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Abstract—With the trend toward high-quality large form

factor displays on high-end handhelds, LCD backlight accounts

for a significant and increasing percentage of the total energy

budget. Substantial energy savings can be achieved by dynam-

ically adapting backlight intensity levels while compensating

for the ensuing visual quality degradation with image pixel

transformations. Several compensation techniques have been

recently developed to this purpose, but none of them has been

fully characterized in terms of quality losses considering jointly

the non-idealities present in a real embedded video chain and

the peculiar characteristics of the human visual system (HVS).

We have developed a quality analysis framework based on an

accurate embedded visualization system model and HVS-aware

metrics. We use it to assess the visual quality performance of

existing dynamic backlight scaling (DBS) solutions. Experimental

results show that none of the DBS techniques available today is

fully capable of keeping quality loss under control, and that there

is significant room for improvement in this direction.

I. INTRODUCTION

Despite the constant evolutions in Liquid Crystal Display’s

(LCD) technology, LCD power consumption is still one of

the major limitations to the battery life of mobile appliances,

such as portable media players, smart phones, navigation and

gaming devices [14]. Pushed by the market of multimedia

applications, portable devices need to render high definition

videos and pictures on larger and larger screens. Since LCD

power consumption depends on backlight and pixel matrix

driving circuits, which are both proportional to the panel area,

LCD contribution to the total system power consumption is

going to be considerable even in future mobile devices.

Several techniques have been proposed to face the issue

of LCD power. The most promising ones achieve substantial

savings by dynamically adapting backlight intensity levels

while compensating for the ensuing visual quality degradation

with image pixel transformations. Due to the display system

non-idealities, this kind of techniques unfortunately produces

a quality degradation in the rendered images. Overall quality

loss depends on several factors: the pixel transformation, the

final backlight intensity level, the LCD display electrical and

optical properties, and finally the human visual system (HVS)

features. Indeed, due to the high non-linearities and complexity

of the HVS, the same distortion level of physical quantities,

such as luminosity or chromatic differences, can be perceived

in different ways [9].

Two main approaches have been developed to control the

visual quality loss in DBS techniques. The first is image

dependent, as depicted in Figure 1.a: it computes on-line the

amount of backlight scaling on every frame using a simple

image distortion metric as a constraint. Techniques following

this approach aim at keeping a constant distortion by maintain-

ing the frame-by-frame computed quality performance metric

as constant as possible [1], [2], [7], [8]. Unfortunately the

simplified quality metrics adopted do not account for both the

HVS peculiarities and the display system non-idealities. Hence

there is no formal relationship between the adopted distortion

metrics and the real perceived quality degradation.

Fig. 1. DBS technique approaches : image dependent (a) vs image

independent(b)

Accounting for both the HVS peculiarities and the display

system non-idealities in the on-line visual quality distortion

metric is very hard, due to their computational complexity.

Therefore, image independent approaches have been devel-

oped, in which the relationship between perceived image
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distortion and DBS transformation is statistically analysed off-

line (Figure 1.b). These approaches consider image degrada-

tion as dependent only on the applied DBS transformation.

Authors in [3], [4], [5], [6] use a set of benchmark images

to calculate an image-independent empirical function which

relates the image degradation levels to the transformation

parameter applied to the image itself. The distortion degra-

dation level is calculated off-line through a quality metric

which considers the HVS peculiarities. This approach does

not consider the perceived image distortion as a function of

the image itself, in other words it implicitly assumes that a

constant backlight reduction would produce, after compen-

sation, a constant quality degradation. This assumption has

not been accurately assessed and validated: it is not clear if

this methodology produces different perceived distortion levels

over different images while aiming at keeping it constant.

The main contribution of this work is the development of

a new framework to asses the visual quality performance of

backlight scaling algorithms. Our framework considers both

the real embedded video chain non-idealities and the HVS

insights. The real embedded video chain non-idealities are

accounted through an accurate display model performed on

a real embedded platform for multimedia application [11].

The HVS peculiarities are considered in the implemented

image quality metric. This metric compares the original and

the DBS distorted images, thus producing an index which is

proportional to the perceived degree of similarity between the

two images [9].

This framework has been validated and utilized to analyse

the behaviour of state-of-the-art DBS techniques. Experimen-

tal results show that none of the DBS techniques available

today is fully capable to provide a controlled, constant quality

loss, and that there is significant room for improvement in this

direction.

II. FRAMEWORK FOR VISUAL QUALITY PERFORMANCE

EVALUATION

The evaluation of the visual quality performance for dy-

namic backlight scaling algorithms is not trivial due to LCD

display non-idealities and HVS peculiarities. We developed a

complete Matlab-based framework to overcome these difficul-

ties. Figure 2 shows the framework block diagram.

We can identify three main blocks:

1) DBS transformation: this block processes the original

image or video frame with the DBS image transforma-

tion. The outputs are a modified image with increased

pixels luminance and the related new backlight scaled

value.

2) The LCD model: this block models the behaviour of a

real embedded LCD panel and its non-idealities. From

the RGB image and the backlight level produced by
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Fig. 2. QoS matlab framework block diagram.

the DBS transformation block, it generates an image

representing how the target image itself will look like on

the LCD panel. This step is done for both the images:

original and DLS transformed one.

3) HVS QoS metric: this block implements the HVS pecu-

liarities and evaluates the differences between the two

images from the LCD model block.

A. LCD Model

From the LCD physics[6] we can write the luminance

emitted from the x pixel of the LCD panel equal to:

L(x) = f (BL)∗g(x) (1)

Intuitively, this equation shows that the luminance emitted

from a pixel depends on functions f() of the backlight (BL)

and g() of the pixel value itself, which sets its transmittance.

These two functions are related to the LCD panel used, and

generally are non-linear.

1) LCD display characterization: This section describes

our LCD characterization methodology focused on quantifying

the LCD optical properties and to evaluate the non-linearity

effects existing between real displayed quantities and digital

values descriptions. More in detail, to analyse:

1) The relationship between pixel digital values in RGB

space and emitted light intensities, g().

2) The relationship between backlight values and emitted

light intensities, f().

As reference case we apply this general methodology to

a TFT LCD display (Sharp LQ035Q7DB02). We displayed

a set of images on the LCD and measured the emitted light

with a light sensor. To get a set of consistent measurements,

the ambient light contribution was eliminated performing the

tests within a dark room[15].

For the first test, we used a photodiode IPL 10530DAW as

light sensor. The light sensor produces as output a voltage

linearly proportional to the intensity of the incident light,



emitted by the LCD. We measured the emitted light from

the LCD displaying a monochromatic image which has only

one RGB component which varies from 0 to 255, and the re-

maining components set to 0 (i.e. (RGB=X,0,0), (RGB=0,X,0),

(RGB=0,0,X)).
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Fig. 3. Light intensities for R,G,B pixels and relative gamma fit.

Figure 3 shows the normalized light intensities on the y-

axes and the normalized value of the three RGB components

(X/255) on the x axes. The plot shows that the light emitted by

pixels is non-linear with the digital RGB value, but it matches

a polynomial law. We fitted[15] the measured value (the dots

in the plot) with the function:

L(x) = o f f set +K ∗ (R,G,B)γR,G,B (2)

The backlight effect has been quantified by measuring the

emitted light for different backlight values using the photo-

diode as light sensor. The results of this characterization are

shown in Figure 4: the dots show the measured data and the

line shows the fitted equation.
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Fig. 4. Normalized light intensity vs. normalized digital backlight value.

The curve was obtained with the power fit:

L(x) = K ∗ (Backlight)θ (3)

2) LCD Model: We modeled the LCD panel behaviour

using the results from the LCD characterization phase (see

Section.II-A1). The model takes as input an RGB image and

a backlight value, and it produces as output a trichromatic

image which has each pixel component proportional to the

light intensity produced by the component itself.
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Fig. 5. LCD model schematic.

The model can be split in three main blocks (see Figure 5):

1) The incoming image is transformed by the set of Equa-

tions 2, which account for the non-linearity of LCD light

transmittance.

2) The input backlight is used to obtain a new value which

considers the non-linearity showed in Eq.3.

3) The model combines the transformed image and the

new backlight value to compute the simulated displayed

image.

B. DBS transformation

The overall goal of a DBS transformation is to dim the

backlight while at the same time scaling the pixel transmit-

tance in order to re-equilibrate the target pixel luminance.

In the proposed framework we adopt a DBS technique that

aims to preserve the pixel luminance and chroma, considering

the display non-linearities highlighted in Section.II-A1. The

DBS transformation presented is a linear transformation of

the pixels value, and can be applied through a pixel matrix

operation that is suitable for an implementation on a real

embedded system. From Eq.1, 2 and 3, we can formulate:















LR(x) ∝ (R)γR ∗ (Backlight)θ

LG(x) ∝ (G)γG ∗ (Backlight)θ

LB(x) ∝ (B)γB ∗ (Backlight)θ

(4)

(5)

(6)



If we dim the Backlight value of a scaling factor β , we

need also to scale each RGB pixel component by a set of α

factor in order to obtain the same target luminance:















L′
R(x) ∝ (αRR)γR ∗ (Backlight/β )θ

L′
G(x) ∝ (αGG)γG ∗ (Backlight/β )θ

L′
B(x) ∝ (αBB)γB ∗ (Backlight/β )θ

(7)

(8)

(9)

From 4, 5, 6 and 7, 8, 9 we obtain:















αR
γR = β θ

⇒ αR = β θ/γR

αG
γG = β θ

⇒ αG = β θ/γG

αB
γB = β θ

⇒ αB = β θ/γB

(10)

(11)

(12)

The last equation shows that, for a given β backlight

scaling factor, we need to compensate each component by

a αX
1 factor. Due to the bounded digital range [0..255] for

each component, this operation is not able to compensate the

luminance in the top end values, thus introducing a saturation

effect. This can produce both a luminance dynamic range

compression and a color distortion. The proposed framework

considers all these distortion effects.

C. HVS QoS metric

This block evaluates the perceived quality degradation in-

troduced in the final rendered image by the DBS technique.

We used a well established visual QoS index : the structural

similarity index metric (SSIM). This index has been demon-

strated to be able to quantify the HVS perceived differences

between two images [12] [9].

SSIM is based on the assumption that the human visual

system is efficient in extracting structural information from

the viewing field. The structural information of an image is

an attribute which describes the structure of objects in the

scene independently from average luminance and contrast. In

Figure 6 we can see the schematic implementation of the

SSIM metric. The average luminance, contrast and structural

information are computed for both target and sample images

and then combined together to produce the quality index.

SSIM index for monochromatic images is made of three

similarity indices, accounting for luminance, contrast and

structural similarity, l(X ,Y ), c(X ,Y ) and s(X ,Y ) respectively.

SSIM(X ,Y ) = l(X ,Y )∗ c(X ,Y )∗ s(X ,Y ) (13)

To apply SSIM to color images, we first transformed the

LCD model output images from the trichromatic (RGB) color

space to the IPT color space [10] [13]. In IPT each quantity

is correlated to perceive lightness, chroma and hue. Then the

1For simplicity in the following sections we will use only αB,and we will

call it α .

Fig. 6. Diagram of (SSIM) structural similarity measurement system.

SSIM index is computed for each I,P,T, component (SSIMI ,

SSIMP , SSIMT ). Finally we combine them together:

SSIM = SSIMI ∗SSIMP ∗SSIMT (14)

III. EXPERIMENTAL RESULTS

A. QoS framework performance

The presented framework has been tested to verify how our

QoS index is sensitive to visual distortion. We asked to a

set of human users to asses the visual similarity, in a side

by side comparison, between original and distorted images at

different SSIM quality levels. Results lead to two important

findings: first a constant SSIM index for different images

means constant perceived distortion. Second, we correlated

human observer scores with the SSIM index results. This

helped indentifying four macro-regions in the SSIM index

range: each region specifies a quality level. Table.I shows the

quality levels and their SSIM ranges. Figure 7 shows a visual

example of the four quality regions for three test images.

SSIM Range Quality Level

1 - 0.98 High quality

0.98 - 0.96 Medium quality

0.96 - 0.94 Low quality

≤ 0.94 Unacceptable

TABLE I

QOS FRAMEWORK OUTPUT QUALITY REGIONS.

B. Image independent DBS techniques

One approach to solve the DBS problem adopted in liter-

ature [3] [4] [5] [6], considers the distortion introduced by

luminance dynamic range reduction (∝ α) independent from

the image content and only related to α (see Section.II-B). As

already shown in Figure 1.b this is done in two steps:



Image 1 Image 2 Image 3

( a )

( b )
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( e )

Fig. 7. Images at different distortion levels: a) Original images; b) High

quality (SSIM = 0.98); c) Medium quality (SSIM = 0.96); d) Low quality

(SSIM = 0.94); e) Unacceptable (SSIM 0.90).

• off-line: it consists of characterizing the relationship

between different image quality loss and different com-

pensation levels, for an image benchmark set by means

of a HVS aware distortion metric. The relationship is

obtained as statistical fitting function of the test results.

• on-line: the relationship in the off-line step is then used

to univocally select the proper compensation value for

the target tolerated distortion level in a not-content image

aware fashion.

The main hypothesis behind this approach relies to the

assumption that applying the same compensation factor to

different images produces a constant visual quality loss. We

validated and analysed this approach exploiting our frame-

work. In order to do that, we applied the same compensation

level to each frame of the video test benchmark chosen (i.e.

Terminator 3 movie trailer).

Figure 8 shows the output SSIM index generated by the

proposed QoS framework (y-axes) vs. the video frame index

(x-axes). In the plot each line refers to a specific compensation

level (α). Since each of these lines is not straight, but it

crosses different quality regions, we can state that an invariant

compensation level applied to every image does not lead to a

constant perceived distortion level.

Image independent DBS techniques are incapable of keep-

ing the perceived QoS constant. By the way the plot shows

that it is possible to achieve a constant distortion level by

dynamically adapting the compensation level (α) frame by

frame while considering the image spatial properties.
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Fig. 8. Image independent DBS technique: QoS framework output vs frame

index.

C. Image dependent DBS techniques

A different approach is to consider the distortion introduced

by DBS proportional to image dependent key features, as

shown in Figure 1.a . The most used technique considers the

final perceptual degradation level proportional to the amount

of oversaturate pixels on the compensated image [1] [2] [8].

According to this approach, a constant perceived degradation

level for different images can be obtained by keeping constant

the saturated pixel percentage.

We use our framework to evaluate if this approach really

lead to a constant perceived image degradation. For each

frame of the video test benchmark we generate the R,G,B

pixel value histograms. We scan them in order to find the

maximum compensation factor (αX ) that keeps the percentage

of pixel saturated below a selected level. Finally we select

the most conservative α value between them. We then apply

the compensation factor to evaluate the QoS SSIM index for

the target images. In the plots in Figure 9 on the x-axes

is represented the video frame index and on the y-axes are

reported the saturated pixel-percentages generated by the DBS

transformation, the backlight level and the SSIM QoS index

associated for each frame. On each plot, each line refers to a

different maximum level of saturated pixels, namely 4%, 8%,

20%.

We can see from the central plot that the backlight scales

dynamically to keep the number of saturated pixels constantly

below the specified levels for all the video frames, as reported

in the top plot. But this does not lead to a constant visual

distortion level, since in the bottom plot each line is not

straight but cross different quality regions. This means that

controlling the percentage of pixels saturated is not enough

to maintain constant the perceived quality distortion. This bad

behaviour is due to the evidence that the applied distortion

level processing is not HVS aware.
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IV. CONCLUSION

We proposed a framework to measure the perceived dis-

tortion for rendered images on LCD when a DBS technique

is applied. We then apply this framework to analyse the QoS

performance for the two most up to date DBS techniques. The

first technique considers the perceive distortion level directly

proportional to the dynamic range and not dependent to image

content. We demonstrate that this approach is not capable of

keeping the perceived distortion level under control, because

the image spatial information cannot be neglected. The sec-

ond technique instead considers the perceived distortion level

directly proportional to the number of saturated pixels and

not related to the spatial distribution of them. We demonstrate

that keeping constant the percentage of saturated pixels does

not lead to produce constant perceived image distortion. Both

these results suggest that in order to obtain a constant image

degradation while saving the maximum allowed power, DBS

solutions need to account the image pixels locality information

and HVS peculiarities.
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