
Algebraic Techniques to Enhance Common Sub-expression

Elimination for Polynomial System Synthesis

Sivaram Gopalakrishnan 1 and Priyank Kalla2

1Synopsys Inc, Hillsboro, OR
2Electrical & Computer Engineering, University of Utah, Salt Lake City, UT

Abstract: Common sub-expression elimination (CSE)
serves as a useful optimization technique in the synthesis of
arithmetic datapaths described at RTL. However, CSE has
a limited potential for optimization when many common
sub-expressions are not exposed. Given a suitable transfor-
mation of the polynomial system representation, which ex-
poses many common sub-expressions, subsequent CSE can
offer a higher degree of optimization. The objective of this
paper is to develop algebraic techniques that perform such
a transformation, and present a methodology to integrate
it with CSE to further enhance the potential for optimiza-
tion. In our experiments, we show that this integrated ap-
proach outperforms conventional methods in deriving area-
efficient hardware implementations of polynomial systems.

I. Introduction

High-level descriptions of arithmetic datapaths that per-
form polynomial computations over bit-vectors are found
in many practical applications, such as in Digital Signal
Processing (DSP) for multi-media applications and embed-
ded systems. These polynomial designs are initially spec-
ified using behavioural or Register-Transfer-Level (RTL)
descriptions, which are subsequently synthesized into hard-
ware using high-level/logic synthesis tools [1]. The growing
market for such applications requires sophisticated CAD
support for their design, optimization and synthesis.

The general area of high-level synthesis has seen exten-
sive research over the years. Various algorithmic tech-
niques have been devised, and CAD tools have been de-
veloped that are quite adept at capturing hardware de-
scription language (HDL) models and mapping them into
control/data-flow graphs (CDFGs), performing scheduling,
resource allocation and sharing, binding, retiming, etc., [2].
However, these tools lack the mathematical wherewithal
to perform sophisticated algebraic manipulation for arith-
metic datapath-intensive designs. Such designs implement
a sequence of add, mult type of algebraic computations
over bit-vectors; they are generally modeled at RTL or
behavioral-level as systems of multi-variate polynomials of
finite degree [3] [4]. Hence, there has been increasing in-
terest in exploring the use of algebraic manipulation of
polynomial expressions, for RTL synthesis of arithmetic
datapaths. Several techniques such as Horner decompo-
sition, factoring with common sub-expression elimination
[5], term-rewriting [6], etc., have been proposed. Symbolic
computer algebra [3] [4] [7] has also been employed for

0Sponsored by NSF grant CCF-0546859.

polynomial datapath optimization. While these methods
are useful as stand-alone techniques, they exhibit limited
potential for optimization as explained below.

Typically, in a system of polynomials representing
an arithmetic datapath, there are many common sub-
expressions. In such systems, common sub-expression
elimination (CSE) serves as a useful optimization tech-
nique, where isomorphic patterns in an arithmetic expres-
sion tree are identified, and merged. This prevents the cost
of implementing multiple copies of the same expression.
However, CSE has a limited potential for optimization if
the common expressions are not exposed in the polyno-
mial system representation. Hence, a transformation of
the given representation, to expose more common sub-
expressions, offers a higher potential for optimization by
CSE. The objective of this paper is to develop algebraic
techniques to perform this transformation, and present a
methodology to integrate it with CSE to achieve a higher
degree of optimization.

Motivation: Consider the various decompositions for
a system of polynomials P1, P2 and P3, implemented with
variables x, y and z, as shown in table I. The direct
implementation of this system will require 17 multipliers
and 4 adders. To reduce the size of the implementation,
a Horner-form decomposition may be used. This imple-
mentation requires the use of 15 multipliers and 4 adders.
However, a more sophisticated factoring method employ-
ing kernel/co-kernel extraction with CSE [5] [8] can further
reduce the size of the implementation, to use 12 multipliers
and 4 adders. Now, consider the proposed decomposition
of the system as shown in table I. This implementation
requires only 8 multipliers and 1 adder. Clearly, this is an
efficient implementation of the polynomial system. This
decomposition achieves a high degree of optimization by
analyzing common sub-expressions across multiple poly-
nomials. This is not a trivial task, and is not achieved by
any earlier manipulation techniques [5] [8]. Note that d1 is
a good building-block (common sub-expression) for these
system of equations. Identifying and factoring out such
building-blocks across multiple polynomial datapaths can
yield area-efficient hardware implementations.

Contributions: In this paper, we develop techniques
to transform the given system of polynomials by employ-
ing certain algebraic manipulations. This transformation,
subsequently serves as a good candidate for common sub-
expression elimination. Our expression manipulation is
based on algebraic techniques such as:

 

978-3-9810801-5-5/DATE09 © 2009 EDAA 

 



• Canonization
• Square-free factorization
• Common coefficient extraction
• Factoring with kernel/co-kernel computation
• Algebraic division

We show how the above mentioned algebraic methods are
developed/employed. These methods form the founda-
tion of an integrated CSE technique for determining area-
efficient implementations of the polynomial system.

TABLE I

Various decompositions for a polynomial system
Original System Horner-form decomposition

P1 = x2 + 6xy + 9y2; P1 = x(x + 6y) + 9y2;
P2 = 4xy2 + 12y3; P2 = 4xy2 + 12y3;
P3 = 2x2z + 6xyz; P3 = x(2xz + 6yz);

Factorization + CSE Proposed Decompsoition

P1 = x(x + 6y) + 9y2; d1 = x + 3y; P1 = d1
2;

P2 = y2(4x + 12y); P2 =4y2d1;
P3 = xz(2x + 6y); P3 = 2xzd1;

II. Previous Work

Contemporary high-level synthesis tools are quite adept
in extracting control/data-flow graphs (CDFGs) from the
given RTL descriptions, and also in performing scheduling,
resource-sharing, retiming, and control synthesis. How-
ever, they are limited in their capability to employ sophis-
ticated algebraic manipulations to reduce the cost of the
implementation. For this reason, there has been increasing
interest in exploring the use of algebraic methods for RTL
synthesis of arithmetic datapaths.

In [9] [10], the authors derive new polynomial models
of complex computational blocks by the way of polyno-
mial approximation for efficient synthesis. In [3], symbolic
computer algebra tools are used to search for a decompo-
sition of a given polynomial according to available compo-
nents in a design library, using a Buchberger-variant al-
gorithm [11] [12] [13] for Gröbner bases. Other algebraic
transforms have also been explored for efficient hardware
synthesis: factoring with common sub-expression elimina-
tion [5], exploiting the structure of arithmetic circuits [14],
term re-writing [6], data-flow transformations using Taylor
Expansion Diagrams (TEDs), etc. Similar algebraic trans-
forms are also applied in the area of code optimization.
These include: reducing the height of the operator trees
[15], loop expansion, induction variable elimination, etc.
A good review of these approaches can be found in [16].

Kernel/co-kernel extraction: Factoring using
kernel/co-kernel extraction with common sub-expression
elimination [5] is the only technique that integrates alge-
braic manipulations with CSE. However, this approach has
its limitations. Let us understand the general methodol-
ogy of this approach before describing its limitations. The
following terminologies are mostly referred from [5].

Polynomial systems can be manipulated by extracting
common expressions by using the kernel/Co-kernel fac-
toring. A literal is a variable or a constant. A cube
is a product of variables raised to a non-negative integer
power, with an associated sign. For example, +acb, −5cde,

−7a2bd3 etc., are cubes. A sum-of-product (SOP) is said
to be cube-free if no cube (except “1”) divides all the cubes
of the SOP. For a polynomial P and a cube c, the expres-
sion P/c is a kernel if it is cube-free and has atleast two

terms. For example, when P = 4abc − 3a2b2c, the expres-
sion P/abc = 4 − 3ab is a kernel. The cube that is used
to obtain the kernel is the co-kernel (abc). This approach
has two major limitations:

Coefficient Factoring: Numeric coefficients are treated
as literals, not numbers. For example, consider a poly-
nomial P = 5x2 + 10y3 + 15pq. According to this ap-
proach, coefficients {5, 10, 15} are also treated as literals
like variables {x, y, p, q}. Since it does not use algebraic
division, it cannot determine the following decomposition:
P = 5(x2 + 2y3 + 3pq).

Symbolic Methods: Polynomials are factored without re-
gard to their algebraic properties. Consider a polynomial
P = x2 + 2xy + y2, which can actually be transformed as
(x + y)2. Such a decomposition is also not identified by
this kernel/co-kernel factoring approach. The reason for
the inability to perform such a decomposition is due to the
lack of symbolic computer algebra manipulation.

This paper develops certain algebraic techniques that
address these limitations. These techniques, along with
kernel/co-kernel factoring, can be seamlessly integrated
with CSE to provide an additional degree of optimization.
With this integration, we seek to extend the optimization
potential offered by the conventional methods.

III. Preliminary Concepts

This section will review some fundamental concepts
of factorization and polynomial function manipulation,
mostly referred from [17] and [2].

Canonization: Polynomials implemented over specific
bit-vector sizes can be represented in a unique canonical
form. According to [7], any polynomial representation F
for a function f , from Z2n1 × Z2n2 × . . . Z2nd to Z2m , can
be uniquely represented as

F = ΣkckYk (1)

where,
• k =< k1, . . . , kd > for each ki = 0, 1, . . . , µi − 1;

• ck ∈ Z such that 0 ≤ ck < 2m

gcd(2m,
∏

d

i=1
ki!)

.

In Eqn.(1), Yk is represented as

Yk(x) =

d∏

i=1

Yki
(xi)

= Yk1
(x1) · Yk2

(x2) · · ·Ykd
(xd) (2)

where Yk(x) is a falling factorial defined as follows:
Definition III.1: Falling factorials of degree k are de-

fined according to:
• Y0(x) = 1
• Y1(x) = x
• Y2(x) = x(x − 1)

...• Yk(x) = (x − k + 1) · Yk−1(x)



Intuitively, this suggests that while having a canonical
form representation as in Eqn.(1), it is possible to find
common Yki

(xi) terms.
For example, consider the following polynomials imple-

mented over Z216 :
F = 4x2y2 − 4x2y − 4xy2 + 4xy + 5z2x − 5zx (3)

G = 7x2z2 − 7x2z − 7xz2 + 7zx + 3y2x − 3yx (4)

Using the canonical form representation, we get:

F = 4Y2(x)Y2(y) + 5Y2(z)Y1(x) (5)

G = 7Y2(x)Y2(z) + 3Y2(y)Y1(x) (6)

Such a representation exposes many common terms in
Yki

(xi). These terms, subsequently serve as a good basis
for common subexpression elimination.

Definition III.2: Square-free polynomial: Let F be
a field or an integral domain Z. A polynomial u in F [x] is
a square-free polynomial if there is no polynomial v in F [x]

with deg(v, x) > 0, such that v2 | u.
Although the definition is expressed in terms of a squared
factor, it implies that the polynomial does not have a factor
of the form vn with n ≥ 2.

Example III.1: The polynomial u1 = x2 +3x+2 = (x+

1)(x + 2) is square-free. However, u2 = x4 + 7x3 + 18x2 +

20x + 8 = (x + 1)(x + 2)2 is not square-free, as v2 (where
v = x + 2) divides u2.

Definition III.3: Square-free factorization: A poly-
nomial u in F [x] has a unique factorization

u = cs1s2
2 · · · sm

m (7)

where c is in F and each si is monic and square-free with
gcd(si, sj) = 1 for i 6= j. This unique factorization in Eqn.
7 is called square-free factorization of u.

Example III.2: The polynomial u = 2x7 − 2x6 + 24x5 −
24x4 + 96x3 − 96x2 + 128x − 128 has a square-free factor-
ization 2(x − 1)(x2 + 4)3 where c = 2, s1 = x − 1, s2 = 1,

and s3 = x2 +4. Note that a square-free factorization may
not contain all the powers given in Eqn. 7.
A square-free factorization only involves the square-free
factors of a polynomial and leaves the deeper structure
that involves the irreducible factors intact.

Example III.3: Using square-free factorization,

x6 − 9x4 + 24x2 − 16 = (x2 − 1)(x2 − 4)2, (8)

both factors are reducible. This suggests that even after
obtaining square-free polynomials, there is a potential for
additional factorization. In other words, consider Eqn. 8,
where (x2 − 1) can be further factored as (x + 1)(x − 1),

and (x2 − 4)2 can be factored as ((x + 2)(x − 2))2.

IV. Optimization Methods

The limitations of contemporary techniques come from
their narrow approach to factorization, relying on single
types of factorization, instead of the myriad of optimiza-
tion techniques available. We propose an integrated ap-
proach, to polynomial optimization, to overcome these lim-
itations. This section describes the various optimization
techniques that are developed/employed in this paper.

Common Coefficient Extraction: The presence of
many coefficient multiplications in polynomial systems
increases the area-cost of the hardware implementation.
Moreover, existing coefficient factoring techniques [5] are
inefficient in their algebraic manipulation capabilities.
Therefore, it is our focus to develop a coefficient factoring
technique that employs efficient algebraic manipulations
and as a result, reduces the number of coefficient multipli-
cations in the given system.

Consider the following polynomial P1 = 8x + 16y + 24z.
When coefficient extraction is performed over P1, it results
in three possible transformations, given as follows:

P1 = 2(4x + 8y + 12z) (9)
P1 = 4(2x + 4y + 6z) (10)
P1 = 8(x + 2y + 3z) (11)

From these three transformations, Eqn.(11) extracts the
highest common term in P1. This results in the best trans-
formation (reduced set of operations). A method to deter-
mine the highest common coefficient is the GCD computa-
tion. Therefore, in this approach, GCD computations are
employed to perform common coefficient extraction (CCE)
for a system of polynomials. The pseudo-code to perform
CCE is shown in Algorithm 1.

1: CCE(a1, · · ·, an)

2: /* (a1, · · ·, an) = Coefficients of the given polynomial;*/

3: for every pair (ai, aj) in n do

4: Compute GCD(ai, aj);

5: Ignore GCDs = “1”;
6: if GCD(ai, aj) < ai and GCD(ai, aj) < aj then

7: Ignore the GCDs;
8: end if

9: end for

10: Order the GCDs in decreasing order;
11: while GCD list is non-empty do

12: Perform the extraction using that order
13: Store the linear/non-linear blocks created as a result of extrac-

tion
14: Remove GCDs corresponding to extracted terms and update the

GCD list
15: end while

Algorithm 1: Common Coefficient Extraction

Consider the polynomial P1 computed as

P1 = 8x + 16y + 24z + 15a + 30b + 11 (12)

The input to CCE are the coefficients of the given poly-
nomial that are involved in coefficient multiplications. In
other words, if there is a coefficient addition in the polyno-
mial, it is not considered while performing CCE. For the
example in Eqn.(12), only the coefficients {8, 16, 24, 15, 30}
are considered and 11 is ignored. The reason is because
there is no benefit in extracting this coefficient and a di-
rect implementation is the cheapest in terms of area-cost.

The algorithm then begins by computing the GCDs for
every pair-wise combination of the coefficients in the input
set. Computing pair-wise GCDs,

GCD(8, 16) = 8;

GCD(8, 24) = 8;

.

..

GCD(15, 30) = 15; (13)



we get the following set {8, 8, 1, 2, 8, 1, 2, 1, 6, 15}. How-
ever, only a subset is generated by ignoring “GCDs = 1”
and “GCDs (ai, aj) < (ai, aj)”. This subset is generated
dynamically. The reason for ignoring these GCDs is that
we only want to extract the highest common coefficients
that subsequently results in a reduced cost. For example,
the GCD(24, 30) = 6. However, extracting 6 does not re-
duce the cost of the sub-expression 24z + 30b in Eqn.(12).
The entire GCD set resulting from Eqn.(13) is just shown
for clarity. The resulting subset is {8, 15}. This set is then
arranged in the decreasing order to get {15, 8}. The first
element is “15”. On performing the extraction using “15”,
the following decomposition is realized:

P1 = 8x + 16y + 24z + 15(a + 2b) (14)

This creates a smaller polynomial (a + 2b). It should be
noted that this is a linear polynomial. This polynomial is
stored and the extraction continues until the GCD list is
empty. After CCE, the polynomial decomposition is:

P1 = 8(x + 2y + 3z) + 15(a + 2b) (15)

Two linear blocks (a+2b) and (x+2y+3z), are finally ob-
tained. The motivation behind storing these polynomials
is that they can serve as potentially good building blocks
in the subsequent optimization methods.

Common Cube Extraction: Common cubes need to
be extracted that consist of variables from the given poly-
nomial representation. The kernel/co-kernel extraction
technique from [5] is quite efficient for this purpose. There-
fore, this approach is employed to perform the common
cube extraction (consisting of only variables). This tech-
nique can also extract coefficients. However, since CCE
is a more efficient factoring technique for coefficients, we
employ this technique for only extracting variables.

Consider the following system of polynomials.

P1 = x2y + xyz

P2 = ab2c3 + b2c2x

P3 = axz + x2z2b (16)

A kernel/co-kernel cube extraction results in the following
representation. (Here, ck is the co-kernel cube and k is the
kernel).

P1 = (xy)ck(x + z)k

P2 = (b2c2)ck(ac + x)k

P3 = (xz)ck(a + xzb)k (17)

The simpler polynomials resulting from the extraction, are
always stored. For the above example, these polynomials
are simply the “kernels”.

Algebraic Division: This method can potentially lead
to a high degree of optimization. The problem essentially
lies in identifying a good divisor, which can lead to an effi-
cient decomposition. Given a polynomial a(x), and a set of
divisors (bi(x)), ∀i we can perform the division a(x)/bi(x)
and determine if the resulting transformation is optimized
for hardware implementation.

Using common coefficient extraction and cube extrac-
tion, a large number of linear blocks, that are simpler than

the original polynomial, are exposed. These linear blocks
can subsequently be used for performing algebraic division.

For example, using cube extraction the given system in
Table I is transformed to:

P1 = x(x + 6y) + 9y2; P1 = x2 + y(6x + 9y)

P2 = 4y2(x + 3y);

P3 = 2xz(x + 3y); (18)

The following linear blocks are now exposed: {(x +
6y), (6x+9y), (x+3y)}. Using these blocks as divisors, we
divide P1, P2 and P3. (x + 3y) serves as a good building-
block because it divides all the three polynomials as:

P1 = (x + 3y)2;

P2 = 4y2(x + 3y);

P3 = 2xz(x + 3y); (19)

Such a transformation to Eqn.(19) is possible only through
algebraic division. None of the other expression manipu-
lation techniques can identify this transformation. The
motivation behind using the exposed “linear” blocks for
division is that

• Linear blocks cannot be decomposed any further, imply-
ing that they have to be certainly implemented.
• They also serve as good building-blocks in terms of hard-
ware implementation.

V. Integrated Approach

The overall approach to polynomial system synthesis is
presented in this section. We show how we integrate the
algebraic methods presented previously with common sub-
expression elimination. The pseudo-code for the overall
integrated approach is presented in Algorithm 2. The al-
gorithm operates as follows:

• The given system of polynomials is initially stored in a
list of arrays. Each element in the list represents a polyno-
mial. The elements in the array for each list represent the
transformed representations of the polynomial. Figure 1
(a) shows the polynomial data-structure representing the
system of four polynomials in its expanded form, canonical
form (can), and square-free factored form (sqf).
• The algorithm begins by computing the canonical forms
and the square free factored forms, for all the polynomials
in the given system. At this stage, the polynomial data-
structure looks like in Figure 1 (a).
• Then, the best cost implementation among these repre-
sentations is chosen, and stored as Piniital. The cost is
stored as Cinitial.
• Common coefficient extraction (CCE) and common cube
extraction (Cub Ex) are subsequently performed. The
linear/non-linear polynomials obtained from these extrac-
tions are stored/updated. Also, the resulting transforma-
tions for each polynomial are updated in the polynomial
data-structure. At this stage, the data-structure looks
like in Figure 1 (b). To elaborate further, in this figure,
{P1, P1a, P1b, P1c} are various representations of P1 (as a
result of CCE and Cub Ex), and so on.



P1

P2

P3

P1

P2

P3

P1

P2

P3

can

can

can

sqf

sqf

sqf

P1

P2

P3

P1a

P2a

P3a

P1b

P3b

P1c P1

P2

P3

P1a

P2a

P3a

P1b

P3b

P1c

P2bP2b

(a) (b) (c)

Fig. 1. Polynomial system representations

1: /*Given: (P1, P2, · · ·, Pn) = Polys (Pis) representing the sys-

tem; Each Pi is a list to store multiple representations of Pi;*/

2: Poly Synth(P1, P2, · · ·, Pn)

3: /*Initial set of Polynomials, Porig*/

4: Porig = 〈P1, · · · , Pn〉;

5: Pcan = Canonize(Porig);

6: Psqf = Sqr free(Porig);

7: Initial cost Cinitial = min cost(Porig, Pcan, Psqf );

8: /*The polynomial with cost Cinitial is Pinitial*/

9: CCE(Piniital); Update resulting linear/non-linear polynomials;

10: /*PCCE = Polynomial representation after CCE();*/ Update
Pis;

11: Cube Ex(Pis); Update resulting linear/non-linear polynomials;

12: /*PCCE Cube = Polynomial representation after Cube Ex();*/
Update Pis;

13: Linear polynomials are lin poly =〈l1, · · · , lk〉
14: for every lj in lin poly do

15: ALG DIV(Pis);
16: Update Pis and ljs;

17: end for

18: for every combination of Pis (Pcomb) representing Porig do

19: Cost = CSE(Pcomb);

20: if (Cost < Cinitial) then

21: Ciniital = Cost;
22: Pfinal = Pcomb;

23: end if

24: end for

25: return Pfinal;

Algorithm 2: Approach to Polynomial System Synthesis

• Using the linear blocks, algebraic division is performed
and the polynomial data-structure is further populated,
with multiple representations.
• The entire polynomial system can be represented us-
ing a list of polynomials, where each element in the list
is some representation for each polynomial. For example,
{P1, P2a, P3b} is one possible list that represents the entire
system (refer Figure 1 (b)). The various lists that represent
the entire system are given by:

{(P1, P2, P3), (P1, P2, P3a), (P1, P2, P3b),

.

.

.

(P1c, P2b, P3), (P1c, P2b, P3a), (P1c, P2b, P3b)} (20)

• From Figure 1 (c), it can be seen that the least-cost
implementation of the system,

Pfinal = (P1a, P2b, P3a) (21)

The Algorithm 2 is explained with the polynomial sys-
tem presented in table II. Initially, canonization and

TABLE II

Illustration of algorithm 2

Original System
P1 = 13x2 + 26xy + 13y2 + 7x − 7y + 11;
P2 = 15x2 − 30xy + 15y2 + 11x + 11y + 9;

P3 = 5x3y2 − 5x3y − 15x2y2 + 15x2y + 10xy2 − 10xy + 3z2;
P4 = 3x2y2 − 3x2y − 3xy2 + 3xy + z + 1;

After canonization and CCE
P1 = 13(x2 + 2xy + y2) + 7(x − y) + 11;
P2 = 15(x2 − 2xy + y2) + 11(x + y) + 9;

P3 = 5x(x − 1)(x − 2)y(y − 1) + 3z2;
P4 = 3x(x − 1)y(y − 1) + z + 1;

After cube extraction
P1 = 13(x(x + 2y) + y2) + 7(x − y) + 11;
P2 = 15(x(x − 2y) + y2) + 11(x + y) + 9;

P3 = 5x(x − 1)(x − 2)y(y − 1) + 3z2;
P4 = 3x(x − 1)y(y − 1) + z + 1;

Final Decomposition
d1 = x + y; d2 = x − y; d3 = x(x − 1)y(y − 1)

P1 = 13(d1
2) + 7d2 + 11; P2 = 15(d2

2) + 11d1 + 9;
P3 = 5d3(x − 2) + 3z2; P4 = 3d3 + z + 1;

square-free factorization are performed. In this example,
this technique does not result in any decomposition for
square-free factorization. For P3 and P4, there is a low-
cost canonical representation. We then compute the initial
cost of the polynomial by using only CSE. In the original
system, there are no common sub-expressions. The total
cost of the original system is estimated as 51 MULTs and
21 ADDs. Then CCE is performed, resulting in the trans-
formation, as shown in the table II. The linear polynomials
obtained are (x−y) and (x+y). The non-linear polynomi-

als are (x2+2xy+y2) and (x2−2xy+y2). After performing
common cube extraction (Cube Ex()), the additional lin-
ear blocks added are (x + 2y) and (x− 2y). Subsequently,
algebraic division is applied using the linear blocks as divi-
sors for all representations of the polynomial system. The
final decomposition with CSE leads to an implementation
where only the linear blocks (x + y) and (x − y) are used.
The representation for the final implementation is shown
in the final row of the table II. The total cost of the final
implementation is 14 MULTs and 12 ADDs.

VI. Experiments

The datapath computations are provided as a polyno-
mials system, operating over specific input/output bit-
vector sizes. All algebraic manipulations are implemented
in Maple [18]; however, factorization routines are available
in MATLAB [19]. For common sub-expression elimina-
tion, we use the JuanCSE tool available at [8]. Based on



TABLE III

Comparison of proposed method with Factorization/CSE

Systems Var/Deg/m # polys Factorization/CSE Proposed method Improvement
Area Delay Area Delay Area % Delay %

SG 3X2 2/2/16 9 204805 186.6 102386 146.8 50 21.3
SG 4X2 2/2/16 16 449063 211.7 197599 262.8 55.9 -24.1
SG 4X3 2/3/16 16 690208 282.3 557252 328.5 19.2 -16.3
SG 5X2 2/2/16 25 570384 205.6 271729 234.2 52.3 -13.9
SG 5X3 2/3/16 25 1365774 238.1 614955 287.4 54.9 -20.7
Quad 2/2/16 2 36405 118.4 30556 129.7 16 -9.5
Mibench 3/2/8 2 20359 64.8 8433 67.2 58.6 -3.7
MVCS 2/3/16 1 31040 119.1 22214 157.8 28.4 -32

the given decomposition (for each polynomial in the sys-
tem), the individual blocks are generated using the Syn-
opsys Design Compiler [1]. These units are subsequently
used to implement the entire system.

The experiments are performed on a variety of DSP
benchmarks. The results are presented in Table III. The
first column lists the polynomial systems used for the ex-
periments. The first five benchmarks are Savitzky-Golay
filters. These filters are widely used in image-processing
applications. The next benchmark is a polynomial sys-
tem implementing quadratic filters from [20]. The next
benchmark is from [21], used in automotive applications.
The final benchmark is a multi-variate cosine wavelet used
in graphics application from [5]. In the second column,
we list the design characteristics: number of variables
(bit-vectors), the order (highest degree) and the output
bit-vector size (m). Column 3 lists the number of poly-
nomials representing the entire system. Columns 4 and
5 list the implementation area and delay of the polyno-
mial system, implemented using Factorization + common
sub-expression elimination, respectively. Columns 6 and
7 list the implementation area and delay of the polyno-
mial system, implemented using our proposed method, re-
spectively. Columns 8 and 9 list the improvement in the
implementation area and delay using our polynomial de-
composition technique, respectively. Considering all the
benchmarks, we show an average improvement in the ac-
tual implementation area of approximately 42%.

VII. Conclusions

This paper presents a synthesis approach for arithmetic
datapaths implemented using a system of polynomials. We
develop algebraic techniques that efficiently factor coef-
ficients and cubes from the polynomial system resulting
in the generation of linear blocks. Using these blocks as
divisors, we perform algebraic division, resulting in a de-
composition of the polynomial system. Our decomposition
exposes more common terms which can be identified by
CSE, leading to a more efficient implementation. Exper-
imental results demonstrate significant area savings using
our approach as compared against contemporary datapath
synthesis techniques.

References

[1] “Synopsys Design Compiler and DesignWare library”, Available

at htpp://www.synopsys.com.

[2] G. DeMicheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill, 94.

[3] A. Peymandoust and G. DeMicheli, “Application of Symbolic
Computer Algebra in High-Level Data-Flow Synthesis”, IEEE
Trans. CAD, vol. 22, pp. 1154–11656, 2003.

[4] J. Smith and G. DeMicheli, “Polynomial circuit models for com-
ponent matching in high-level synthesis”, IEEE Trans. VLSI,
vol. 9, 2001.

[5] A. Hosangadi, F. Fallah, and R. Kastner, “Optimizing polyno-
mial expressions by algebraic factorization and common subex-
pression elimination”, IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol. 25, pp. 2012–2022, Oct
2006.

[6] Arvind and X. Shen, “Using term rewriting systems to design
and verify processors”, IEEE Micro, vol. 19, pp. 36–46, 1998.

[7] Sivaram Gopalakrishnan and Priyank Kalla, “Optimization of
polynomial datapaths using finite ring algebra”, ACM Trans.
Des. Autom. Electron. Syst., vol. 12, pp. 49, 2007.

[8] JuanCSE, “Extensible, programmable and recon-
figurable embedded systems group”, Available at
http://express.ece.ucsb.edu/suif/cse.html.

[9] J. Smith and G. DeMicheli, “Polynomial methods for compo-
nent matching and verification”, in In Proc. ICCAD, 1998.

[10] J. Smith and G. DeMicheli, “Polynomial methods for allocating
complex components”, in Proc. DATE, 1999.

[11] B. Buchberger, Ein Algorithmus zum Auffinden der Basise-
lemente des Restklassenringes nach einem nulldimensionalen
Polynomideal, PhD thesis, Philosophiesche Fakultat an der
Leopold-Franzens-Universitat, Austria, 1965.

[12] B. Buchberger, “A Theoretical Basis for Reduction of Polyno-
mials to Canonical Forms”, ACM SIG-SAM Bulletin, vol. 10,
pp. 19–29, 1976.

[13] B. Buchberger, “Some Properties of Grobner Bases for Polyno-
mial Ideals”, ACM SIG-SAM Bulletin, 1976.

[14] A. K. Verma and P. Ienne, “Improved use of the Carry-save Rep-
resentation for the Synthesis of Complex Arithmetic Circuits”,
in Proceedings of the International Conference on Computer
Aided Design, 2004.

[15] A. Nicolau and R. Potasman, “Incremental tree-height reduc-
tion for high-level synthesis”, in Proc. DAC, 1991.

[16] G. DeMicheli and M. Sami, Hardware/Software Co-Design,
Kluwer Academic Publishers, 96.

[17] J. Cohen, Computer Algebra and Symbolic Computation, A. K.
Peters, 2003.

[18] Maple, ”, http://www.maplesoft.com.

[19] MATLAB/Simulink, ”, http://www.mathworks.com/products/simulink.

[20] V. J. Mathews and G. L. Sicuranza, Polynomial Signal Process-
ing, Wiley-Interscience, 2000.

[21] M. R. Guthaus and et al., “Mibench: A Free, Commercially
Representative Embedded Benchmark Suite”, in IEEE 4th An-
nual Workshop on Workload Characterization, Dec 2001.


	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index




