 
feedback loop, assigning clock skew at the FF has no 
effect. Hence there is no scope to optimize the clock 
period by borrowing slack from the faster paths. 
Therefore, the optimized clock period must be above 
the self-loop path delay. In essence, the self-loop path 
constraint decides the set of path delays to be averaged 
by CSS. 

The second case, depicted in Fig. 4b, occurs 
depending on the granularity of clock skew controlling 
blocks. Since implementing a clock skew control block 
at the granularity of each FF is prohibitive due to huge 
hardware overhead, several FFs have to be grouped 
together. This clustering can cause the same effect as 
self looping for a single FF. In this case, both the 
source and sink FFs are placed in the same cluster, and 
can only be assigned a single clock-skew value.  

In the third case of self loop paths, we take into 
consideration FFs that not only belong to a single skew 
control cluster but also FFs that pan across different 
skew cluster blocks. This design constraint occurs 
when a group of FFs are in a circular feedback loop. In 
such cases increasing clock skew of FFs in forward 

path to borrow slacks results in reducing slacks of the 
feedback loop.  Fig. 4c depicts such a scenario where 
the skew optimization of two FFs belonging to 
different clock skew clusters is limited by their 
individual CS values.  

       
Fig. 4. Self loop paths (a) Single FF loop                     
(b) LUTs sharing a single CSCB cluster                      

(c) LUTs across CSCB clusters 

CSS Aware Clustering and Placement Algorithm 

The self loop path constraints could be resolved by 
CSS aware clustering, placing and routing algorithms 
that optimize the timing of self-loop paths. These 
algorithms may increase the critical path delay of a 
design. However, CSS may further optimize the clock 
period of a design without self-loop paths limitation. 
Also [2] reported that additional 21% performance 
improvement was observed by using their skew 
flexibility aware quadratic placement algorithm. 

D. Finite Clock Skew Range and Granularity 

Implementing clock skew scheduling on FPGAs 
requires pre-built clock skew control blocks. The 
granularity and the range of clock skews achieved by 
the control blocks play an important role in achieving 
an optimal clock skew schedule. However, the skew 
range and granularity of a block can only have finite 
values as the clock skew control logic is implemented 
using a chain of inverters and the number of these 
blocks and inverters are fixed during the design of the 
FPGA. Fig. 5a demonstrates a scenario, assuming no 
other limitations exist for the optimization, where a 
maximum clock skew range of 2ns at FF2 limits the 
optimized clock period only to 5ns. It can be observed 
that by increasing the maximum clock skew range to a 
3ns clock skew at FF2 can decrease to 4ns, the clock 
period.   

Fig. 5b shows a scenario where a minimum clock 
skew value of 2ns at FF2 prevents the clock period 
optimization. It can be observed that by decreasing the 
minimum skew value to 1ns clock skew at FF2 can 
reduce the clock period from 7ns to 6ns.  

Find Optimal Clock Skew Range and Granularity 

The clock skew range and granularity of a CSCB are 
decided by the domain knowledge of designs 
configured on a FPGA. Since, the clock skew block 
needs to cover a wide range of their critical path delays, 



in order to achieve the desired performance 
optimization. Therefore, the decision of the clock skew 
range and granularity has dependence on the speed and 
size of a FPGA, which decide the range of critical path 
delay of designs to be implemented on the FPGA. 
However, covering a wider range of clock skews with a 
finer granularity of skew values might increase 
hardware overheads. Therefore, careful design 
considerations are required to find an optimal range 
and a granularity in terms of the both average 
performance improvement and the incurred area 
overhead. 

  
Fig. 5.  (a) Effect of finite maximum skew range               

(b) Effect of finite minimum skew value  

IV.  FPGA ARCHITECTURE FOR CLOCK SKEW 
SCHEDULING 

Implementing the clock skew scheduling on FPGAs 
requires techniques that are different from the ones 
used in ASICs. In this section, we discuss the various 
factors to be taken into consideration, during the design 
of a clock skew scheduling FPGA architecture. 

A. Clock Skew Control Block Architecture 

 
Fig. 6.  (a) Clock Skew Control Block (CSCB)                

(b) A CLB with CSCB 

Our Clock Skew Control Block (CSCB) architecture, 
shown in Fig. 6a is similar to that of a PDE described 
in [2]. The output MUX of a CSCB selects varying 
number of skew elements implemented using a chain 
of inverters, based on the value in the memory cell of 
the control unit. Thus CSCBs can provide a range of 
clock skew values. In [2] the authors suggest placing 
PDEs at every branch of a global clock tree to achieve 
hierarchical range of skew values. However, since 
FPGAs have multiple global clock trees, placing 

CSCBs at the branches each of the clock trees can lead 
to large hardware overheads. Hence, in our architecture 
we place a single CSCB in every CLB. As shown in 
Fig. 6b, output of a CSCB, which is a skewed clock 
signal, is connected to all the FFs in a CLB.  

B.  Clock Skew Enabled I/O Architecture 

The external FFs located at a chip I/O are not 
allowed to have an intentional clock skew to enable 
communication with external devices. In order to 
resolve the fixed clock-skew constraint, we propose 
clock skew enabled I/O elements (IOE) in the FPGA. 
To enable clock skew at the IOE, donor FFs and a 
CSCB are required at each IOE. However, with little 
modification on an IOE, this can be achieved without 
incurring large area overhead for a recent FPGA. Fig. 
7a shows a simplified schematic of bidirectional I/O 
element (IOE) of the Stratix IV FPGA, which contains 
built in programmable delay units in both input and 
output paths of the IOE. The clock skew enabled I/O 
can be designed adding donor FFs at the input of 
output path (Data path of FPGA to external devices) 
and utilizing the inactive programmable delay unit at 
the input path (Data path of external devices to FPGA) 
as a CSCB. In addition, MUXs are added to control 
usage of the donor FFs. (See Fig. 7b)  

 
Fig. 7.  (a) Simplified Schematic of Original IO Element [10]    

(b) Clock Skew Enabled IO Element 

C.  Hardware Overheads 

In this section we evaluate the area overheads, due to 
the additional clock skew logic used in our FPGA 
architecture.  

To determine the range and granularity of clock 
skew value we ran experiments on benchmark designs 
by varying the maximum skew range and the number 
of skew elements for a maximum skew range value. 
The skew range of about 25% of critical path delay of 
the slowest design and dividing the range to 8 skew 
levels was optimal in terms of the both average 
performance improvement and the incurred CLB area 
overhead. However, this result may vary with 
benchmarks used. 

   From the result above, each CSCB has 7 skew 
elements in a CSCB supporting 8 different clock skew 



values ranging from 0 to 7. The delay levels are 
achieved by a skew element containing 12 inverters. 
Three memory cells and a MUX are used to control the 
amount of skew values. We estimated the area 
overhead of CLB based on the resources used by the 
eight 6-input LUTs of VPR’s CLB architecture from 
the number of minimum sized transistors used. The 
clock skew control block increases the area of a CLB 
by 6.6 %. However, it is well known that the routing 
logic dominates the area of an FPGA. If we assume an 
FPGA in which CLBs account for a 25% of the total 
chip area, then the clock skew logic has only 1.65% 
area overhead of the FPGA. Accurately quantifying the 
overhead of clock skew enabled IOE is challenging due 
to lack of detailed information about the IOE 
architecture. However, based on [10], the number of 
additional FFs and MUXs are counted as less than 10% 
of the original number of FFs and MUXs in the IOE. 
Furthermore, considering other units, such as 
programmable delay units, input and output buffers, 
programmable pull-up resistor, and a bus-hold circuit 
etc, we believe that the area overhead of the modified 
IOE will be much less than 10% of original IOE. 
Pessimistically assuming, MUXs and FFs occupy 50% 
of an IOE area, and IOE takes 20% of FPGA area, the 
area overhead is about 1.0% of the FPGA. From the 
overhead estimations above, the overall area overhead 
of the proposed FPGA architecture is expected to be 
about 2.7%.  

V.  CLOCK PERIOD OPTIMIZATION (CPO) FLOW 

We present a novel clock skew scheduling tool flow 
that takes in to consideration the design constraints, 
namely unbalanced path delays and fixed clock skew at 
external FFs among all the constraints, and achieves an 
enhanced performance improvement by exploiting the 
re-configurability of FPGAs; constraints due to self-
loop paths have to be resolved at clustering, and place 
and route phases of the design flow and finite skew 
range constraints have to be handled at design phase of 
the FPGA. In this work, since we perform CPO at post-
place-and-route phase we target constraints due to 
unbalanced paths and fixed clock skew at external FFs. 
In future, we plan to extend our CPO flow to the 
clustering and place and route phases of the design 
flow.  

Fig. 8 depicts the control flow of our CPO Flow.  
The flow starts with a binary search based Clock Skew 
Scheduling (CSS) phase to find minimum clock period 
(CP) that satisfies the timing constraints with input as 
the Dmax and Dmin values of all the sequentially 
adjacent FF pairs. We focus on the set of FF pairs 
which have violated the timing constraints causing CSS 
to fail. We then analyze the failed timing constraints to 
extract any design constraints that has to lead the 
failure for the failed CP values, which is closest to the 
minimum CP value determined by the CSS. If the 
violations are caused due to the fixed slack of external 
FFs in the causal FF pair, then the donor FFs in the 

IOE are enabled. And if the violations are caused by 
unbalanced paths, we calculate the required delay 
amount of the paths to the Path Balancing Phase to find 
an alternative route satisfying the timing constraints.  

Our heuristic-based path balancing algorithm is as 
follows, when the extent of clock skew variation to 
satisfy zero clocking constraints is limited by double 
clocking constraints at FFs, the double clocking 
constraints are solved by increasing path delays, if the 
increase in the path delay does not cause zero clocking 
constraints to other paths. To achieve such an increase 
in path delay in our CPO flow, we augment the routing 
algorithm in versatile place and route (VPR) [7]. The 
desired path delay, along with the routing information 
of source and sink FF pairs and all other paths 
information are given as input to the router. Then all 
possible routes between the FFs are explored till the 
desired increase in delay is achieved. 

Fig. 8. Clock Period Optimization Flow 

VI. EXPERIMENTAL RESULTS 

In this section we present the CPO flow 
experimental results obtained from several large 
benchmarks selected from MCNC and ISCAS-89 
benchmark suites will be presented.  

Versatile place and route (VPR) [6] was used to 
perform placement and routing, and calculate path 
delays. MicroMagic’s MAX Layout editor was used to 
layout design components namely LUTs, CLBs, CSCB 
etc and HSPICE was used to calculate various 
architectural parameters (such as capacitance, 
resistance, delay and power consumptions etc) with 
45nm PTM [7]. The benchmarks were configured in 
VPR’s island style FPGA architecture, with 6-input 
LUTs, and a cluster size of 8. Each benchmark is 
placed and routed on minimum sized FPGA and 
channel width. Routing segments are bidirectional and 
all length of 4 segments with tri-state buffer switches. 
And dynamic and leakage power consumption of 
CSCBs are estimated based on the Power-modeling 
FPGA [9], which considers a transition density and 
static probability of each node in a design, and is also 
modified to estimate leakage power based on input 
vector states on circuits. 



The clock period improvements achieved by our 
CPO flow from benchmarks are shown in Table 1. The 
designs were analyzed after CSO to extract the design 
structural constraints limiting CPO. In designs having 
the fixed CS of external FFs as key the limiting factor, 
donor FF insertion achieved an average performance 
improvement of 13.5% over the traditional CSO flow. 
In case of designs where unbalanced paths were 
limiting factors, an average performance improvement 
of 6.17% over a traditional CSO flow was observed. 
However, CPO flow did not resolve the unbalanced 
path delay constraint for all designs. No alternate 
routes satisfying the timing constraint were found 
during the flow for tseng benchmark. Run times of the 
path balance algorithm on 1.8 GHz Intel Core Duo 
CPU with 2gigabytes of memory varied between 
1~5mins. Our CPO flow achieves total performance 
improvement of 24.37% which was an average 
performance improvement of 10.68% over the CSO 
flow without the constraints consideration. The average 
CSCB power consumption of 0.97% of total FPGA 
power consumption was observed, which ranged from 
0.6~1.9% depending on the number of skew elements 
used and the power consumption of the designs. If we 
increase the channel width to reflect actual FPGAs the 
CSCB power consumption portion will be decreased. 
While, the designs with the self-loop constraints had 
average total performance improvement of 16.9%; 
clock skew scheduling aware clustering and placement 
and routing algorithms are required to get more benefit 
from the CSS FPGA architecture. 

VII. CONCLUSION 

In this paper, we present an analysis of various 
design structural constraints that limit clock period 
optimization and techniques resolve the constraints. 
We also present our CSS FPGA architecture equipped 
with clock skew control blocks and clock skew enabled 

IO elements. We then present our clock period 
optimization flow that takes into account the 
limitations due to unbalanced paths and fixed clock 
skew of external FFs constraints. Experimental results 
from benchmarks show that our CPO flow achieves 
total performance improvement of 24.37% which was 
an average performance improvement of 10.68% over 
the CSO flow without the constraints consideration.  
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Table 1: Experimental Results of CPO Flow

 

Bench- 
marks 

# of 
LUTS 

# of 
FFs 

Without the 
Constraints 
Consideration 

Donor FFs 
Path 

Balance 
Routing 
Increase 

Total 
Improvement 

CSCB Power 
Consumption Design Constraints 

bigkey 1840 224 22.58% 15.81% 6.16% 22 44.54% 1.9% External FFs, Unbalanced Path 

clma 8384 33 7.56% 4.52% N/A N/A 12.08% 0.65% External FFs, Self-loop Path 

diffeq 1504 377 28.04% N/A N/A N/A 28.04% 0.92% Self-loop Path 

elliptic 5040 1122 13.3% N/A N/A N/A 13.3% 0.7% Self-loop Path 

frisc 4080 886 12.11% N/A N/A N/A 12.11% 0.63% Self-loop Path 

tseng 1056 384 27.75% N/A 0% No Route 
Found 27.75% 1.15% Unbalanced Path 

dsip 2664 224 14.44% 0.012% 15.96% 15 30.41% 1.16% External FFs, Unbalanced Path 

s38584.1 6696 1259 16.52% 6.95% N/A N/A 23.47% 0.83% External FFs, Self-loop Path 

s38417 6408 85 12.65% N/A N/A N/A 12.65% 0.59% Self-loop Path 

s35932 5456 1728 0% 41.07% N/A N/A 41.07% 1.48% External FFs 

s15850 2024 540 3.62% 8.22% 6.98% 7 18.81% 0.73% External FFs, Unbalanced Path 

s13207 2400 469 0% 21.403% 1.75% 3 23.14% 0.82% External FFs, Unbalanced Path 

s5378 448 160 19.37% 10.05% N/A N/A 29.42% 1.1% External FFs 

Average   13.69% 13.5% 6.17%  24.37% 0.97%  
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