
Static Analysis to Mitigate Soft Errors in Register Files

Jongeun Lee and Aviral Shrivastava

Department of Computer Science and Engineering

Arizona State University, Tempe, AZ 85281, USA

{Jongeun.Lee, Aviral.Shrivastava}@asu.edu

Abstract—With continuous technology scaling, soft errors are
becoming an increasingly important design concern even for
earth-bound applications. While compiler approaches have the
potential to mitigate the effect of soft errors with minimal
runtime overheads, static vulnerability estimation—an essential
part of compiler approaches—is lacking due to its inherent
complexity. This paper presents a static analysis approach for
Register File (RF) vulnerability estimation. We decompose the
vulnerability of a register into intrinsic and conditional basic-
block vulnerabilities. This decomposition allows us to develop
a fast, yet reasonably accurate, linear equation-based RF vul-
nerability estimation mechanism. We demonstrate its practical
application to compiler optimizations. Our experimental results
on benchmarks from MiBench suite indicate that not only our
static RF vulnerability estimation is fast and accurate, but also
compiler optimizations enabled by our static estimation can
achieve very cost-effective protection of register files against soft
errors.

I. INTRODUCTION

Due to continuous technology scaling, soft errors—

transient faults mainly caused by high-energy particles—

are becoming an important design concern for earth-bound

embedded applications in addition to space applications [1].

Traditionally, due to their large size, only large memory

structures like the main memory and caches were considered

important for protection against soft errors. However, recently,

Blome et al. [2] observed that majority of the faults both in

combinational and sequential logic that affect the architectural

state of a processor comes from the register file. Since

register files are accessed very frequently, corrupted data in

the register file can quickly spread to other parts of the system,

increasing chances of an error. While memory structures, like

caches and main memory are routinely protected using parity

or Error Correcting Codes (ECC) [3], protecting the Register

File (RF) using such schemes is prohibitive, because RF is

often i) in the timing-critical path [4] of the processor, and

ii) is one of the hottest blocks on the chip [5]. Protecting RF

is challenging, since to minimize impact on performance, RF

protection scheme should operate in parallel to the normal ex-

ecution, and at minimal power overhead. Keeping the RF cool

is important not only since reliability is negatively affected by

high temperature [6], [7] but also to avoid performance loss

due to thermal degradation [8], [9]. Consequently, protecting

RFs is a topic of significant research interest.

Several approaches for protecting RFs have been proposed,

but most of them are microarchitectural solutions [2], [10]–

[12]. Of them, cost effective techniques implement some

This work was partially supported by grants from Raytheon, Science
Foundation of Arizona (SFAz), and Stardust foundation.

form of Partial Protection of the RF. They take advantage

of the fact that not all registers hold useful data at all times,

therefore protecting only a part of the RF may result in

high protection at low power overheads. However, since the

microarchitectural techniques make the decision of which

register to protect in the hardware at runtime, they necessarily

incur high power overheads.

Potentially more interesting is the compiler approach [13],

[14]. Compilers can mitigate the effect of soft errors in RF

without any hardware support, e.g., shortening the average

live range of variables through memory spills may reduce the

soft error rate of a register file if the L1 data cache is already

protected, as transient faults occurring to a register containing

no live variable cannot cause an error. In addition, compilers

can be extremely valuable in enhancing the effectiveness

of hardware support. For instance, the decision of which

variables to protect in a partially protected RF scheme can be

made by compiler, completely eliminating the power overhead

in decision. In addition, since the compiler has the whole

program information, it can make better decisions.

Essential to all such compiler techniques is a method to

estimate the Register File Vulnerability (RFV) of a program

to soft errors. The concept of RFV comes from Architectural

Vulnerability Factor (AVF) [15]. A register is vulnerable only

if it will be read by the processor, and is not vulnerable

if its value will be overwritten. The RF vulnerability of a

program is the sum of vulnerability of all registers during the

program execution. The challenge lies in the fact that there

are no known methods to statically estimate the vulnerability

of programs. Existing techniques can compute RFV only

through simulation, which is clearly not useful for compiler

optimizations.

This paper proposes a static analysis approach to estimate

RFV. Static estimation of vulnerability is more challenging

than performance estimation. This is because while perfor-

mance is dependent on branch probabilities, the vulnerability

of a register is dependent on the execution path. The central

idea in this paper is to use a linear function representation

for the vulnerability of a basic block, which is otherwise

very difficult to capture accurately. Our approach breaks the

problem into i) Computing the vulnerability of a register

as a function of block post-condition, and ii) Estimating

block post-condition from branch probabilities. Block post-

condition of a register is the probability of the next access to

the register after this block being a read, and can be estimated

from branch probabilities with reasonable accuracy. More-

over, computing vulnerability from block post-conditions

can be done exactly and very efficiently. Thus our static

978-3-9810801-5-5/DATE09 © 2009 EDAA

vulnerability estimation can be fast while being reasonably

accurate. Our experimental results on a number of embedded

applications indicate that not only our static RF vulnerability

estimation is fast and relatively accurate but also compiler

optimizations enabled by our static estimation can achieve

very cost-effective RF vulnerability reduction. When used

to compile for partially protected RF, simplest of compiler-

management schemes can be much more energy efficient than

hardware schemes, and that explicit optimization can further

reduce the energy overhead by up to 50% to 75% while not

sacrificing vulnerability.

II. RELATED WORK

Existing RF protection mechanisms can be broadly clas-

sified into hardware and software techniques. Several hard-

ware techniques exist, and are based on using ECC, parity

checking, and duplication. The IBM G5 enterprise server

has every register and latch protected by either ECC or

parity [16]. Since protecting the entire RF has extremely

high overheads, cost-effective solutions [2], [10], [11] protect

only part of the RF. This is based on the observation that

not all register values are always vulnerable; consequently,

cost-efficiency can be achieved by protecting only part of

the RF and dynamically choosing register variables to be

protected. However, all these microarchitectural techniques

necessarily incur power overhead associated with the dynamic

decision logic. In this paper, we develop compiler techniques

to enhance the effectiveness of hardware techniques for RFV

optimization, including elimination of the power overhead of

runtime prediction.

We are aware of only two compiler techniques [13], [14],

both of which are based on partially protected register files

and try to reduce RF vulnerability by different register al-

location. While effective, those techniques are profile based,

and is therefore extremely limited in application. In addition

to the long time required by profile based methods, there are

challenges in even obtaining a representative profile. While

compilers can reduce the RF vulnerability with or without

hardware support, any such compiler technique requires static

estimation of RF vulnerability, and to date there is no method

to do it; and that is the topic of this paper.

The concept of vulnerability was first introduced as Archi-

tectural Vulnerability Factor (AVF) by Mukherjee et al. [15],

which is a quantitative measure of the amount of “live”

information that needs protection of each microarchitectural

component. Techniques for runtime estimation of AVF [17],

[18] were proposed, which was then used to adjust the

protection level of thread-level duplication techniques to the

varying workload vulnerability. RF has very high AVF, and

RF vulnerability computation is typically done in simulation,

and there is no static method to estimate vulnerability of

register files.

III. RF VULNERABILITY COMPUTATION

Vulnerability of a register is defined as the total time for

which it is vulnerable, or holds useful data. The Register File

Vulnerability (RFV) is then just the sum of the vulnerability

of all the registers in the RF. Figure 1 illustrates a Control

W1

R1

R2

R3

W2

BB1

BB2

BB3 BB4

BB5

i
v1

c
v1

c
v2

i
v2

c
v3

c
v4

c
v5

i
v5

p 1-p

S1=1

S2=p

S3=1 S4=1

S5=0

L1

L2

L3 L4

L5

start

end

Interval Freq. Vulnerab.

start–W1 1 0
W1–R1 1 L1

R1–R2 1 L2

R2–R3 p pL3

R2–W2 1 − p 0
W2–R3 1 − p (1 − p)L5

R3–end 1 0

Fig. 1. Computing RF vulnerability from intervals.

Flow Graph (CFG), where nodes are basic blocks and edges

represent control flow. The accesses to a register are marked

by Wi or Ri depending on whether it is written or read,

respectively. The reads and writes divide the execution flow

into intervals, which are denoted by Li’s and bold arrows in

the figure. The embedded table lists all the intervals and their

vulnerability. The total vulnerability is then their summation:

V = L1+L2+pL3+(1−p)L5, where p is the probability that

BB3 is executed after BB2. However, in general this problem

becomes difficult, as not only the number of intervals grow

exponentially with the number of branch nodes, but it also

becomes difficult to compute the execution probability of an

interval, as it span several basic blocks. The presence of loops

in the program makes this problem intractable.

One way to break away from this path-dependence of

vulnerability calculation is to attribute vulnerabilities to basic

blocks, instead of intervals, so that the total RFV can be

computed simply by adding up the basic block vulnerabilities.

Similar approach is also used in, for instance, static estimation

of performance; the runtime of each basic block is first

estimated, and the total runtime is then simply the summation

of the cycle count of each basic block, weighted by the

execution frequency of each basic block.

Unfortunately the similarity with performance estimation

ends here. While the runtime of a basic block is estimated

as a constant, and not dependent on other basic blocks, the

vulnerability of a variable in the basic block necessarily

depends on what happens with the register in the following

basic blocks. Consider the basic block BB2 for example. The

interval from the start of BB2 to R2 is definitely vulnerable,

since this interval ends in a read. However, whether the

interval from R2 to the end of BB2 is vulnerable may be

determined immediately in the next basic block, as is the

case with the path BB2–BB4, or may be determined several

basic blocks down the flow, as is the case with the path BB2–

BB3–BB5. This inherent context dependence of vulnerability

computation prevents us from assigning one number to basic

block vulnerability.

IV. NEW VULNERABILITY REPRESENTATION

To break this context dependence, we represent the basic

block vulnerability of a register as a linear function vi + vcs,

where vi and vc are constants derived from the basic block

itself while variable s, called post-condition, is the probability

summarizing the contextual information. This is essentially

decomposing the vulnerability into intrinsic vulnerability, vi,

which definitely contributes to vulnerability, and conditional

vulnerability, vc, which does so conditionally depending

on the following blocks. vi is computed as the average

combined length of read-finished intervals within the basic

block (here an interval is between register accesses or basic

block boundary), and vc is the average length of the last

interval. These lengths are in time or in cycles, and therefore

exact computation of these quantities, even at the basic block

level, requires microarchitectural knowledge, for which static

estimation techniques such as [19], [20] may be used.

Unlike vi and vs, which are determined from their own

basic blocks, post-condition s is determined from other

basic blocks. Once s is known either through profiling or

static analysis, the total RFV can be easily computed as∑
j fjVj =

∑
j fj(v

i
j + vc

jsj), where fj and Vj are the

execution frequency and vulnerability of j-th basic block,

respectively, and vi
j , vc

j , and sj are also of the j-th basic

block. In our example the vulnerabilities of the five basic

blocks are: V1 = vi
1
+ vc

1
· 1, V2 = vi

2
+ vc

2
· p, V3 = 0+ vc

3
· 1,

V4 = 0+vc
4
·1, and V5 = vi

5
+vc

5
·0. And the total vulnerability

is given as below, which is equal to the earlier formula after

replacing Li’s.

V = (vi
1

+ vc
1
) + (vi

2
+ vc

2
p) + p vc

3
+ (1 − p)vc

4
+ vi

5

The linear function representation of basic block vul-

nerability is exact for any value of s, and the computed

total vulnerability is accurate as long as the post-conditions

are accurate.1 Now the problem is reduced to finding the

probability s, which is the topic of the next section.

V. ESTIMATING POST-CONDITIONS

Post-condition is the probability of the next access being

a read. Consider a CFG in Figure 2, which includes a

loop. Each node is annotated with first-access-type attribute

(inside small boxes), which is either read (‘r’), write (‘w’),

or no-access (‘–’). Assume that the CFG is repeated twice

and the branch probabilities are as shown in the figure.

Interestingly, while the execution frequencies of nodes and

edges (numbers in parentheses) can be easily found out from

branch probabilities, post-conditions cannot be determined

from branch probabilities alone. The figure lists two execution

paths that result in the same branch probabilities. In both

the cases, execution frequencies of the nodes and edges are

exactly the same. However, post-conditions of some basic

blocks are different, as shown in Table I. This is because

post-condition depends on execution paths rather than mere

execution counts.

1It is exact under the assumption that the length of the last register access
interval of a basic block is the same in every execution. Then, the last interval
vc is vulnerable fs times, the number of times the basic block is followed
first by a read; therefore, its vulnerability contribution is fsvc.

1

2

3 4

5

6

±

w

±

w

w

r

(2)

(2)

(1)

(21)

(22)

(2)

1/2 1/2

10/111/11

(21)

(20)

(2)

(1)

(1) (1)

(2)1

2

3

5

4

5

4

·

·

·

5

4

5

6

w

w

r

r

r

w

1

2

4

5

4

5

4

·

·

·

5

4

5

6

w

r

r

r

r

w

1

2

4

5

4

5

4

·

·

·

5

4

5

6

w

r

r

r

r

w

1

2

3

5

6

w

w

w

:���st

:���nd

:���rd

:����st

Execution 1 Execution 2

Fig. 2. Two possible executions with the same execution frequency but
different post-conditions (see Table I).

Post-condition is the probability that a node with the

read first-access-type will be visited prior to any node with

the write first-access-type. Therefore, using the conditional

probability P (a|q), which is the probability of visiting node

a right after path q, one can write s3 = P (5|3)P (4|3, 5)
and s4 = P (5|4)P (4|4, 5). Since P (5|3) = P (5|4) = 1, we

have s3 = P (4|3, 5) and s4 = P (4|4, 5). Now the branch

probability at BB5 specifies P (4|5) = 10/11 only, but not

P (4|3, 5) nor P (4|4, 5), which is why we can have different

post-conditions from the same branch probabilities, namely,

lack of enough information. To obtain these probabilities from

profiling, for instance, we need to find the frequencies of

length-2 paths such as (3, 5, 4) and (4, 5, 4), since P (4|3, 5) =
P (3, 5, 4)/P (3, 5) = N(3, 5, 4)/N(3, 5), where P (q) and

N(q) are the probability and the frequency of path q, re-

spectively. In the most general case, however, the paths we

need to consider can extend to the earliest join node, and the

number of different paths will be exponential in the number of

join nodes, even without loops. This is clearly unscalable. As

a practical solution we can approximate length-n conditional

probabilities with length-m conditional probabilities, where

m < n, or simply with length-1 conditional probabilities, that

is, branch probabilities. Approximation with branch probabil-

ities gives P (4|3, 5) ≈ P (4|4, 5) ≈ P (4|5). We generalize

this and later present our linear equation-based method.

It is worth noting that in this particular example we can

find the two illustrated solutions entirely from the branch

probabilities. Though length-2 conditional probabilities are

not specified, there is a constraint on them, i.e., N(3, 5, 4) +
N(4, 5, 4) = N(5, 4), since BB5 has only two immediate

TABLE I
DIFFERENT POST-CONDITIONS

Node Execution 1 Execution 2 Linear Equations

1 0/2 0/2 0/2
2 1/2 1/2 1/2
3 1/1 0/1 20/22
4 19/21 20/21 20/22
5 20/22 20/22 20/22
6 0/2 0/2 0/2

predecessors BB3 and BB4. Again using the definition of con-

ditional probability, N(3, 5)P (4|3, 5) + N(4, 5)P (4|4, 5) =
N5P (4|5), where Ni is the execution frequency of BBi. Since

N(3, 5) = N3 and N(4, 5) = N4 (having only one immediate

successor), we have N3s3 + N4s4 = N5s5. In our example,

N3 = 1. Therefore N3s3 can be either 0 or 1. Since we

know that s5 = P (4|5) = 10/11, we have s4 = 20/21 or

s4 = 19/21, which are the two cases illustrated.

Linear Equation Method: Once we approximate length-

n conditional probabilities with branch probabilities, we can

use the linear equation method to compute post-conditions.

Let s∗i be a variable associated with BBi, which is defined

to be 1, 0, or si if the first-access-type of BBi is read, write,

or no access, respectively. Then between every node BBi

and its immediate successors BBj’s this relationship holds:

si =
∑

j P (j|i)s∗j . Finally as an initial condition we require

s∗sink = 0 for the sink node of an inter-procedural CFG.

This procedure has to be repeated for each register in the RF,

since post-conditions can be different for different registers.

This set of linear equations has a unique solution and can

be solved very efficiently. The complexity of generating the

equations for one register is O(E), where E is the number

of edges in the inter-procedural control flow graph, and in

practice dominated by the linear equation solver runtime.

Solving the equations does not take too long as shown in our

experiments, since most of them are trivial involving only two

or less variables and there is no inequality. For the example

of Figure 2, the linear equation method yields the solution

listed in the last column of Table I, which is in between the

two solutions illustrated.

VI. GUIDING COMPILER OPTIMIZATIONS

Since vulnerability is dependent on when a register is read

and written, and compiler optimizations, e.g., loop transfor-

mations, instruction scheduling, register allocation, directly

affect that, compilers can greatly affect vulnerability of pro-

grams. Static technique to estimate RFV opens door for a

whole range of compiler RFV optimizations. While compilers

can reduce program vulnerability without hardware support,

synergistic hardware-software techniques can be even more

effective.

We use a popular microarchitectural technique, namely,

partially protected RF (PPRF) as a vehicle to demonstrate the

effectiveness of compiler techniques. The main idea behind

PPRF is that full protection has very high overheads in terms

of speed, area, and power, and that only a fraction of register

variables contribute to majority of RFV. Therefore cost-

effective RFV reduction can be achieved by protecting only

a part of RF. There are several flavors of this technique [2],

[10], [11], but all are complete hardware solutions. They

make the decision of which register variable to protect at

runtime, necessitating significant power overheads. Compiler

approaches can enhance this by making these decisions at

compile-time.

To allow compile-time decision of protected registers, we

assume that partially protected RF defines a set of archi-

tectural registers that are protected with certain hardware

mechanisms such as duplication, parity, or ECC. All existing

y = 1.4676x

R² = 0.9954

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600

V
u

ln
er

a
b

il
it

y
 f

ro
m

 S
im

u
la

ti
o

n

(M
cy

cl
e*

w
o

rd
)

Estimated Vulnerability (Mcycle*word)

Fig. 3. Simulation vs. Static Estimation.

approaches have attempted to minimize RFV by predicting

which register variables should be mapped to the protected

RF at runtime. But for the compiler, the problem of RFV

minimization is exactly the same as the traditional problem

of register allocation, with preferential allocation to the pro-

tected registers—the RFV will be minimized as long as we

keep all the protected registers busy all the time. However

the problem of power-efficient RF vulnerability reduction is

more challenging for the compiler, as it requires finding out

variables that will have long lifetimes, but will be accessed

rarely (assuming that RF power is proportional to the number

of accesses). Furthermore, compilers are better suited to solve

this problem, since it requires “whole program information.”

Therefore the goal of our compiler optimization is to find the

register swapping that will minimize RFV (V) as well as the

RF energy (E), or the weighted sum of the two as in V +βE.

This is our objective function.

Register swapping or reassignment can be performed on a

per-function or per-program basis without sacrificing applica-

tion performance [13]. On a per-program basis, Application-

level Register Swapping (ARS) swaps registers globally

throughout the entire program, including library routines,

and therefore can work on all registers, except for those

architecturally distinguished or reserved for system calls. An

example of an architecturally distinguished register is the

link register r31 in the MIPS architecture [21], since it is

implicitly accessed by instruction jal. On the other hand,

Function-level Register Swapping (FRS) may swap registers

differently in each function, and can work on and within

certain classes of registers such as callee-saved registers (also

called s-registers in MIPS) and caller-saved registers (called

t-registers in MIPS). ARS and FRS may be combined for

greater flexibility.

Determining the optimal register reassignment (RR) for

ARS is easy. Since protecting a register decreases V but

increases E, with the energy increase proportional to the

number of accesses, energy efficiency can be maximized by

protecting the registers with highest vulnerability and fewest

accesses. It is shown [13] that sorting the registers according

to their Vr−βEr values gives the optimal RR that minimizes

the objective function. In FRS, however, changing the register

assignment in one function may affect the vulnerability in

other functions, particularly for the callee saved registers,

or the s-registers in MIPS convention. For example, an s-

register that is written right after a function call and return

will have different vulnerability depending on whether the

register is accessed in the callee function. Therefore, we can

either do the global optimization, considering all the func-

tions simultaneously, which is computationally prohibitive,

or determine each function’s RR iteratively, recomputing

vulnerability after deciding the RR of each function. In the

latter case, the solution may not be the global optimum and

its quality depends on the order of functions visited. We

use the order of growing importance, as measured by the

number of execution cycles of each function. The complexity

of this algorithm is O(FRL), where F is the number of

functions, R is the number of registers, and L is the linear

equation solver runtime. It can be reduced to O(cRL) by

recomputing RF vulnerability only before visiting the c most

important functions, where c is a design parameter. Note that

recomputing RF vulnerability as we determine each function’s

RR is not an option in profile based approaches such as [13].

VII. EXPERIMENTS

We evaluate the effectiveness of our compiler approach

using several applications2 from an embedded benchmark

suite [22]. For the target architecture we use the SimpleScalar-

PISA [23], which is based on the MIPS instruction set. To em-

ulate an embedded processor the cycle-accurate SimpleScalar

simulator is configured for in-order execution. For the other

parameters we use the simulator’s default settings. Applica-

tions are compiled using GCC 2.7.2.33 with the benchmark-

specified optimization level. From the executable we construct

interprocedural CFG, from which we generate linear equa-

tions for post-conditions. Branch probabilities are obtained

from an initial profiling, though they can be also statically

estimated [24]. The linear equations are solved using the

lp_solve software package [25] which can handle not only

linear equations but also mixed-integer linear optimizations.

The solutions are post-conditions, from which to compute

vulnerability we need execution frequency and basic block

vulnerability components (vi, vc). Execution frequency is

computed from branch probabilities using a method similar

to [19], and basic block vulnerability components are approx-

imated with instruction counts.

A. Validation of Static RFV Estimation

First we compare the accuracy of our static RFV esti-

mation. Figure 3 compares the vulnerability generated from

simulation (on the y-axis) and from our static estimation

(on the x-axis). Each dot represents one register. Due to

the approximations, viz. basic block vulnerability components

to instruction counts and path probabilities to branch prob-

abilities, some degree of inaccuracy is expected. However,

despite those approximations we see the dots placed near the

y = ax line, indicating that our static RFV estimation can

closely follow the measured vulnerability most of the time.

The accuracy can be further improved if the approximations

are removed.

2They are JPEG, patricia, ispell, rsynth, string search, PGP, and FFT.
3This is one of the latest versions supporting the SimpleScalar target.

0

0.2

0.4

0.6

0.8

A B C A B C A B C

K = 4 K = 6 K = 8

Vulnerability Energy Overhead

Fig. 4. Normalized V and E (on y-axis) of the three cases (A, B, C).

B. Effectiveness of Compiler Approach

For a fair comparison of and demonstration of the need and

usefulness of compiler RFV optimizations, we consider three

flavors of partially protected register file (PPRF) approach.

• [Case A: PPRF using Runtime Prediction] K registers are
protected, and the runtime prediction logic in [11] is used to
map register variables to the protected registers in hardware at
runtime.

• [Case B: Hardwired PPRF] We profile all the applications,
and compute each register vulnerability. The top K registers
with the highest vulnerability are then hardwired for protection.

• [Case C: Hardwired PPRF with Compiler Optimization] K
registers are hardwired for protection. We apply our compiler
optimization using static RFV estimation, and statically rename
the top K registers with the highest cost metric to be mapped
onto the protected registers. For compiler optimization we set
c to 5 and β to the ratio of RFV to the total access count.

Figure 4 compares the RFV and RF energy overhead of the

seven applications (aggregated by taking geometric mean) for

different values of K. The RFV is normalized to that of the

original unprotected RF. The energy overhead is normalized

to the energy consumption of the original RF, assuming that

the energy overhead (i.e., ECC generation and checking) of a

protected register access is equal to the energy consumption

of an unprotected register access, which enables technology

independent comparison. We do not include prediction power

in Case A.

Vulnerability Aspect: We observe that in Case A, the

runtime prediction can achieve 20% to 30% reduction in RFV,

which is consistent with earlier results [11]. Compared to that,

Cases B and C can achieve almost twice the vulnerability

reduction with the same number of protected registers. This

means that the runtime prediction algorithm in A is not as

effective or optimal as static (C) or offline (B) decisions. This

is because vulnerability estimation requires post-condition,

which is not available to dynamic schemes. On the other hand,

our compiler technique can achieve almost the same vulner-

ability reduction as Case B, which reinforces the accuracy of

our static RFV estimation.

Energy Aspect: The energy overhead difference is more

dramatic. The graph shows that Case A has 20% to 50%

accesses to the protected registers, as normalized to the total

number of RF accesses. This implies that even without pre-

diction power, which may also be considerable, the runtime

scheme can consume 20% to 50% more energy for RF

protection, if the ECC generation/checking takes about the

same power as one RF access. The energy overhead goes

up rapidly as the number of protected registers increases.

Hardwired PPRF approach has much lower energy overhead.

0%

20%

40%

60%

80%

100%

AC_refine AC_first fdct_islow forward_DCT rgb_ycc_conv

s7

s6

s5

s4

s3

s2

s1

s0

Fig. 5. Distribution of optimization cost metric across s-registers (on y-axis).

The primary reason is that the runtime prediction may evict

existing variables from protected registers to accommodate

new variables that appear to be longer-lived (this involves

only updating ECC table), in a bid to maximize the vulner-

ability reduction. The compiler approach, Case C offers the

most energy-efficient RF vulnerability reduction. Compared

to Case B, compiler optimizations can bring down the energy

overhead to 1/4, for K=4, and 1/2 for K=8. Although

our compiler optimization involves solving multiple sets of

linear equations, the optimization time is modest; the entire

vulnerability estimation and optimization for each application

took at most one minute on a 2GHz Xeon PC, except for one

application, PGP, which took about 7 minutes.

While it is clear from a comparison between case A and

B that there is no need for runtime prediction, and even a

hardwired scheme of register protection provides energy ef-

ficient protection, to demonstrate the need/scope of compiler

optimization, we plot the optimization cost metric for the top

five functions of JPEG application for each register (Figure 5).

The cost metric represents the energy efficiency of protecting

a register; thus registers with higher metric are better to

protect in term of energy efficiency. Only s-registers are

shown since they contribute the most to vulnerability and need

careful selection. (This is because they are live across function

calls, in contrast to the t-registers, which are live only within

a function.) From the graph we see that the contribution of

each register varies greatly across different functions, as is the

case with different applications (not shown); consequently,

no fixed ordering will be optimal, which indicates significant

need and scope for compiler techniques to analyze and find

out the registers that need to be protected.

VIII. SUMMARY

This paper proposes a static analysis approach to estimate

RFV. Static estimation of vulnerability is more challenging

than performance estimation due to the path-dependent nature

of vulnerability computation. This paper makes several fun-

damental contributions. First, we analyzed this dependence at

the basic block level, which allows us to decompose the basic

block vulnerability into intrinsic and conditional vulnerabili-

ties. Combining the two with post-condition gives the exact

and efficient way to represent the RFV. Second, since the

exact computation of post-condition requires path frequency

information of an interprocedural CFG, which is not practical,

we presented a fast, reasonably accurate, linear equation-

based method to estimate post-condition from branch proba-

bilities. Third, we demonstrated practical application of our

static estimation technique through compiler optimizations

for partially protected RF. Our experimental results on a

number of embedded applications indicate that not only our

static RFV estimation is fast and relatively accurate but

also compiler optimizations enabled by our static estimation

can achieve very cost-effective RF vulnerability reduction.

When used to compile for partially protected RF, simplest

of compiler-management schemes can be much more energy

efficient than hardware schemes, and explicit optimization can

further reduce the energy overhead by up to 50% to 75%

while not sacrificing vulnerability.

This work is seminal in that static RFV analysis opens

doors to develop compiler approaches for optimizing RF re-

liability. Future work includes studying register allocation and

instruction scheduling for power and performance efficient RF

protection.

REFERENCES

[1] “International technology roadmap for semiconductors 2007 executive
summary.” [Online]. Available: http://www.itrs.net/

[2] J. A. Blome et al., “Cost-efficient soft error protection for embedded
microprocessors,” in CASES ’06, 2006, pp. 421–431.

[3] S. Mitra et al., “Robust system design with built-in soft-error re-
silience,” IEEE Computer, vol. 38, pp. 43–52, 2005.

[4] A. Shrivastava et al., “Operation tables for scheduling in the presence
of incomplete bypassing.” in CODES+ISSS, 2004, pp. 194–199.

[5] K. Skadron et al., “Temperature-aware microarchitecture,” in Proc. Int’l

Symp. on Computer Architecture, 2003, pp. 2–13.
[6] P. Dodd and L. Massengill, “Basic mechanisms and modeling of

single-event upset in digital microelectronics,” IEEE Trans. on Nuclear

Science, vol. 50, pp. 583–602, June 2003.
[7] P. Dodd et al., “Neutron-induced latchup in SRAMs at ground level,”

in 41st Annual Int’l Reliability Physics Symposium, 2003, pp. 51–55.
[8] J. Hasan et al., “Heat stroke: Power-density-based denial of service in

SMT,” in HPCA, 2005.
[9] S. Park et al., “Bypass aware instruction scheduling for register file

power reduction,” in LCTES, 2006, pp. 173–181.
[10] G. Memik et al., “Engineering over-clocking: reliability-performance

trade-offs for high-performance register files,” DSN ’05, 2005.
[11] P. Montesinos et al., “Using register lifetime predictions to protect

register files against soft errors,” in DSN ’07, 2007, pp. 286–296.
[12] M. Kandala et al., “An area-efficient approach to improving register

file reliability against transient errors,” in ISEC, 2007.
[13] Compiler-Managed Register File Protection for Energy-Efficient Soft

Error Reduction, 2009.
[14] J. Yan and W. Zhang, “Compiler-guided register reliability improve-

ment against soft errors,” in EMSOFT ’05, 2005, pp. 203–209.
[15] S. S. Mukherjee et al., “A systematic methodology to compute the

architectural vulnerability factors for a high-performance microproces-
sor,” in Proc. International Symposium on Microarchitecture, Dec 2003.

[16] T. J. Slegel et al., “IBM’s S/390 G5 microprocessor design,” IEEE

Micro, vol. 19, pp. 12–23, 1999.
[17] X. Li et al., “Online estimation of architectural vulnerability factor for

soft errors,” SIGARCH Comput. Archit. News, vol. 36, pp. 341–352,
2008.

[18] K. R. Walcott et al., “Dynamic prediction of architectural vulnerability
from microarchitectural state,” SIGARCH CA News, pp. 516–527, 2007.

[19] K. Chen et al., “Retargetable static timing analysis for embedded
software,” in ISSS ’01, 2001, pp. 39–44.

[20] S. Chatterjee et al., “Exact analysis of the cache behavior of nested
loops,” in PLDI ’01, 2001, pp. 286–297.

[21] D. Patterson and J. Hennessy, Computer Organization and Design: The

Hardware/Software Interface. Morgan Kaufmann Publishers, 2004.
[22] M. Guthaus et al., “Mibench: A free, commercially representative

embedded benchmark suite,” in IWWC, 2001.
[23] T. Austin, “SimpleScalar LLC.”
[24] Y. Wu and J. Larus, “Static branch frequency and program profile

analysis,” in MICRO 27, 1994, pp. 1–11.
[25] “Open-source mixed-integer linear programming system.” [Online].

Available: http://lpsolve.sourceforge.net/5.5/

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

